install.packages("devtools", dependencies = TRUE, repos = "https://cran.rstudio.com")
## Installing package into '/home/liqiuy01/R/x86_64-redhat-linux-gnu-library/3.4'
## (as 'lib' is unspecified)
library(devtools)
devtools::install_github("ayhandis/creditR")
## Skipping install of 'creditR' from a github remote, the SHA1 (9c7d3301) has not changed since last install.
## Use `force = TRUE` to force installation
library(creditR)
## Loading required package: magrittr
## Loading required package: woeBinning
## Loading required package: cluster
## Loading required package: MLmetrics
##
## Attaching package: 'MLmetrics'
## The following object is masked from 'package:base':
##
## Recall
ls("package:creditR")
## [1] "Adjusted.Binomial.test"
## [2] "Adjusted.Herfindahl.Hirschman.Index"
## [3] "Anchor.point"
## [4] "bayesian.calibration"
## [5] "Binomial.test"
## [6] "chisquare.test"
## [7] "correlation.cluster"
## [8] "Gini_elimination"
## [9] "Gini.univariate"
## [10] "Gini.univariate.data"
## [11] "Herfindahl.Hirschman.Index"
## [12] "IV_elimination"
## [13] "IV.calc"
## [14] "IV.calc.data"
## [15] "k.fold.cross.validation.glm"
## [16] "Kolmogorov.Smirnov"
## [17] "master.scale"
## [18] "missing_elimination"
## [19] "missing_ratio"
## [20] "na_checker"
## [21] "na_filler_contvar"
## [22] "PSI.calc"
## [23] "PSI.calc.data"
## [24] "regression.calibration"
## [25] "scaled.score"
## [26] "SSI.calc"
## [27] "SSI.calc.data"
## [28] "train_test_balanced_split"
## [29] "train_test_split"
## [30] "variable.clustering"
## [31] "variable.clustering.gini"
## [32] "vif.calc"
## [33] "woe.get.clear.data"
## [34] "woe.glm.feature.importance"
## [35] "woe.table.calc"
# Attaching the library
library(creditR)
#Model data and data structure
data("germancredit")
str(germancredit)
## 'data.frame': 1000 obs. of 21 variables:
## $ status.of.existing.checking.account : Factor w/ 4 levels "... < 0 DM","... >= 200 DM / salary assignments for at least 1 year",..: 1 3 4 1 1 4 4 3 4 3 ...
## $ duration.in.month : num 6 48 12 42 24 36 24 36 12 30 ...
## $ credit.history : Factor w/ 5 levels "all credits at this bank paid back duly",..: 2 4 2 4 3 4 4 4 4 2 ...
## $ purpose : Factor w/ 11 levels "business","car (new)",..: 8 8 5 6 2 5 6 3 8 2 ...
## $ credit.amount : num 1169 5951 2096 7882 4870 ...
## $ savings.account.and.bonds : Factor w/ 5 levels "... < 100 DM",..: 5 1 1 1 1 5 4 1 2 1 ...
## $ present.employment.since : Factor w/ 5 levels "... < 1 year",..: 2 3 4 4 3 3 2 3 4 5 ...
## $ installment.rate.in.percentage.of.disposable.income : num 4 2 2 2 3 2 3 2 2 4 ...
## $ personal.status.and.sex : Factor w/ 5 levels "female : divorced/separated/married",..: 3 1 3 3 3 3 3 3 1 2 ...
## $ other.debtors.or.guarantors : Factor w/ 3 levels "co-applicant",..: 3 3 3 2 3 3 3 3 3 3 ...
## $ present.residence.since : num 4 2 3 4 4 4 4 2 4 2 ...
## $ property : Factor w/ 4 levels "building society savings agreement/ life insurance",..: 3 3 3 1 4 4 1 2 3 2 ...
## $ age.in.years : num 67 22 49 45 53 35 53 35 61 28 ...
## $ other.installment.plans : Factor w/ 3 levels "bank","none",..: 2 2 2 2 2 2 2 2 2 2 ...
## $ housing : Factor w/ 3 levels "for free","own",..: 2 2 2 1 1 1 2 3 2 2 ...
## $ number.of.existing.credits.at.this.bank : num 2 1 1 1 2 1 1 1 1 2 ...
## $ job : Factor w/ 4 levels "management/ self-employed/ highly qualified employee/ officer",..: 4 4 3 4 4 3 4 1 3 1 ...
## $ number.of.people.being.liable.to.provide.maintenance.for: num 1 1 2 2 2 2 1 1 1 1 ...
## $ telephone : Factor w/ 2 levels "none","yes, registered under the customers name": 2 1 1 1 1 2 1 2 1 1 ...
## $ foreign.worker : Factor w/ 2 levels "no","yes": 2 2 2 2 2 2 2 2 2 2 ...
## $ creditability : Factor w/ 2 levels "bad","good": 2 1 2 2 1 2 2 2 2 1 ...
#Preparing a sample data set
sample_data <- germancredit[,c("duration.in.month","credit.amount","installment.rate.in.percentage.of.disposable.income", "age.in.years","creditability")]
#Converting the ???Creditability??? (default flag) variable into numeric type
sample_data$creditability <- ifelse(sample_data$creditability == "bad",1,0)
#Calculating the missing ratios
missing_ratio(sample_data)
## Variable Missing_Ratio
## 1 duration.in.month 0
## 2 credit.amount 0
## 3 installment.rate.in.percentage.of.disposable.income 0
## 4 age.in.years 0
## 5 creditability 0
## Completeness
## 1 1
## 2 1
## 3 1
## 4 1
## 5 1
#Splitting the data into train and test sets
traintest <- train_test_split(sample_data,123,0.70)
train <- traintest$train
test <- traintest$test
#Applying WOE transformation on the variables
woerules <- woe.binning(df = train,target.var = "creditability",pred.var = train,event.class = 1)
train_woe <- woe.binning.deploy(train, woerules, add.woe.or.dum.var='woe')
#Creating a dataset with the transformed variables and default flag
train_woe <- woe.get.clear.data(train_woe,default_flag = "creditability",prefix = "woe")
#Applying the WOE rules used on the train data to the test data
test_woe <- woe.binning.deploy(test, woerules, add.woe.or.dum.var='woe')
test_woe <- woe.get.clear.data(test_woe,default_flag = "creditability",prefix = "woe")
#Performing the IV and Gini calculations for the whole data set
IV.calc.data(train_woe,"creditability")
## Variable
## 1 woe.duration.in.month.binned
## 2 woe.age.in.years.binned
## 3 woe.installment.rate.in.percentage.of.disposable.income.binned
## 4 woe.credit.amount.binned
## IV
## 1 0.27427337093608
## 2 0.147911820594104
## 3 0.054182491677713
## 4 0.0151201567965826
#Creating a new dataset by Gini elimination. IV elimination is also possible
eliminated_data <- Gini_elimination(train_woe,"creditability",0.10)
## Warning: glm.fit: algorithm did not converge
str(eliminated_data)
## 'data.frame': 702 obs. of 4 variables:
## $ woe.duration.in.month.binned : num 142.9 -86.5 13 13 -86.5 ...
## $ woe.age.in.years.binned : num 38.5 -68.1 38.5 38.5 38.5 ...
## $ woe.installment.rate.in.percentage.of.disposable.income.binned: num -22.4 24.2 24.2 24.2 24.2 ...
## $ creditability : num 0 1 0 1 0 0 0 0 1 0 ...
#A demonstration of the functions useful in performing Clustering
clustering_data <- variable.clustering(eliminated_data,"creditability", 2)
clustering_data
## Group variable
## 1 1 woe.duration.in.month.binned
## 2 2 woe.age.in.years.binned
## 3 2 woe.installment.rate.in.percentage.of.disposable.income.binned
# Returns the data for variables that have the maximum gini value in the dataset
selected_data <- variable.clustering.gini(eliminated_data,"creditability", 2)
## Warning: glm.fit: algorithm did not converge
correlation.cluster(eliminated_data,clustering_data,variables = "variable",clusters = "Group")
## Clusters Correlation
## 1 1 NaN
## 2 2 -0.03818862
#Creating a logistic regression model of the data
model= glm(formula = creditability ~ ., family = binomial(link = "logit"), data = eliminated_data)
summary(model)
##
## Call:
## glm(formula = creditability ~ ., family = binomial(link = "logit"),
## data = eliminated_data)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5724 -0.8981 -0.7073 1.0510 2.4693
##
## Coefficients:
## Estimate
## (Intercept) -0.920051
## woe.duration.in.month.binned -0.010101
## woe.age.in.years.binned -0.010755
## woe.installment.rate.in.percentage.of.disposable.income.binned -0.009216
## Std. Error
## (Intercept) 0.088548
## woe.duration.in.month.binned 0.001801
## woe.age.in.years.binned 0.002269
## woe.installment.rate.in.percentage.of.disposable.income.binned 0.003782
## z value
## (Intercept) -10.390
## woe.duration.in.month.binned -5.607
## woe.age.in.years.binned -4.739
## woe.installment.rate.in.percentage.of.disposable.income.binned -2.437
## Pr(>|z|)
## (Intercept) < 2e-16
## woe.duration.in.month.binned 2.06e-08
## woe.age.in.years.binned 2.14e-06
## woe.installment.rate.in.percentage.of.disposable.income.binned 0.0148
##
## (Intercept) ***
## woe.duration.in.month.binned ***
## woe.age.in.years.binned ***
## woe.installment.rate.in.percentage.of.disposable.income.binned *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 840.75 on 701 degrees of freedom
## Residual deviance: 775.61 on 698 degrees of freedom
## AIC: 783.61
##
## Number of Fisher Scoring iterations: 4
#Calculating variable weights
woe.glm.feature.importance(eliminated_data,model,"creditability")
## Variables
## 1 woe.duration.in.month.binned
## 2 woe.age.in.years.binned
## 3 woe.installment.rate.in.percentage.of.disposable.income.binned
## beta_std importance
## 1 -0.5586544 0.4721259
## 2 -0.4093063 0.3459099
## 3 -0.2153136 0.1819642
#Generating the PD values for the train and test data
ms_train_data <- cbind(eliminated_data,model$fitted.values)
ms_test_data <- cbind(test_woe[,colnames(eliminated_data)], predict(model,type = "response", newdata = test_woe))
colnames(ms_train_data) <- c("woe.duration.in.month.binned","woe.age.in.years.binned","woe.installment.rate.in.percentage.of.disposable.income.binned","creditability","PD")
colnames(ms_test_data) <- c("woe.duration.in.month.binned","woe.age.in.years.binned","woe.installment.rate.in.percentage.of.disposable.income.binned","creditability","PD")
#Generating the PD values for the train and test data
ms_train_data <- cbind(eliminated_data,model$fitted.values)
ms_test_data <- cbind(test_woe[,colnames(eliminated_data)], predict(model,type = "response", newdata = test_woe))
colnames(ms_train_data) <- c("woe.duration.in.month.binned","woe.age.in.years.binned","woe.installment.rate.in.percentage.of.disposable.income.binned","creditability","PD")
colnames(ms_test_data) <- c("woe.duration.in.month.binned","woe.age.in.years.binned","woe.installment.rate.in.percentage.of.disposable.income.binned","creditability","PD")
#Creating a master scale
master_scale <- master.scale(ms_train_data,"creditability","PD")
master_scale
## Final.PD.Range Total.Observations Total.Distr Good.Count Bad.Count
## 1 <= 0.1559785868 164 23.4% 143 21
## 2 <= 0.2212992684 130 18.5% 100 30
## 3 <= 0.2441772337 106 15.1% 79 27
## 4 <= 0.3319088324 100 14.2% 68 32
## 5 <= 0.3353620015 22 3.1% 14 8
## 6 <= 0.3677802245 38 5.4% 26 12
## 7 <= 0.4369170215 37 5.3% 21 16
## 8 <= 0.4686697435 26 3.7% 16 10
## 9 <= 0.472177952 41 5.8% 22 19
## 10 <= Inf 38 5.4% 12 26
## Good.Distr Bad.Distr Bad.Rate PD Score
## 1 28.5% 10.4% 12.8% 0.12720 -1.9259458
## 2 20.0% 14.9% 23.1% 0.22088 -1.2605455
## 3 15.8% 13.4% 25.5% 0.24418 -1.1298976
## 4 13.6% 15.9% 32.0% 0.33191 -0.6995590
## 5 2.8% 4.0% 36.4% 0.33536 -0.6840410
## 6 5.2% 6.0% 31.6% 0.36778 -0.5417525
## 7 4.2% 8.0% 43.2% 0.43692 -0.2536716
## 8 3.2% 5.0% 38.5% 0.46867 -0.1254844
## 9 4.4% 9.5% 46.3% 0.47218 -0.1113950
## 10 2.4% 12.9% 68.4% 0.61282 0.4591816
#Calibrating the master scale and the modeling data to the default rate of 5% using the bayesian calibration method
ms_train_data$Score = log(ms_train_data$PD/(1-ms_train_data$PD))
ms_test_data$Score = log(ms_test_data$PD/(1-ms_test_data$PD))
bayesian_method <- bayesian.calibration(data = master_scale,average_score ="Score",total_observations = "Total.Observations",PD = "PD",central_tendency = 0.05,calibration_data = ms_train_data,calibration_data_score ="Score")
#After calibration, the information and data related to the calibration process can be obtained as follows
bayesian_method$Calibration.model
##
## Call:
## lm(formula = log(data$OddRatio) ~ data[, numberavg], data = data)
##
## Coefficients:
## (Intercept) data[, numberavg]
## 2.031 -1.000
bayesian_method$Calibration.formula
## [1] "Calibration method can be applied with: 1/(1+exp(Intercept + Score * Coefficient)) formula. Numerically : 1/(1+exp(2.03114364188451+Score *-1))"
#The Scaled score can be created using the following function
scaled.score(bayesian_method$calibration_data, "calibrated_pd", 3000, 15)
## woe.duration.in.month.binned woe.age.in.years.binned
## 1 142.85046 38.47006
## 2 -86.45110 -68.14996
## 3 12.98813 38.47006
## 5 12.98813 38.47006
## 6 -86.45110 38.47006
## 7 12.98813 38.47006
## 8 -86.45110 38.47006
## 9 12.98813 38.47006
## 12 -86.45110 -68.14996
## 13 12.98813 -68.14996
## 17 12.98813 38.47006
## 19 12.98813 38.47006
## 24 12.98813 38.47006
## 25 12.98813 -13.46318
## 26 142.85046 38.47006
## 28 12.98813 38.47006
## 29 12.98813 38.47006
## 30 -86.45110 38.47006
## 33 12.98813 -13.46318
## 35 12.98813 -13.46318
## 36 -86.45110 -13.46318
## 37 -86.45110 -13.46318
## 39 12.98813 38.47006
## 40 12.98813 -68.14996
## 43 12.98813 38.47006
## 44 12.98813 -68.14996
## 45 -86.45110 38.47006
## 46 12.98813 38.47006
## 49 12.98813 38.47006
## 50 12.98813 -13.46318
## 51 12.98813 -13.46318
## 52 12.98813 -13.46318
## 54 12.98813 -13.46318
## 55 -86.45110 38.47006
## 56 142.85046 -13.46318
## 57 12.98813 38.47006
## 58 -86.45110 -13.46318
## 60 -86.45110 -68.14996
## 61 12.98813 -13.46318
## 63 -86.45110 38.47006
## 64 -86.45110 -13.46318
## 65 12.98813 -13.46318
## 67 12.98813 -13.46318
## 69 -86.45110 38.47006
## 70 -86.45110 -13.46318
## 71 -86.45110 -13.46318
## 73 12.98813 38.47006
## 75 -86.45110 38.47006
## 77 -86.45110 38.47006
## 79 -86.45110 38.47006
## 83 12.98813 -68.14996
## 84 12.98813 38.47006
## 87 12.98813 -13.46318
## 89 12.98813 -13.46318
## 90 12.98813 -13.46318
## 91 12.98813 38.47006
## 92 12.98813 38.47006
## 93 12.98813 -13.46318
## 94 12.98813 -68.14996
## 95 12.98813 38.47006
## 98 12.98813 38.47006
## 99 -86.45110 38.47006
## 100 12.98813 38.47006
## 102 -86.45110 -68.14996
## 103 142.85046 -68.14996
## 104 12.98813 38.47006
## 105 12.98813 -13.46318
## 106 12.98813 38.47006
## 108 12.98813 -13.46318
## 109 12.98813 -13.46318
## 110 12.98813 38.47006
## 112 12.98813 -68.14996
## 114 -86.45110 -13.46318
## 115 12.98813 38.47006
## 116 -86.45110 38.47006
## 117 -86.45110 -13.46318
## 120 12.98813 38.47006
## 121 12.98813 -13.46318
## 124 12.98813 38.47006
## 125 12.98813 -13.46318
## 127 12.98813 38.47006
## 128 12.98813 -13.46318
## 129 12.98813 38.47006
## 130 12.98813 -13.46318
## 133 12.98813 -13.46318
## 134 12.98813 38.47006
## 135 -86.45110 -68.14996
## 136 12.98813 38.47006
## 138 12.98813 38.47006
## 139 12.98813 38.47006
## 140 12.98813 38.47006
## 141 142.85046 -13.46318
## 142 -86.45110 -13.46318
## 143 12.98813 -13.46318
## 144 12.98813 -68.14996
## 145 12.98813 -68.14996
## 146 -86.45110 -13.46318
## 147 142.85046 38.47006
## 148 12.98813 38.47006
## 152 12.98813 38.47006
## 153 -86.45110 -68.14996
## 154 12.98813 -13.46318
## 155 12.98813 38.47006
## 156 12.98813 -68.14996
## 157 12.98813 38.47006
## 158 12.98813 38.47006
## 160 142.85046 38.47006
## 162 12.98813 -13.46318
## 163 12.98813 38.47006
## 165 -86.45110 38.47006
## 166 142.85046 -13.46318
## 167 12.98813 -13.46318
## 169 12.98813 -13.46318
## 170 12.98813 -13.46318
## 172 12.98813 -13.46318
## 175 12.98813 -13.46318
## 176 12.98813 38.47006
## 177 12.98813 38.47006
## 178 142.85046 38.47006
## 179 12.98813 -13.46318
## 180 12.98813 38.47006
## 182 -86.45110 -13.46318
## 183 12.98813 38.47006
## 184 12.98813 38.47006
## 185 12.98813 38.47006
## 186 12.98813 -13.46318
## 187 12.98813 38.47006
## 188 12.98813 38.47006
## 189 12.98813 -68.14996
## 190 12.98813 -13.46318
## 191 12.98813 38.47006
## 193 12.98813 38.47006
## 194 142.85046 -13.46318
## 195 -86.45110 -68.14996
## 196 12.98813 38.47006
## 198 12.98813 -13.46318
## 200 12.98813 38.47006
## 203 12.98813 -13.46318
## 204 12.98813 -68.14996
## 205 12.98813 38.47006
## 206 12.98813 38.47006
## 207 12.98813 38.47006
## 208 12.98813 -13.46318
## 209 12.98813 -68.14996
## 210 12.98813 38.47006
## 211 12.98813 -13.46318
## 214 12.98813 38.47006
## 215 -86.45110 38.47006
## 216 142.85046 38.47006
## 217 12.98813 -13.46318
## 218 -86.45110 -68.14996
## 219 12.98813 -68.14996
## 220 12.98813 38.47006
## 223 12.98813 -13.46318
## 224 12.98813 -13.46318
## 225 12.98813 -13.46318
## 226 -86.45110 -13.46318
## 227 -86.45110 -13.46318
## 228 12.98813 38.47006
## 229 12.98813 -68.14996
## 230 12.98813 -68.14996
## 231 -86.45110 -13.46318
## 232 12.98813 38.47006
## 233 12.98813 38.47006
## 234 12.98813 -13.46318
## 236 12.98813 -13.46318
## 237 142.85046 -68.14996
## 238 12.98813 38.47006
## 239 12.98813 38.47006
## 241 12.98813 -13.46318
## 242 142.85046 38.47006
## 243 -86.45110 -68.14996
## 245 12.98813 38.47006
## 249 12.98813 -13.46318
## 250 12.98813 -68.14996
## 252 12.98813 38.47006
## 253 12.98813 -68.14996
## 254 12.98813 38.47006
## 255 12.98813 -68.14996
## 257 12.98813 38.47006
## 260 12.98813 38.47006
## 261 12.98813 -13.46318
## 262 12.98813 38.47006
## 263 12.98813 38.47006
## 264 12.98813 38.47006
## 265 12.98813 -13.46318
## 267 -86.45110 38.47006
## 270 12.98813 -13.46318
## 271 12.98813 -13.46318
## 272 12.98813 38.47006
## 275 12.98813 38.47006
## 276 12.98813 -13.46318
## 278 12.98813 38.47006
## 279 142.85046 -13.46318
## 280 12.98813 -13.46318
## 281 12.98813 -68.14996
## 282 12.98813 38.47006
## 283 12.98813 38.47006
## 284 12.98813 38.47006
## 285 12.98813 38.47006
## 286 -86.45110 38.47006
## 288 -86.45110 -13.46318
## 292 -86.45110 -13.46318
## 293 12.98813 38.47006
## 294 -86.45110 38.47006
## 295 -86.45110 38.47006
## 296 -86.45110 -13.46318
## 297 12.98813 -68.14996
## 298 12.98813 38.47006
## 299 12.98813 38.47006
## 300 12.98813 -13.46318
## 301 142.85046 38.47006
## 303 12.98813 38.47006
## 304 12.98813 38.47006
## 305 -86.45110 38.47006
## 307 12.98813 -68.14996
## 308 12.98813 -13.46318
## 309 12.98813 -68.14996
## 310 12.98813 -68.14996
## 312 12.98813 -13.46318
## 316 -86.45110 -13.46318
## 317 12.98813 38.47006
## 318 12.98813 38.47006
## 320 12.98813 -13.46318
## 322 12.98813 -13.46318
## 325 12.98813 38.47006
## 326 12.98813 38.47006
## 327 12.98813 38.47006
## 328 12.98813 38.47006
## 330 142.85046 -13.46318
## 331 12.98813 38.47006
## 332 12.98813 -13.46318
## 333 -86.45110 -68.14996
## 334 -86.45110 -68.14996
## 336 142.85046 38.47006
## 338 12.98813 -68.14996
## 339 12.98813 -13.46318
## 340 12.98813 -13.46318
## 341 12.98813 -68.14996
## 342 12.98813 -13.46318
## 344 12.98813 -13.46318
## 347 12.98813 -68.14996
## 348 12.98813 -68.14996
## 349 142.85046 38.47006
## 350 12.98813 -13.46318
## 351 12.98813 -68.14996
## 354 12.98813 -13.46318
## 355 12.98813 38.47006
## 356 12.98813 -68.14996
## 357 12.98813 38.47006
## 358 -86.45110 -13.46318
## 359 12.98813 -13.46318
## 360 12.98813 -68.14996
## 362 12.98813 38.47006
## 363 12.98813 38.47006
## 364 142.85046 -68.14996
## 365 12.98813 -13.46318
## 367 12.98813 -13.46318
## 368 12.98813 -68.14996
## 370 12.98813 38.47006
## 371 -86.45110 38.47006
## 372 12.98813 -13.46318
## 376 -86.45110 38.47006
## 378 12.98813 38.47006
## 379 -86.45110 38.47006
## 380 142.85046 38.47006
## 381 12.98813 38.47006
## 382 12.98813 38.47006
## 383 12.98813 -13.46318
## 384 12.98813 -13.46318
## 385 12.98813 -13.46318
## 386 12.98813 -13.46318
## 389 12.98813 -13.46318
## 390 12.98813 -13.46318
## 391 12.98813 -13.46318
## 392 12.98813 -68.14996
## 394 142.85046 -13.46318
## 395 12.98813 -13.46318
## 396 -86.45110 -13.46318
## 397 12.98813 38.47006
## 398 -86.45110 38.47006
## 400 12.98813 38.47006
## 401 12.98813 38.47006
## 402 12.98813 -13.46318
## 403 12.98813 -13.46318
## 404 12.98813 -13.46318
## 405 12.98813 38.47006
## 407 12.98813 38.47006
## 409 12.98813 -13.46318
## 410 12.98813 -13.46318
## 412 -86.45110 38.47006
## 413 12.98813 38.47006
## 417 12.98813 -13.46318
## 419 12.98813 -13.46318
## 420 12.98813 -13.46318
## 421 12.98813 -68.14996
## 422 12.98813 -13.46318
## 423 12.98813 38.47006
## 425 12.98813 -13.46318
## 427 12.98813 -13.46318
## 428 12.98813 38.47006
## 431 142.85046 38.47006
## 432 12.98813 -13.46318
## 434 12.98813 -13.46318
## 435 12.98813 -13.46318
## 436 12.98813 -13.46318
## 439 -86.45110 38.47006
## 441 12.98813 38.47006
## 444 12.98813 38.47006
## 446 12.98813 38.47006
## 447 -86.45110 38.47006
## 448 12.98813 38.47006
## 449 12.98813 38.47006
## 450 12.98813 38.47006
## 452 142.85046 -13.46318
## 454 12.98813 38.47006
## 456 12.98813 -13.46318
## 460 12.98813 -13.46318
## 461 -86.45110 38.47006
## 463 12.98813 38.47006
## 465 12.98813 38.47006
## 467 12.98813 -13.46318
## 468 -86.45110 -13.46318
## 469 -86.45110 -13.46318
## 471 12.98813 -68.14996
## 472 142.85046 -68.14996
## 473 12.98813 -13.46318
## 474 142.85046 38.47006
## 476 12.98813 -13.46318
## 477 -86.45110 -68.14996
## 478 12.98813 -13.46318
## 482 12.98813 -13.46318
## 484 12.98813 -13.46318
## 485 12.98813 38.47006
## 487 12.98813 38.47006
## 488 12.98813 38.47006
## 489 12.98813 38.47006
## 490 142.85046 -13.46318
## 491 12.98813 -13.46318
## 492 12.98813 38.47006
## 493 142.85046 -13.46318
## 494 142.85046 38.47006
## 495 12.98813 38.47006
## 497 -86.45110 -13.46318
## 498 12.98813 38.47006
## 499 12.98813 -13.46318
## 500 142.85046 -13.46318
## 503 12.98813 38.47006
## 505 12.98813 -68.14996
## 506 12.98813 -13.46318
## 507 12.98813 38.47006
## 508 12.98813 38.47006
## 509 12.98813 -13.46318
## 510 -86.45110 38.47006
## 512 -86.45110 -13.46318
## 513 12.98813 -13.46318
## 515 12.98813 38.47006
## 516 142.85046 38.47006
## 517 142.85046 38.47006
## 519 142.85046 38.47006
## 520 142.85046 38.47006
## 521 12.98813 38.47006
## 522 12.98813 -68.14996
## 523 -86.45110 38.47006
## 524 12.98813 -68.14996
## 526 12.98813 -13.46318
## 527 12.98813 -13.46318
## 528 142.85046 38.47006
## 529 -86.45110 -13.46318
## 530 142.85046 38.47006
## 532 12.98813 -13.46318
## 533 12.98813 38.47006
## 536 12.98813 -13.46318
## 537 142.85046 38.47006
## 539 -86.45110 38.47006
## 540 12.98813 38.47006
## 541 12.98813 -68.14996
## 542 12.98813 38.47006
## 543 12.98813 -13.46318
## 544 12.98813 38.47006
## 545 12.98813 38.47006
## 547 12.98813 38.47006
## 548 12.98813 -13.46318
## 549 12.98813 -68.14996
## 550 -86.45110 38.47006
## 551 12.98813 -68.14996
## 552 142.85046 38.47006
## 553 -86.45110 38.47006
## 554 12.98813 -13.46318
## 555 12.98813 38.47006
## 556 12.98813 -68.14996
## 557 12.98813 -13.46318
## 558 12.98813 -13.46318
## 559 12.98813 -13.46318
## 560 12.98813 -13.46318
## 562 12.98813 -68.14996
## 563 142.85046 -13.46318
## 565 12.98813 38.47006
## 566 12.98813 -68.14996
## 568 12.98813 38.47006
## 569 -86.45110 38.47006
## 572 12.98813 38.47006
## 573 12.98813 -13.46318
## 574 12.98813 -68.14996
## 575 12.98813 -13.46318
## 576 12.98813 -68.14996
## 577 12.98813 -13.46318
## 578 12.98813 -13.46318
## 579 -86.45110 -13.46318
## 580 12.98813 -13.46318
## 583 12.98813 -13.46318
## 585 12.98813 38.47006
## 586 12.98813 -68.14996
## 587 12.98813 38.47006
## 588 12.98813 -68.14996
## 589 12.98813 38.47006
## 590 12.98813 38.47006
## 591 12.98813 38.47006
## 592 12.98813 38.47006
## 595 12.98813 38.47006
## 597 12.98813 -68.14996
## 598 12.98813 38.47006
## 599 12.98813 -13.46318
## 600 12.98813 -13.46318
## 601 12.98813 38.47006
## 603 12.98813 38.47006
## 605 12.98813 -68.14996
## 606 12.98813 -68.14996
## 607 12.98813 38.47006
## 608 -86.45110 38.47006
## 609 12.98813 -13.46318
## 611 12.98813 -68.14996
## 612 12.98813 38.47006
## 616 -86.45110 38.47006
## 617 -86.45110 -13.46318
## 618 142.85046 38.47006
## 621 12.98813 -13.46318
## 624 12.98813 -68.14996
## 626 12.98813 38.47006
## 627 142.85046 38.47006
## 629 -86.45110 38.47006
## 630 12.98813 38.47006
## 631 12.98813 -13.46318
## 632 12.98813 38.47006
## 633 12.98813 -68.14996
## 634 12.98813 -68.14996
## 635 12.98813 -13.46318
## 637 12.98813 -13.46318
## 640 -86.45110 -13.46318
## 641 12.98813 -13.46318
## 642 12.98813 38.47006
## 644 12.98813 -13.46318
## 646 -86.45110 -13.46318
## 647 12.98813 -13.46318
## 650 12.98813 38.47006
## 652 12.98813 38.47006
## 654 -86.45110 38.47006
## 655 12.98813 38.47006
## 656 12.98813 -68.14996
## 657 12.98813 38.47006
## 658 -86.45110 38.47006
## 659 12.98813 -13.46318
## 660 12.98813 38.47006
## 661 12.98813 -68.14996
## 662 12.98813 -68.14996
## 663 12.98813 38.47006
## 665 142.85046 38.47006
## 666 12.98813 -13.46318
## 667 12.98813 38.47006
## 668 -86.45110 -13.46318
## 670 12.98813 38.47006
## 672 -86.45110 -13.46318
## 673 -86.45110 38.47006
## 674 142.85046 -68.14996
## 675 12.98813 38.47006
## 676 12.98813 -13.46318
## 677 12.98813 -13.46318
## 678 -86.45110 -68.14996
## 679 12.98813 38.47006
## 680 12.98813 -13.46318
## 681 142.85046 38.47006
## 682 12.98813 38.47006
## 684 12.98813 38.47006
## 686 -86.45110 38.47006
## 687 12.98813 -13.46318
## 688 -86.45110 -13.46318
## 689 12.98813 38.47006
## 690 12.98813 -13.46318
## 691 12.98813 -13.46318
## 692 12.98813 -13.46318
## 693 12.98813 -13.46318
## 694 142.85046 38.47006
## 695 12.98813 -13.46318
## 697 12.98813 -13.46318
## 700 12.98813 38.47006
## 702 -86.45110 38.47006
## 703 12.98813 38.47006
## 704 12.98813 38.47006
## 705 12.98813 -13.46318
## 709 12.98813 -13.46318
## 711 12.98813 -13.46318
## 713 12.98813 38.47006
## 714 12.98813 -13.46318
## 715 -86.45110 -13.46318
## 716 12.98813 38.47006
## 717 12.98813 38.47006
## 718 12.98813 -13.46318
## 719 12.98813 -13.46318
## 720 12.98813 -13.46318
## 721 12.98813 38.47006
## 722 142.85046 -68.14996
## 726 142.85046 38.47006
## 728 12.98813 -13.46318
## 729 -86.45110 38.47006
## 730 12.98813 38.47006
## 732 12.98813 -68.14996
## 735 142.85046 38.47006
## 736 -86.45110 -13.46318
## 738 12.98813 38.47006
## 739 142.85046 38.47006
## 742 12.98813 -68.14996
## 743 12.98813 38.47006
## 744 12.98813 -68.14996
## 745 -86.45110 -13.46318
## 746 12.98813 -13.46318
## 747 12.98813 -68.14996
## 750 12.98813 -13.46318
## 751 142.85046 38.47006
## 752 12.98813 -68.14996
## 753 12.98813 -68.14996
## 754 12.98813 -13.46318
## 755 12.98813 38.47006
## 756 12.98813 -13.46318
## 757 142.85046 38.47006
## 758 12.98813 38.47006
## 759 12.98813 -13.46318
## 760 12.98813 38.47006
## 761 12.98813 38.47006
## 762 12.98813 -68.14996
## 763 12.98813 -68.14996
## 764 12.98813 -13.46318
## 765 12.98813 -13.46318
## 766 12.98813 38.47006
## 767 12.98813 -13.46318
## 768 12.98813 -13.46318
## 769 12.98813 -13.46318
## 771 12.98813 -13.46318
## 772 -86.45110 -13.46318
## 774 12.98813 38.47006
## 775 12.98813 38.47006
## 776 12.98813 -13.46318
## 777 -86.45110 38.47006
## 778 12.98813 -13.46318
## 779 -86.45110 38.47006
## 780 12.98813 38.47006
## 782 12.98813 38.47006
## 783 12.98813 -13.46318
## 784 12.98813 -68.14996
## 785 12.98813 38.47006
## 786 12.98813 38.47006
## 788 -86.45110 38.47006
## 790 -86.45110 -13.46318
## 797 12.98813 38.47006
## 799 12.98813 38.47006
## 801 12.98813 38.47006
## 802 12.98813 38.47006
## 803 12.98813 -68.14996
## 806 -86.45110 -68.14996
## 807 142.85046 -13.46318
## 808 12.98813 38.47006
## 809 -86.45110 38.47006
## 811 12.98813 -13.46318
## 813 -86.45110 -68.14996
## 815 -86.45110 38.47006
## 820 12.98813 -13.46318
## 821 12.98813 -13.46318
## 822 12.98813 -68.14996
## 823 -86.45110 38.47006
## 824 12.98813 38.47006
## 826 12.98813 -13.46318
## 827 12.98813 -13.46318
## 829 -86.45110 38.47006
## 830 -86.45110 38.47006
## 832 12.98813 -68.14996
## 834 12.98813 38.47006
## 835 12.98813 -13.46318
## 837 12.98813 -68.14996
## 838 142.85046 -68.14996
## 839 12.98813 38.47006
## 840 12.98813 38.47006
## 841 -86.45110 -13.46318
## 842 12.98813 -13.46318
## 843 12.98813 -68.14996
## 844 12.98813 38.47006
## 848 12.98813 -13.46318
## 849 12.98813 38.47006
## 850 12.98813 38.47006
## 852 12.98813 38.47006
## 853 12.98813 38.47006
## 854 12.98813 -13.46318
## 855 -86.45110 38.47006
## 856 12.98813 -13.46318
## 858 12.98813 -13.46318
## 859 12.98813 -13.46318
## 861 12.98813 -13.46318
## 862 12.98813 -13.46318
## 864 12.98813 -13.46318
## 865 12.98813 -13.46318
## 866 12.98813 -68.14996
## 868 12.98813 38.47006
## 870 12.98813 -68.14996
## 871 -86.45110 38.47006
## 872 142.85046 38.47006
## 873 12.98813 -13.46318
## 874 12.98813 -68.14996
## 875 12.98813 -13.46318
## 876 12.98813 38.47006
## 877 12.98813 38.47006
## 880 12.98813 38.47006
## 882 12.98813 38.47006
## 883 12.98813 38.47006
## 884 12.98813 38.47006
## 886 12.98813 38.47006
## 887 12.98813 38.47006
## 889 -86.45110 38.47006
## 890 12.98813 38.47006
## 891 12.98813 38.47006
## 892 12.98813 38.47006
## 893 12.98813 38.47006
## 896 -86.45110 -13.46318
## 897 12.98813 -13.46318
## 898 12.98813 38.47006
## 899 12.98813 -13.46318
## 902 12.98813 38.47006
## 903 -86.45110 38.47006
## 904 12.98813 38.47006
## 905 12.98813 38.47006
## 906 12.98813 -68.14996
## 910 12.98813 -13.46318
## 911 -86.45110 38.47006
## 912 12.98813 -13.46318
## 913 12.98813 -13.46318
## 914 12.98813 -13.46318
## 915 12.98813 -13.46318
## 916 -86.45110 -13.46318
## 917 12.98813 -13.46318
## 919 12.98813 -13.46318
## 921 12.98813 -13.46318
## 922 -86.45110 38.47006
## 924 12.98813 -13.46318
## 925 12.98813 38.47006
## 926 12.98813 38.47006
## 927 12.98813 -68.14996
## 928 -86.45110 38.47006
## 930 12.98813 38.47006
## 932 12.98813 -68.14996
## 933 12.98813 -13.46318
## 936 12.98813 -13.46318
## 938 142.85046 -13.46318
## 939 -86.45110 38.47006
## 940 12.98813 38.47006
## 942 12.98813 -13.46318
## 943 12.98813 -13.46318
## 944 142.85046 38.47006
## 945 12.98813 38.47006
## 946 -86.45110 -13.46318
## 949 12.98813 38.47006
## 950 12.98813 -13.46318
## 951 12.98813 38.47006
## 952 -86.45110 -68.14996
## 953 12.98813 -13.46318
## 954 -86.45110 -13.46318
## 955 12.98813 -13.46318
## 956 12.98813 38.47006
## 957 12.98813 38.47006
## 960 12.98813 -13.46318
## 962 12.98813 38.47006
## 963 12.98813 -13.46318
## 965 142.85046 -68.14996
## 967 12.98813 -68.14996
## 968 12.98813 38.47006
## 969 -86.45110 -13.46318
## 970 12.98813 38.47006
## 971 12.98813 -68.14996
## 973 12.98813 -13.46318
## 974 -86.45110 38.47006
## 975 12.98813 -13.46318
## 976 12.98813 38.47006
## 977 142.85046 38.47006
## 978 12.98813 38.47006
## 980 12.98813 -13.46318
## 982 -86.45110 -13.46318
## 984 -86.45110 -13.46318
## 985 12.98813 -13.46318
## 988 12.98813 38.47006
## 990 12.98813 38.47006
## 991 12.98813 38.47006
## 994 -86.45110 -13.46318
## 997 12.98813 38.47006
## 998 12.98813 38.47006
## 999 -86.45110 -68.14996
## 1000 -86.45110 -13.46318
## woe.installment.rate.in.percentage.of.disposable.income.binned
## 1 -22.44737
## 2 24.24695
## 3 24.24695
## 5 24.24695
## 6 24.24695
## 7 24.24695
## 8 24.24695
## 9 24.24695
## 12 24.24695
## 13 24.24695
## 17 -22.44737
## 19 -22.44737
## 24 24.24695
## 25 24.24695
## 26 24.24695
## 28 24.24695
## 29 24.24695
## 30 24.24695
## 33 24.24695
## 35 -22.44737
## 36 -22.44737
## 37 24.24695
## 39 24.24695
## 40 -22.44737
## 43 24.24695
## 44 24.24695
## 45 -22.44737
## 46 -22.44737
## 49 24.24695
## 50 -22.44737
## 51 -22.44737
## 52 24.24695
## 54 24.24695
## 55 -22.44737
## 56 24.24695
## 57 24.24695
## 58 24.24695
## 60 -22.44737
## 61 24.24695
## 63 -22.44737
## 64 24.24695
## 65 -22.44737
## 67 24.24695
## 69 -22.44737
## 70 -22.44737
## 71 24.24695
## 73 24.24695
## 75 -22.44737
## 77 -22.44737
## 79 24.24695
## 83 24.24695
## 84 -22.44737
## 87 -22.44737
## 89 -22.44737
## 90 -22.44737
## 91 -22.44737
## 92 -22.44737
## 93 -22.44737
## 94 -22.44737
## 95 -22.44737
## 98 -22.44737
## 99 -22.44737
## 100 24.24695
## 102 -22.44737
## 103 24.24695
## 104 -22.44737
## 105 24.24695
## 106 24.24695
## 108 24.24695
## 109 24.24695
## 110 24.24695
## 112 -22.44737
## 114 -22.44737
## 115 24.24695
## 116 -22.44737
## 117 -22.44737
## 120 24.24695
## 121 24.24695
## 124 -22.44737
## 125 -22.44737
## 127 -22.44737
## 128 -22.44737
## 129 -22.44737
## 130 24.24695
## 133 24.24695
## 134 -22.44737
## 135 24.24695
## 136 -22.44737
## 138 -22.44737
## 139 -22.44737
## 140 24.24695
## 141 24.24695
## 142 -22.44737
## 143 24.24695
## 144 24.24695
## 145 -22.44737
## 146 -22.44737
## 147 24.24695
## 148 -22.44737
## 152 24.24695
## 153 -22.44737
## 154 24.24695
## 155 -22.44737
## 156 24.24695
## 157 24.24695
## 158 -22.44737
## 160 24.24695
## 162 -22.44737
## 163 -22.44737
## 165 -22.44737
## 166 24.24695
## 167 -22.44737
## 169 24.24695
## 170 -22.44737
## 172 -22.44737
## 175 24.24695
## 176 -22.44737
## 177 24.24695
## 178 -22.44737
## 179 -22.44737
## 180 -22.44737
## 182 24.24695
## 183 -22.44737
## 184 -22.44737
## 185 -22.44737
## 186 -22.44737
## 187 24.24695
## 188 24.24695
## 189 -22.44737
## 190 24.24695
## 191 24.24695
## 193 -22.44737
## 194 24.24695
## 195 -22.44737
## 196 24.24695
## 198 -22.44737
## 200 -22.44737
## 203 24.24695
## 204 -22.44737
## 205 -22.44737
## 206 24.24695
## 207 -22.44737
## 208 -22.44737
## 209 24.24695
## 210 24.24695
## 211 24.24695
## 214 -22.44737
## 215 -22.44737
## 216 24.24695
## 217 24.24695
## 218 24.24695
## 219 24.24695
## 220 24.24695
## 223 -22.44737
## 224 -22.44737
## 225 24.24695
## 226 -22.44737
## 227 24.24695
## 228 -22.44737
## 229 -22.44737
## 230 -22.44737
## 231 -22.44737
## 232 24.24695
## 233 24.24695
## 234 -22.44737
## 236 -22.44737
## 237 24.24695
## 238 -22.44737
## 239 -22.44737
## 241 -22.44737
## 242 24.24695
## 243 24.24695
## 245 -22.44737
## 249 24.24695
## 250 24.24695
## 252 24.24695
## 253 -22.44737
## 254 24.24695
## 255 24.24695
## 257 -22.44737
## 260 -22.44737
## 261 24.24695
## 262 -22.44737
## 263 24.24695
## 264 24.24695
## 265 24.24695
## 267 -22.44737
## 270 -22.44737
## 271 -22.44737
## 272 24.24695
## 275 24.24695
## 276 24.24695
## 278 24.24695
## 279 24.24695
## 280 -22.44737
## 281 24.24695
## 282 -22.44737
## 283 -22.44737
## 284 -22.44737
## 285 -22.44737
## 286 24.24695
## 288 24.24695
## 292 24.24695
## 293 24.24695
## 294 -22.44737
## 295 -22.44737
## 296 24.24695
## 297 24.24695
## 298 -22.44737
## 299 24.24695
## 300 24.24695
## 301 24.24695
## 303 -22.44737
## 304 -22.44737
## 305 24.24695
## 307 24.24695
## 308 -22.44737
## 309 24.24695
## 310 -22.44737
## 312 -22.44737
## 316 -22.44737
## 317 24.24695
## 318 24.24695
## 320 24.24695
## 322 -22.44737
## 325 -22.44737
## 326 24.24695
## 327 24.24695
## 328 -22.44737
## 330 -22.44737
## 331 24.24695
## 332 -22.44737
## 333 -22.44737
## 334 24.24695
## 336 24.24695
## 338 -22.44737
## 339 -22.44737
## 340 -22.44737
## 341 24.24695
## 342 24.24695
## 344 24.24695
## 347 -22.44737
## 348 24.24695
## 349 24.24695
## 350 -22.44737
## 351 24.24695
## 354 -22.44737
## 355 -22.44737
## 356 -22.44737
## 357 24.24695
## 358 -22.44737
## 359 -22.44737
## 360 -22.44737
## 362 24.24695
## 363 24.24695
## 364 24.24695
## 365 -22.44737
## 367 24.24695
## 368 24.24695
## 370 24.24695
## 371 -22.44737
## 372 24.24695
## 376 24.24695
## 378 24.24695
## 379 -22.44737
## 380 -22.44737
## 381 -22.44737
## 382 24.24695
## 383 -22.44737
## 384 -22.44737
## 385 24.24695
## 386 24.24695
## 389 24.24695
## 390 24.24695
## 391 24.24695
## 392 24.24695
## 394 24.24695
## 395 24.24695
## 396 24.24695
## 397 24.24695
## 398 24.24695
## 400 -22.44737
## 401 24.24695
## 402 -22.44737
## 403 24.24695
## 404 -22.44737
## 405 -22.44737
## 407 -22.44737
## 409 24.24695
## 410 -22.44737
## 412 24.24695
## 413 -22.44737
## 417 -22.44737
## 419 24.24695
## 420 -22.44737
## 421 24.24695
## 422 -22.44737
## 423 24.24695
## 425 24.24695
## 427 -22.44737
## 428 -22.44737
## 431 24.24695
## 432 24.24695
## 434 -22.44737
## 435 24.24695
## 436 24.24695
## 439 -22.44737
## 441 -22.44737
## 444 -22.44737
## 446 -22.44737
## 447 -22.44737
## 448 24.24695
## 449 24.24695
## 450 24.24695
## 452 24.24695
## 454 -22.44737
## 456 -22.44737
## 460 24.24695
## 461 24.24695
## 463 24.24695
## 465 -22.44737
## 467 -22.44737
## 468 24.24695
## 469 24.24695
## 471 24.24695
## 472 -22.44737
## 473 -22.44737
## 474 -22.44737
## 476 24.24695
## 477 -22.44737
## 478 -22.44737
## 482 -22.44737
## 484 24.24695
## 485 -22.44737
## 487 24.24695
## 488 -22.44737
## 489 24.24695
## 490 24.24695
## 491 24.24695
## 492 24.24695
## 493 24.24695
## 494 -22.44737
## 495 24.24695
## 497 -22.44737
## 498 -22.44737
## 499 -22.44737
## 500 24.24695
## 503 24.24695
## 505 -22.44737
## 506 -22.44737
## 507 24.24695
## 508 24.24695
## 509 -22.44737
## 510 -22.44737
## 512 24.24695
## 513 24.24695
## 515 -22.44737
## 516 -22.44737
## 517 24.24695
## 519 24.24695
## 520 -22.44737
## 521 24.24695
## 522 24.24695
## 523 24.24695
## 524 24.24695
## 526 24.24695
## 527 -22.44737
## 528 24.24695
## 529 -22.44737
## 530 24.24695
## 532 24.24695
## 533 -22.44737
## 536 24.24695
## 537 -22.44737
## 539 -22.44737
## 540 24.24695
## 541 24.24695
## 542 -22.44737
## 543 -22.44737
## 544 24.24695
## 545 -22.44737
## 547 -22.44737
## 548 24.24695
## 549 -22.44737
## 550 24.24695
## 551 -22.44737
## 552 24.24695
## 553 24.24695
## 554 -22.44737
## 555 -22.44737
## 556 24.24695
## 557 24.24695
## 558 24.24695
## 559 24.24695
## 560 24.24695
## 562 -22.44737
## 563 24.24695
## 565 -22.44737
## 566 24.24695
## 568 24.24695
## 569 -22.44737
## 572 24.24695
## 573 24.24695
## 574 -22.44737
## 575 -22.44737
## 576 24.24695
## 577 24.24695
## 578 24.24695
## 579 -22.44737
## 580 -22.44737
## 583 -22.44737
## 585 -22.44737
## 586 24.24695
## 587 24.24695
## 588 -22.44737
## 589 -22.44737
## 590 24.24695
## 591 -22.44737
## 592 -22.44737
## 595 -22.44737
## 597 -22.44737
## 598 24.24695
## 599 24.24695
## 600 24.24695
## 601 24.24695
## 603 -22.44737
## 605 -22.44737
## 606 -22.44737
## 607 24.24695
## 608 -22.44737
## 609 -22.44737
## 611 -22.44737
## 612 24.24695
## 616 24.24695
## 617 24.24695
## 618 24.24695
## 621 24.24695
## 624 -22.44737
## 626 -22.44737
## 627 24.24695
## 629 -22.44737
## 630 24.24695
## 631 24.24695
## 632 -22.44737
## 633 -22.44737
## 634 24.24695
## 635 24.24695
## 637 -22.44737
## 640 24.24695
## 641 -22.44737
## 642 -22.44737
## 644 -22.44737
## 646 -22.44737
## 647 24.24695
## 650 -22.44737
## 652 -22.44737
## 654 24.24695
## 655 -22.44737
## 656 24.24695
## 657 -22.44737
## 658 -22.44737
## 659 24.24695
## 660 24.24695
## 661 24.24695
## 662 -22.44737
## 663 -22.44737
## 665 24.24695
## 666 -22.44737
## 667 -22.44737
## 668 24.24695
## 670 -22.44737
## 672 24.24695
## 673 24.24695
## 674 24.24695
## 675 -22.44737
## 676 -22.44737
## 677 -22.44737
## 678 24.24695
## 679 -22.44737
## 680 24.24695
## 681 24.24695
## 682 -22.44737
## 684 24.24695
## 686 -22.44737
## 687 -22.44737
## 688 -22.44737
## 689 24.24695
## 690 24.24695
## 691 24.24695
## 692 24.24695
## 693 24.24695
## 694 24.24695
## 695 -22.44737
## 697 -22.44737
## 700 -22.44737
## 702 -22.44737
## 703 -22.44737
## 704 -22.44737
## 705 -22.44737
## 709 -22.44737
## 711 -22.44737
## 713 -22.44737
## 714 -22.44737
## 715 -22.44737
## 716 24.24695
## 717 24.24695
## 718 -22.44737
## 719 24.24695
## 720 24.24695
## 721 -22.44737
## 722 -22.44737
## 726 24.24695
## 728 -22.44737
## 729 -22.44737
## 730 24.24695
## 732 24.24695
## 735 24.24695
## 736 24.24695
## 738 24.24695
## 739 24.24695
## 742 -22.44737
## 743 -22.44737
## 744 -22.44737
## 745 -22.44737
## 746 24.24695
## 747 24.24695
## 750 24.24695
## 751 24.24695
## 752 24.24695
## 753 24.24695
## 754 -22.44737
## 755 -22.44737
## 756 -22.44737
## 757 24.24695
## 758 24.24695
## 759 24.24695
## 760 -22.44737
## 761 24.24695
## 762 -22.44737
## 763 -22.44737
## 764 -22.44737
## 765 -22.44737
## 766 24.24695
## 767 24.24695
## 768 24.24695
## 769 24.24695
## 771 24.24695
## 772 24.24695
## 774 -22.44737
## 775 24.24695
## 776 -22.44737
## 777 -22.44737
## 778 -22.44737
## 779 -22.44737
## 780 24.24695
## 782 -22.44737
## 783 24.24695
## 784 -22.44737
## 785 24.24695
## 786 -22.44737
## 788 -22.44737
## 790 -22.44737
## 797 24.24695
## 799 -22.44737
## 801 -22.44737
## 802 24.24695
## 803 24.24695
## 806 24.24695
## 807 24.24695
## 808 -22.44737
## 809 24.24695
## 811 24.24695
## 813 -22.44737
## 815 -22.44737
## 820 -22.44737
## 821 24.24695
## 822 24.24695
## 823 24.24695
## 824 -22.44737
## 826 -22.44737
## 827 24.24695
## 829 24.24695
## 830 -22.44737
## 832 -22.44737
## 834 24.24695
## 835 24.24695
## 837 -22.44737
## 838 24.24695
## 839 -22.44737
## 840 -22.44737
## 841 -22.44737
## 842 24.24695
## 843 -22.44737
## 844 -22.44737
## 848 -22.44737
## 849 24.24695
## 850 -22.44737
## 852 24.24695
## 853 -22.44737
## 854 -22.44737
## 855 24.24695
## 856 -22.44737
## 858 -22.44737
## 859 24.24695
## 861 -22.44737
## 862 -22.44737
## 864 -22.44737
## 865 24.24695
## 866 24.24695
## 868 24.24695
## 870 -22.44737
## 871 24.24695
## 872 24.24695
## 873 -22.44737
## 874 -22.44737
## 875 24.24695
## 876 -22.44737
## 877 24.24695
## 880 24.24695
## 882 24.24695
## 883 -22.44737
## 884 -22.44737
## 886 -22.44737
## 887 -22.44737
## 889 -22.44737
## 890 24.24695
## 891 -22.44737
## 892 -22.44737
## 893 -22.44737
## 896 24.24695
## 897 -22.44737
## 898 24.24695
## 899 24.24695
## 902 24.24695
## 903 24.24695
## 904 -22.44737
## 905 -22.44737
## 906 24.24695
## 910 24.24695
## 911 -22.44737
## 912 24.24695
## 913 24.24695
## 914 24.24695
## 915 -22.44737
## 916 24.24695
## 917 24.24695
## 919 24.24695
## 921 -22.44737
## 922 -22.44737
## 924 24.24695
## 925 24.24695
## 926 -22.44737
## 927 -22.44737
## 928 -22.44737
## 930 -22.44737
## 932 -22.44737
## 933 24.24695
## 936 -22.44737
## 938 -22.44737
## 939 -22.44737
## 940 24.24695
## 942 24.24695
## 943 -22.44737
## 944 24.24695
## 945 -22.44737
## 946 24.24695
## 949 -22.44737
## 950 24.24695
## 951 24.24695
## 952 24.24695
## 953 24.24695
## 954 -22.44737
## 955 -22.44737
## 956 -22.44737
## 957 -22.44737
## 960 -22.44737
## 962 24.24695
## 963 24.24695
## 965 24.24695
## 967 -22.44737
## 968 -22.44737
## 969 24.24695
## 970 24.24695
## 971 -22.44737
## 973 24.24695
## 974 -22.44737
## 975 -22.44737
## 976 24.24695
## 977 24.24695
## 978 -22.44737
## 980 24.24695
## 982 24.24695
## 984 24.24695
## 985 24.24695
## 988 24.24695
## 990 -22.44737
## 991 24.24695
## 994 -22.44737
## 997 -22.44737
## 998 -22.44737
## 999 -22.44737
## 1000 24.24695
## creditability PD Score calibrated_pd scaled_score
## 1 0 0.07110493 -2.5698391 0.0099 3041.057
## 2 1 0.61364871 0.4626756 0.1724 2975.344
## 3 0 0.15597859 -1.6884591 0.0237 3021.862
## 5 1 0.15597859 -1.6884591 0.0237 3021.862
## 6 0 0.33536200 -0.6840320 0.0621 3000.148
## 7 0 0.15597859 -1.6884591 0.0237 3021.862
## 8 0 0.33536200 -0.6840320 0.0621 3000.148
## 9 0 0.15597859 -1.6884591 0.0237 3021.862
## 12 1 0.61364871 0.4626756 0.1724 2975.344
## 13 0 0.36778022 -0.5417515 0.0709 2997.076
## 17 0 0.22129927 -1.2581109 0.0359 3012.604
## 19 1 0.22129927 -1.2581109 0.0359 3012.604
## 24 0 0.15597859 -1.6884591 0.0237 3021.862
## 25 0 0.24417723 -1.1299126 0.0407 3009.780
## 26 0 0.04741741 -3.0001874 0.0065 3050.236
## 28 0 0.15597859 -1.6884591 0.0237 3021.862
## 29 0 0.15597859 -1.6884591 0.0237 3021.862
## 30 1 0.33536200 -0.6840320 0.0621 3000.148
## 33 0 0.24417723 -1.1299126 0.0407 3009.780
## 35 0 0.33190883 -0.6995643 0.0612 3000.485
## 36 1 0.57563085 0.3048628 0.1511 2978.748
## 37 0 0.46866974 -0.1254854 0.1037 2988.070
## 39 0 0.15597859 -1.6884591 0.0237 3021.862
## 40 0 0.47217795 -0.1114033 0.1050 2987.769
## 43 0 0.15597859 -1.6884591 0.0237 3021.862
## 44 0 0.36778022 -0.5417515 0.0709 2997.076
## 45 1 0.43691702 -0.2536837 0.0924 2990.838
## 46 0 0.22129927 -1.2581109 0.0359 3012.604
## 49 0 0.15597859 -1.6884591 0.0237 3021.862
## 50 0 0.33190883 -0.6995643 0.0612 3000.485
## 51 0 0.33190883 -0.6995643 0.0612 3000.485
## 52 0 0.24417723 -1.1299126 0.0407 3009.780
## 54 0 0.24417723 -1.1299126 0.0407 3009.780
## 55 1 0.43691702 -0.2536837 0.0924 2990.838
## 56 0 0.08005199 -2.4416409 0.0113 3038.164
## 57 1 0.15597859 -1.6884591 0.0237 3021.862
## 58 0 0.46866974 -0.1254854 0.1037 2988.070
## 60 1 0.70951380 0.8930239 0.2427 2966.022
## 61 0 0.24417723 -1.1299126 0.0407 3009.780
## 63 1 0.43691702 -0.2536837 0.0924 2990.838
## 64 1 0.46866974 -0.1254854 0.1037 2988.070
## 65 0 0.33190883 -0.6995643 0.0612 3000.485
## 67 0 0.24417723 -1.1299126 0.0407 3009.780
## 69 1 0.43691702 -0.2536837 0.0924 2990.838
## 70 0 0.57563085 0.3048628 0.1511 2978.748
## 71 0 0.46866974 -0.1254854 0.1037 2988.070
## 73 0 0.15597859 -1.6884591 0.0237 3021.862
## 75 1 0.43691702 -0.2536837 0.0924 2990.838
## 77 1 0.43691702 -0.2536837 0.0924 2990.838
## 79 0 0.33536200 -0.6840320 0.0621 3000.148
## 83 0 0.36778022 -0.5417515 0.0709 2997.076
## 84 0 0.22129927 -1.2581109 0.0359 3012.604
## 87 0 0.33190883 -0.6995643 0.0612 3000.485
## 89 0 0.33190883 -0.6995643 0.0612 3000.485
## 90 1 0.33190883 -0.6995643 0.0612 3000.485
## 91 0 0.22129927 -1.2581109 0.0359 3012.604
## 92 0 0.22129927 -1.2581109 0.0359 3012.604
## 93 1 0.33190883 -0.6995643 0.0612 3000.485
## 94 0 0.47217795 -0.1114033 0.1050 2987.769
## 95 0 0.22129927 -1.2581109 0.0359 3012.604
## 98 0 0.22129927 -1.2581109 0.0359 3012.604
## 99 0 0.43691702 -0.2536837 0.0924 2990.838
## 100 0 0.15597859 -1.6884591 0.0237 3021.862
## 102 0 0.70951380 0.8930239 0.2427 2966.022
## 103 0 0.13546484 -1.8534798 0.0201 3025.507
## 104 0 0.22129927 -1.2581109 0.0359 3012.604
## 105 0 0.24417723 -1.1299126 0.0407 3009.780
## 106 1 0.15597859 -1.6884591 0.0237 3021.862
## 108 0 0.24417723 -1.1299126 0.0407 3009.780
## 109 0 0.24417723 -1.1299126 0.0407 3009.780
## 110 0 0.15597859 -1.6884591 0.0237 3021.862
## 112 0 0.47217795 -0.1114033 0.1050 2987.769
## 114 1 0.57563085 0.3048628 0.1511 2978.748
## 115 0 0.15597859 -1.6884591 0.0237 3021.862
## 116 0 0.43691702 -0.2536837 0.0924 2990.838
## 117 1 0.57563085 0.3048628 0.1511 2978.748
## 120 0 0.15597859 -1.6884591 0.0237 3021.862
## 121 1 0.24417723 -1.1299126 0.0407 3009.780
## 124 0 0.22129927 -1.2581109 0.0359 3012.604
## 125 1 0.33190883 -0.6995643 0.0612 3000.485
## 127 0 0.22129927 -1.2581109 0.0359 3012.604
## 128 1 0.33190883 -0.6995643 0.0612 3000.485
## 129 0 0.22129927 -1.2581109 0.0359 3012.604
## 130 1 0.24417723 -1.1299126 0.0407 3009.780
## 133 0 0.24417723 -1.1299126 0.0407 3009.780
## 134 0 0.22129927 -1.2581109 0.0359 3012.604
## 135 0 0.61364871 0.4626756 0.1724 2975.344
## 136 0 0.22129927 -1.2581109 0.0359 3012.604
## 138 1 0.22129927 -1.2581109 0.0359 3012.604
## 139 0 0.22129927 -1.2581109 0.0359 3012.604
## 140 0 0.15597859 -1.6884591 0.0237 3021.862
## 141 0 0.08005199 -2.4416409 0.0113 3038.164
## 142 0 0.57563085 0.3048628 0.1511 2978.748
## 143 0 0.24417723 -1.1299126 0.0407 3009.780
## 144 1 0.36778022 -0.5417515 0.0709 2997.076
## 145 0 0.47217795 -0.1114033 0.1050 2987.769
## 146 0 0.57563085 0.3048628 0.1511 2978.748
## 147 0 0.04741741 -3.0001874 0.0065 3050.236
## 148 0 0.22129927 -1.2581109 0.0359 3012.604
## 152 0 0.15597859 -1.6884591 0.0237 3021.862
## 153 0 0.70951380 0.8930239 0.2427 2966.022
## 154 0 0.24417723 -1.1299126 0.0407 3009.780
## 155 0 0.22129927 -1.2581109 0.0359 3012.604
## 156 1 0.36778022 -0.5417515 0.0709 2997.076
## 157 0 0.15597859 -1.6884591 0.0237 3021.862
## 158 0 0.22129927 -1.2581109 0.0359 3012.604
## 160 0 0.04741741 -3.0001874 0.0065 3050.236
## 162 0 0.33190883 -0.6995643 0.0612 3000.485
## 163 0 0.22129927 -1.2581109 0.0359 3012.604
## 165 0 0.43691702 -0.2536837 0.0924 2990.838
## 166 0 0.08005199 -2.4416409 0.0113 3038.164
## 167 1 0.33190883 -0.6995643 0.0612 3000.485
## 169 0 0.24417723 -1.1299126 0.0407 3009.780
## 170 1 0.33190883 -0.6995643 0.0612 3000.485
## 172 0 0.33190883 -0.6995643 0.0612 3000.485
## 175 1 0.24417723 -1.1299126 0.0407 3009.780
## 176 1 0.22129927 -1.2581109 0.0359 3012.604
## 177 0 0.15597859 -1.6884591 0.0237 3021.862
## 178 0 0.07110493 -2.5698391 0.0099 3041.057
## 179 0 0.33190883 -0.6995643 0.0612 3000.485
## 180 0 0.22129927 -1.2581109 0.0359 3012.604
## 182 1 0.46866974 -0.1254854 0.1037 2988.070
## 183 1 0.22129927 -1.2581109 0.0359 3012.604
## 184 0 0.22129927 -1.2581109 0.0359 3012.604
## 185 1 0.22129927 -1.2581109 0.0359 3012.604
## 186 0 0.33190883 -0.6995643 0.0612 3000.485
## 187 1 0.15597859 -1.6884591 0.0237 3021.862
## 188 0 0.15597859 -1.6884591 0.0237 3021.862
## 189 1 0.47217795 -0.1114033 0.1050 2987.769
## 190 0 0.24417723 -1.1299126 0.0407 3009.780
## 191 1 0.15597859 -1.6884591 0.0237 3021.862
## 193 1 0.22129927 -1.2581109 0.0359 3012.604
## 194 0 0.08005199 -2.4416409 0.0113 3038.164
## 195 1 0.70951380 0.8930239 0.2427 2966.022
## 196 1 0.15597859 -1.6884591 0.0237 3021.862
## 198 1 0.33190883 -0.6995643 0.0612 3000.485
## 200 1 0.22129927 -1.2581109 0.0359 3012.604
## 203 0 0.24417723 -1.1299126 0.0407 3009.780
## 204 1 0.47217795 -0.1114033 0.1050 2987.769
## 205 0 0.22129927 -1.2581109 0.0359 3012.604
## 206 0 0.15597859 -1.6884591 0.0237 3021.862
## 207 0 0.22129927 -1.2581109 0.0359 3012.604
## 208 0 0.33190883 -0.6995643 0.0612 3000.485
## 209 0 0.36778022 -0.5417515 0.0709 2997.076
## 210 0 0.15597859 -1.6884591 0.0237 3021.862
## 211 0 0.24417723 -1.1299126 0.0407 3009.780
## 214 1 0.22129927 -1.2581109 0.0359 3012.604
## 215 0 0.43691702 -0.2536837 0.0924 2990.838
## 216 0 0.04741741 -3.0001874 0.0065 3050.236
## 217 0 0.24417723 -1.1299126 0.0407 3009.780
## 218 0 0.61364871 0.4626756 0.1724 2975.344
## 219 0 0.36778022 -0.5417515 0.0709 2997.076
## 220 0 0.15597859 -1.6884591 0.0237 3021.862
## 223 0 0.33190883 -0.6995643 0.0612 3000.485
## 224 0 0.33190883 -0.6995643 0.0612 3000.485
## 225 0 0.24417723 -1.1299126 0.0407 3009.780
## 226 0 0.57563085 0.3048628 0.1511 2978.748
## 227 1 0.46866974 -0.1254854 0.1037 2988.070
## 228 1 0.22129927 -1.2581109 0.0359 3012.604
## 229 1 0.47217795 -0.1114033 0.1050 2987.769
## 230 0 0.47217795 -0.1114033 0.1050 2987.769
## 231 1 0.57563085 0.3048628 0.1511 2978.748
## 232 0 0.15597859 -1.6884591 0.0237 3021.862
## 233 0 0.15597859 -1.6884591 0.0237 3021.862
## 234 0 0.33190883 -0.6995643 0.0612 3000.485
## 236 1 0.33190883 -0.6995643 0.0612 3000.485
## 237 1 0.13546484 -1.8534798 0.0201 3025.507
## 238 1 0.22129927 -1.2581109 0.0359 3012.604
## 239 0 0.22129927 -1.2581109 0.0359 3012.604
## 241 1 0.33190883 -0.6995643 0.0612 3000.485
## 242 0 0.04741741 -3.0001874 0.0065 3050.236
## 243 1 0.61364871 0.4626756 0.1724 2975.344
## 245 0 0.22129927 -1.2581109 0.0359 3012.604
## 249 0 0.24417723 -1.1299126 0.0407 3009.780
## 250 1 0.36778022 -0.5417515 0.0709 2997.076
## 252 0 0.15597859 -1.6884591 0.0237 3021.862
## 253 1 0.47217795 -0.1114033 0.1050 2987.769
## 254 0 0.15597859 -1.6884591 0.0237 3021.862
## 255 0 0.36778022 -0.5417515 0.0709 2997.076
## 257 0 0.22129927 -1.2581109 0.0359 3012.604
## 260 0 0.22129927 -1.2581109 0.0359 3012.604
## 261 0 0.24417723 -1.1299126 0.0407 3009.780
## 262 0 0.22129927 -1.2581109 0.0359 3012.604
## 263 0 0.15597859 -1.6884591 0.0237 3021.862
## 264 0 0.15597859 -1.6884591 0.0237 3021.862
## 265 0 0.24417723 -1.1299126 0.0407 3009.780
## 267 0 0.43691702 -0.2536837 0.0924 2990.838
## 270 0 0.33190883 -0.6995643 0.0612 3000.485
## 271 0 0.33190883 -0.6995643 0.0612 3000.485
## 272 0 0.15597859 -1.6884591 0.0237 3021.862
## 275 1 0.15597859 -1.6884591 0.0237 3021.862
## 276 0 0.24417723 -1.1299126 0.0407 3009.780
## 278 0 0.15597859 -1.6884591 0.0237 3021.862
## 279 1 0.08005199 -2.4416409 0.0113 3038.164
## 280 0 0.33190883 -0.6995643 0.0612 3000.485
## 281 0 0.36778022 -0.5417515 0.0709 2997.076
## 282 0 0.22129927 -1.2581109 0.0359 3012.604
## 283 0 0.22129927 -1.2581109 0.0359 3012.604
## 284 0 0.22129927 -1.2581109 0.0359 3012.604
## 285 0 0.22129927 -1.2581109 0.0359 3012.604
## 286 0 0.33536200 -0.6840320 0.0621 3000.148
## 288 0 0.46866974 -0.1254854 0.1037 2988.070
## 292 1 0.46866974 -0.1254854 0.1037 2988.070
## 293 0 0.15597859 -1.6884591 0.0237 3021.862
## 294 0 0.43691702 -0.2536837 0.0924 2990.838
## 295 0 0.43691702 -0.2536837 0.0924 2990.838
## 296 1 0.46866974 -0.1254854 0.1037 2988.070
## 297 0 0.36778022 -0.5417515 0.0709 2997.076
## 298 0 0.22129927 -1.2581109 0.0359 3012.604
## 299 0 0.15597859 -1.6884591 0.0237 3021.862
## 300 0 0.24417723 -1.1299126 0.0407 3009.780
## 301 0 0.04741741 -3.0001874 0.0065 3050.236
## 303 1 0.22129927 -1.2581109 0.0359 3012.604
## 304 0 0.22129927 -1.2581109 0.0359 3012.604
## 305 1 0.33536200 -0.6840320 0.0621 3000.148
## 307 0 0.36778022 -0.5417515 0.0709 2997.076
## 308 1 0.33190883 -0.6995643 0.0612 3000.485
## 309 1 0.36778022 -0.5417515 0.0709 2997.076
## 310 0 0.47217795 -0.1114033 0.1050 2987.769
## 312 0 0.33190883 -0.6995643 0.0612 3000.485
## 316 1 0.57563085 0.3048628 0.1511 2978.748
## 317 0 0.15597859 -1.6884591 0.0237 3021.862
## 318 0 0.15597859 -1.6884591 0.0237 3021.862
## 320 0 0.24417723 -1.1299126 0.0407 3009.780
## 322 1 0.33190883 -0.6995643 0.0612 3000.485
## 325 0 0.22129927 -1.2581109 0.0359 3012.604
## 326 0 0.15597859 -1.6884591 0.0237 3021.862
## 327 0 0.15597859 -1.6884591 0.0237 3021.862
## 328 0 0.22129927 -1.2581109 0.0359 3012.604
## 330 0 0.11802236 -2.0112926 0.0173 3028.815
## 331 0 0.15597859 -1.6884591 0.0237 3021.862
## 332 1 0.33190883 -0.6995643 0.0612 3000.485
## 333 1 0.70951380 0.8930239 0.2427 2966.022
## 334 1 0.61364871 0.4626756 0.1724 2975.344
## 336 1 0.04741741 -3.0001874 0.0065 3050.236
## 338 1 0.47217795 -0.1114033 0.1050 2987.769
## 339 0 0.33190883 -0.6995643 0.0612 3000.485
## 340 0 0.33190883 -0.6995643 0.0612 3000.485
## 341 0 0.36778022 -0.5417515 0.0709 2997.076
## 342 0 0.24417723 -1.1299126 0.0407 3009.780
## 344 0 0.24417723 -1.1299126 0.0407 3009.780
## 347 0 0.47217795 -0.1114033 0.1050 2987.769
## 348 0 0.36778022 -0.5417515 0.0709 2997.076
## 349 0 0.04741741 -3.0001874 0.0065 3050.236
## 350 1 0.33190883 -0.6995643 0.0612 3000.485
## 351 0 0.36778022 -0.5417515 0.0709 2997.076
## 354 1 0.33190883 -0.6995643 0.0612 3000.485
## 355 0 0.22129927 -1.2581109 0.0359 3012.604
## 356 1 0.47217795 -0.1114033 0.1050 2987.769
## 357 0 0.15597859 -1.6884591 0.0237 3021.862
## 358 1 0.57563085 0.3048628 0.1511 2978.748
## 359 0 0.33190883 -0.6995643 0.0612 3000.485
## 360 1 0.47217795 -0.1114033 0.1050 2987.769
## 362 0 0.15597859 -1.6884591 0.0237 3021.862
## 363 0 0.15597859 -1.6884591 0.0237 3021.862
## 364 0 0.13546484 -1.8534798 0.0201 3025.507
## 365 1 0.33190883 -0.6995643 0.0612 3000.485
## 367 0 0.24417723 -1.1299126 0.0407 3009.780
## 368 0 0.36778022 -0.5417515 0.0709 2997.076
## 370 0 0.15597859 -1.6884591 0.0237 3021.862
## 371 0 0.43691702 -0.2536837 0.0924 2990.838
## 372 0 0.24417723 -1.1299126 0.0407 3009.780
## 376 1 0.33536200 -0.6840320 0.0621 3000.148
## 378 0 0.15597859 -1.6884591 0.0237 3021.862
## 379 1 0.43691702 -0.2536837 0.0924 2990.838
## 380 0 0.07110493 -2.5698391 0.0099 3041.057
## 381 0 0.22129927 -1.2581109 0.0359 3012.604
## 382 1 0.15597859 -1.6884591 0.0237 3021.862
## 383 0 0.33190883 -0.6995643 0.0612 3000.485
## 384 0 0.33190883 -0.6995643 0.0612 3000.485
## 385 0 0.24417723 -1.1299126 0.0407 3009.780
## 386 0 0.24417723 -1.1299126 0.0407 3009.780
## 389 0 0.24417723 -1.1299126 0.0407 3009.780
## 390 0 0.24417723 -1.1299126 0.0407 3009.780
## 391 0 0.24417723 -1.1299126 0.0407 3009.780
## 392 0 0.36778022 -0.5417515 0.0709 2997.076
## 394 0 0.08005199 -2.4416409 0.0113 3038.164
## 395 0 0.24417723 -1.1299126 0.0407 3009.780
## 396 0 0.46866974 -0.1254854 0.1037 2988.070
## 397 0 0.15597859 -1.6884591 0.0237 3021.862
## 398 0 0.33536200 -0.6840320 0.0621 3000.148
## 400 0 0.22129927 -1.2581109 0.0359 3012.604
## 401 0 0.15597859 -1.6884591 0.0237 3021.862
## 402 0 0.33190883 -0.6995643 0.0612 3000.485
## 403 1 0.24417723 -1.1299126 0.0407 3009.780
## 404 0 0.33190883 -0.6995643 0.0612 3000.485
## 405 0 0.22129927 -1.2581109 0.0359 3012.604
## 407 0 0.22129927 -1.2581109 0.0359 3012.604
## 409 0 0.24417723 -1.1299126 0.0407 3009.780
## 410 1 0.33190883 -0.6995643 0.0612 3000.485
## 412 0 0.33536200 -0.6840320 0.0621 3000.148
## 413 1 0.22129927 -1.2581109 0.0359 3012.604
## 417 1 0.33190883 -0.6995643 0.0612 3000.485
## 419 0 0.24417723 -1.1299126 0.0407 3009.780
## 420 1 0.33190883 -0.6995643 0.0612 3000.485
## 421 0 0.36778022 -0.5417515 0.0709 2997.076
## 422 0 0.33190883 -0.6995643 0.0612 3000.485
## 423 0 0.15597859 -1.6884591 0.0237 3021.862
## 425 1 0.24417723 -1.1299126 0.0407 3009.780
## 427 0 0.33190883 -0.6995643 0.0612 3000.485
## 428 0 0.22129927 -1.2581109 0.0359 3012.604
## 431 0 0.04741741 -3.0001874 0.0065 3050.236
## 432 1 0.24417723 -1.1299126 0.0407 3009.780
## 434 0 0.33190883 -0.6995643 0.0612 3000.485
## 435 0 0.24417723 -1.1299126 0.0407 3009.780
## 436 1 0.24417723 -1.1299126 0.0407 3009.780
## 439 0 0.43691702 -0.2536837 0.0924 2990.838
## 441 0 0.22129927 -1.2581109 0.0359 3012.604
## 444 1 0.22129927 -1.2581109 0.0359 3012.604
## 446 0 0.22129927 -1.2581109 0.0359 3012.604
## 447 1 0.43691702 -0.2536837 0.0924 2990.838
## 448 0 0.15597859 -1.6884591 0.0237 3021.862
## 449 0 0.15597859 -1.6884591 0.0237 3021.862
## 450 1 0.15597859 -1.6884591 0.0237 3021.862
## 452 0 0.08005199 -2.4416409 0.0113 3038.164
## 454 0 0.22129927 -1.2581109 0.0359 3012.604
## 456 0 0.33190883 -0.6995643 0.0612 3000.485
## 460 0 0.24417723 -1.1299126 0.0407 3009.780
## 461 0 0.33536200 -0.6840320 0.0621 3000.148
## 463 0 0.15597859 -1.6884591 0.0237 3021.862
## 465 0 0.22129927 -1.2581109 0.0359 3012.604
## 467 1 0.33190883 -0.6995643 0.0612 3000.485
## 468 0 0.46866974 -0.1254854 0.1037 2988.070
## 469 0 0.46866974 -0.1254854 0.1037 2988.070
## 471 1 0.36778022 -0.5417515 0.0709 2997.076
## 472 1 0.19417113 -1.4231315 0.0306 3016.179
## 473 1 0.33190883 -0.6995643 0.0612 3000.485
## 474 0 0.07110493 -2.5698391 0.0099 3041.057
## 476 1 0.24417723 -1.1299126 0.0407 3009.780
## 477 0 0.70951380 0.8930239 0.2427 2966.022
## 478 0 0.33190883 -0.6995643 0.0612 3000.485
## 482 0 0.33190883 -0.6995643 0.0612 3000.485
## 484 0 0.24417723 -1.1299126 0.0407 3009.780
## 485 0 0.22129927 -1.2581109 0.0359 3012.604
## 487 0 0.15597859 -1.6884591 0.0237 3021.862
## 488 0 0.22129927 -1.2581109 0.0359 3012.604
## 489 0 0.15597859 -1.6884591 0.0237 3021.862
## 490 0 0.08005199 -2.4416409 0.0113 3038.164
## 491 0 0.24417723 -1.1299126 0.0407 3009.780
## 492 1 0.15597859 -1.6884591 0.0237 3021.862
## 493 0 0.08005199 -2.4416409 0.0113 3038.164
## 494 0 0.07110493 -2.5698391 0.0099 3041.057
## 495 0 0.15597859 -1.6884591 0.0237 3021.862
## 497 1 0.57563085 0.3048628 0.1511 2978.748
## 498 0 0.22129927 -1.2581109 0.0359 3012.604
## 499 0 0.33190883 -0.6995643 0.0612 3000.485
## 500 0 0.08005199 -2.4416409 0.0113 3038.164
## 503 0 0.15597859 -1.6884591 0.0237 3021.862
## 505 1 0.47217795 -0.1114033 0.1050 2987.769
## 506 1 0.33190883 -0.6995643 0.0612 3000.485
## 507 0 0.15597859 -1.6884591 0.0237 3021.862
## 508 1 0.15597859 -1.6884591 0.0237 3021.862
## 509 0 0.33190883 -0.6995643 0.0612 3000.485
## 510 0 0.43691702 -0.2536837 0.0924 2990.838
## 512 0 0.46866974 -0.1254854 0.1037 2988.070
## 513 0 0.24417723 -1.1299126 0.0407 3009.780
## 515 0 0.22129927 -1.2581109 0.0359 3012.604
## 516 0 0.07110493 -2.5698391 0.0099 3041.057
## 517 0 0.04741741 -3.0001874 0.0065 3050.236
## 519 0 0.04741741 -3.0001874 0.0065 3050.236
## 520 0 0.07110493 -2.5698391 0.0099 3041.057
## 521 0 0.15597859 -1.6884591 0.0237 3021.862
## 522 1 0.36778022 -0.5417515 0.0709 2997.076
## 523 1 0.33536200 -0.6840320 0.0621 3000.148
## 524 0 0.36778022 -0.5417515 0.0709 2997.076
## 526 0 0.24417723 -1.1299126 0.0407 3009.780
## 527 0 0.33190883 -0.6995643 0.0612 3000.485
## 528 0 0.04741741 -3.0001874 0.0065 3050.236
## 529 1 0.57563085 0.3048628 0.1511 2978.748
## 530 0 0.04741741 -3.0001874 0.0065 3050.236
## 532 1 0.24417723 -1.1299126 0.0407 3009.780
## 533 0 0.22129927 -1.2581109 0.0359 3012.604
## 536 1 0.24417723 -1.1299126 0.0407 3009.780
## 537 0 0.07110493 -2.5698391 0.0099 3041.057
## 539 1 0.43691702 -0.2536837 0.0924 2990.838
## 540 0 0.15597859 -1.6884591 0.0237 3021.862
## 541 1 0.36778022 -0.5417515 0.0709 2997.076
## 542 0 0.22129927 -1.2581109 0.0359 3012.604
## 543 1 0.33190883 -0.6995643 0.0612 3000.485
## 544 1 0.15597859 -1.6884591 0.0237 3021.862
## 545 0 0.22129927 -1.2581109 0.0359 3012.604
## 547 0 0.22129927 -1.2581109 0.0359 3012.604
## 548 0 0.24417723 -1.1299126 0.0407 3009.780
## 549 1 0.47217795 -0.1114033 0.1050 2987.769
## 550 0 0.33536200 -0.6840320 0.0621 3000.148
## 551 0 0.47217795 -0.1114033 0.1050 2987.769
## 552 0 0.04741741 -3.0001874 0.0065 3050.236
## 553 1 0.33536200 -0.6840320 0.0621 3000.148
## 554 0 0.33190883 -0.6995643 0.0612 3000.485
## 555 0 0.22129927 -1.2581109 0.0359 3012.604
## 556 1 0.36778022 -0.5417515 0.0709 2997.076
## 557 1 0.24417723 -1.1299126 0.0407 3009.780
## 558 1 0.24417723 -1.1299126 0.0407 3009.780
## 559 1 0.24417723 -1.1299126 0.0407 3009.780
## 560 1 0.24417723 -1.1299126 0.0407 3009.780
## 562 1 0.47217795 -0.1114033 0.1050 2987.769
## 563 0 0.08005199 -2.4416409 0.0113 3038.164
## 565 0 0.22129927 -1.2581109 0.0359 3012.604
## 566 0 0.36778022 -0.5417515 0.0709 2997.076
## 568 0 0.15597859 -1.6884591 0.0237 3021.862
## 569 0 0.43691702 -0.2536837 0.0924 2990.838
## 572 0 0.15597859 -1.6884591 0.0237 3021.862
## 573 0 0.24417723 -1.1299126 0.0407 3009.780
## 574 0 0.47217795 -0.1114033 0.1050 2987.769
## 575 0 0.33190883 -0.6995643 0.0612 3000.485
## 576 0 0.36778022 -0.5417515 0.0709 2997.076
## 577 0 0.24417723 -1.1299126 0.0407 3009.780
## 578 0 0.24417723 -1.1299126 0.0407 3009.780
## 579 1 0.57563085 0.3048628 0.1511 2978.748
## 580 0 0.33190883 -0.6995643 0.0612 3000.485
## 583 0 0.33190883 -0.6995643 0.0612 3000.485
## 585 0 0.22129927 -1.2581109 0.0359 3012.604
## 586 1 0.36778022 -0.5417515 0.0709 2997.076
## 587 0 0.15597859 -1.6884591 0.0237 3021.862
## 588 0 0.47217795 -0.1114033 0.1050 2987.769
## 589 1 0.22129927 -1.2581109 0.0359 3012.604
## 590 1 0.15597859 -1.6884591 0.0237 3021.862
## 591 0 0.22129927 -1.2581109 0.0359 3012.604
## 592 0 0.22129927 -1.2581109 0.0359 3012.604
## 595 1 0.22129927 -1.2581109 0.0359 3012.604
## 597 1 0.47217795 -0.1114033 0.1050 2987.769
## 598 1 0.15597859 -1.6884591 0.0237 3021.862
## 599 1 0.24417723 -1.1299126 0.0407 3009.780
## 600 0 0.24417723 -1.1299126 0.0407 3009.780
## 601 0 0.15597859 -1.6884591 0.0237 3021.862
## 603 1 0.22129927 -1.2581109 0.0359 3012.604
## 605 0 0.47217795 -0.1114033 0.1050 2987.769
## 606 0 0.47217795 -0.1114033 0.1050 2987.769
## 607 0 0.15597859 -1.6884591 0.0237 3021.862
## 608 1 0.43691702 -0.2536837 0.0924 2990.838
## 609 0 0.33190883 -0.6995643 0.0612 3000.485
## 611 1 0.47217795 -0.1114033 0.1050 2987.769
## 612 1 0.15597859 -1.6884591 0.0237 3021.862
## 616 0 0.33536200 -0.6840320 0.0621 3000.148
## 617 0 0.46866974 -0.1254854 0.1037 2988.070
## 618 0 0.04741741 -3.0001874 0.0065 3050.236
## 621 0 0.24417723 -1.1299126 0.0407 3009.780
## 624 0 0.47217795 -0.1114033 0.1050 2987.769
## 626 0 0.22129927 -1.2581109 0.0359 3012.604
## 627 0 0.04741741 -3.0001874 0.0065 3050.236
## 629 0 0.43691702 -0.2536837 0.0924 2990.838
## 630 0 0.15597859 -1.6884591 0.0237 3021.862
## 631 0 0.24417723 -1.1299126 0.0407 3009.780
## 632 1 0.22129927 -1.2581109 0.0359 3012.604
## 633 0 0.47217795 -0.1114033 0.1050 2987.769
## 634 1 0.36778022 -0.5417515 0.0709 2997.076
## 635 1 0.24417723 -1.1299126 0.0407 3009.780
## 637 0 0.33190883 -0.6995643 0.0612 3000.485
## 640 1 0.46866974 -0.1254854 0.1037 2988.070
## 641 1 0.33190883 -0.6995643 0.0612 3000.485
## 642 0 0.22129927 -1.2581109 0.0359 3012.604
## 644 0 0.33190883 -0.6995643 0.0612 3000.485
## 646 1 0.57563085 0.3048628 0.1511 2978.748
## 647 0 0.24417723 -1.1299126 0.0407 3009.780
## 650 1 0.22129927 -1.2581109 0.0359 3012.604
## 652 1 0.22129927 -1.2581109 0.0359 3012.604
## 654 1 0.33536200 -0.6840320 0.0621 3000.148
## 655 0 0.22129927 -1.2581109 0.0359 3012.604
## 656 0 0.36778022 -0.5417515 0.0709 2997.076
## 657 1 0.22129927 -1.2581109 0.0359 3012.604
## 658 0 0.43691702 -0.2536837 0.0924 2990.838
## 659 0 0.24417723 -1.1299126 0.0407 3009.780
## 660 0 0.15597859 -1.6884591 0.0237 3021.862
## 661 0 0.36778022 -0.5417515 0.0709 2997.076
## 662 1 0.47217795 -0.1114033 0.1050 2987.769
## 663 0 0.22129927 -1.2581109 0.0359 3012.604
## 665 0 0.04741741 -3.0001874 0.0065 3050.236
## 666 0 0.33190883 -0.6995643 0.0612 3000.485
## 667 0 0.22129927 -1.2581109 0.0359 3012.604
## 668 0 0.46866974 -0.1254854 0.1037 2988.070
## 670 0 0.22129927 -1.2581109 0.0359 3012.604
## 672 0 0.46866974 -0.1254854 0.1037 2988.070
## 673 0 0.33536200 -0.6840320 0.0621 3000.148
## 674 0 0.13546484 -1.8534798 0.0201 3025.507
## 675 1 0.22129927 -1.2581109 0.0359 3012.604
## 676 0 0.33190883 -0.6995643 0.0612 3000.485
## 677 0 0.33190883 -0.6995643 0.0612 3000.485
## 678 1 0.61364871 0.4626756 0.1724 2975.344
## 679 0 0.22129927 -1.2581109 0.0359 3012.604
## 680 0 0.24417723 -1.1299126 0.0407 3009.780
## 681 0 0.04741741 -3.0001874 0.0065 3050.236
## 682 0 0.22129927 -1.2581109 0.0359 3012.604
## 684 0 0.15597859 -1.6884591 0.0237 3021.862
## 686 0 0.43691702 -0.2536837 0.0924 2990.838
## 687 0 0.33190883 -0.6995643 0.0612 3000.485
## 688 0 0.57563085 0.3048628 0.1511 2978.748
## 689 0 0.15597859 -1.6884591 0.0237 3021.862
## 690 0 0.24417723 -1.1299126 0.0407 3009.780
## 691 0 0.24417723 -1.1299126 0.0407 3009.780
## 692 0 0.24417723 -1.1299126 0.0407 3009.780
## 693 0 0.24417723 -1.1299126 0.0407 3009.780
## 694 0 0.04741741 -3.0001874 0.0065 3050.236
## 695 0 0.33190883 -0.6995643 0.0612 3000.485
## 697 0 0.33190883 -0.6995643 0.0612 3000.485
## 700 0 0.22129927 -1.2581109 0.0359 3012.604
## 702 1 0.43691702 -0.2536837 0.0924 2990.838
## 703 0 0.22129927 -1.2581109 0.0359 3012.604
## 704 0 0.22129927 -1.2581109 0.0359 3012.604
## 705 0 0.33190883 -0.6995643 0.0612 3000.485
## 709 0 0.33190883 -0.6995643 0.0612 3000.485
## 711 0 0.33190883 -0.6995643 0.0612 3000.485
## 713 0 0.22129927 -1.2581109 0.0359 3012.604
## 714 0 0.33190883 -0.6995643 0.0612 3000.485
## 715 1 0.57563085 0.3048628 0.1511 2978.748
## 716 0 0.15597859 -1.6884591 0.0237 3021.862
## 717 0 0.15597859 -1.6884591 0.0237 3021.862
## 718 0 0.33190883 -0.6995643 0.0612 3000.485
## 719 0 0.24417723 -1.1299126 0.0407 3009.780
## 720 0 0.24417723 -1.1299126 0.0407 3009.780
## 721 1 0.22129927 -1.2581109 0.0359 3012.604
## 722 1 0.19417113 -1.4231315 0.0306 3016.179
## 726 0 0.04741741 -3.0001874 0.0065 3050.236
## 728 1 0.33190883 -0.6995643 0.0612 3000.485
## 729 1 0.43691702 -0.2536837 0.0924 2990.838
## 730 0 0.15597859 -1.6884591 0.0237 3021.862
## 732 1 0.36778022 -0.5417515 0.0709 2997.076
## 735 0 0.04741741 -3.0001874 0.0065 3050.236
## 736 0 0.46866974 -0.1254854 0.1037 2988.070
## 738 0 0.15597859 -1.6884591 0.0237 3021.862
## 739 0 0.04741741 -3.0001874 0.0065 3050.236
## 742 0 0.47217795 -0.1114033 0.1050 2987.769
## 743 0 0.22129927 -1.2581109 0.0359 3012.604
## 744 0 0.47217795 -0.1114033 0.1050 2987.769
## 745 0 0.57563085 0.3048628 0.1511 2978.748
## 746 0 0.24417723 -1.1299126 0.0407 3009.780
## 747 0 0.36778022 -0.5417515 0.0709 2997.076
## 750 0 0.24417723 -1.1299126 0.0407 3009.780
## 751 0 0.04741741 -3.0001874 0.0065 3050.236
## 752 1 0.36778022 -0.5417515 0.0709 2997.076
## 753 0 0.36778022 -0.5417515 0.0709 2997.076
## 754 0 0.33190883 -0.6995643 0.0612 3000.485
## 755 1 0.22129927 -1.2581109 0.0359 3012.604
## 756 1 0.33190883 -0.6995643 0.0612 3000.485
## 757 0 0.04741741 -3.0001874 0.0065 3050.236
## 758 1 0.15597859 -1.6884591 0.0237 3021.862
## 759 0 0.24417723 -1.1299126 0.0407 3009.780
## 760 1 0.22129927 -1.2581109 0.0359 3012.604
## 761 0 0.15597859 -1.6884591 0.0237 3021.862
## 762 1 0.47217795 -0.1114033 0.1050 2987.769
## 763 0 0.47217795 -0.1114033 0.1050 2987.769
## 764 1 0.33190883 -0.6995643 0.0612 3000.485
## 765 0 0.33190883 -0.6995643 0.0612 3000.485
## 766 0 0.15597859 -1.6884591 0.0237 3021.862
## 767 1 0.24417723 -1.1299126 0.0407 3009.780
## 768 0 0.24417723 -1.1299126 0.0407 3009.780
## 769 0 0.24417723 -1.1299126 0.0407 3009.780
## 771 0 0.24417723 -1.1299126 0.0407 3009.780
## 772 1 0.46866974 -0.1254854 0.1037 2988.070
## 774 0 0.22129927 -1.2581109 0.0359 3012.604
## 775 0 0.15597859 -1.6884591 0.0237 3021.862
## 776 1 0.33190883 -0.6995643 0.0612 3000.485
## 777 0 0.43691702 -0.2536837 0.0924 2990.838
## 778 0 0.33190883 -0.6995643 0.0612 3000.485
## 779 0 0.43691702 -0.2536837 0.0924 2990.838
## 780 0 0.15597859 -1.6884591 0.0237 3021.862
## 782 0 0.22129927 -1.2581109 0.0359 3012.604
## 783 0 0.24417723 -1.1299126 0.0407 3009.780
## 784 1 0.47217795 -0.1114033 0.1050 2987.769
## 785 0 0.15597859 -1.6884591 0.0237 3021.862
## 786 0 0.22129927 -1.2581109 0.0359 3012.604
## 788 0 0.43691702 -0.2536837 0.0924 2990.838
## 790 1 0.57563085 0.3048628 0.1511 2978.748
## 797 1 0.15597859 -1.6884591 0.0237 3021.862
## 799 0 0.22129927 -1.2581109 0.0359 3012.604
## 801 0 0.22129927 -1.2581109 0.0359 3012.604
## 802 0 0.15597859 -1.6884591 0.0237 3021.862
## 803 0 0.36778022 -0.5417515 0.0709 2997.076
## 806 1 0.61364871 0.4626756 0.1724 2975.344
## 807 0 0.08005199 -2.4416409 0.0113 3038.164
## 808 0 0.22129927 -1.2581109 0.0359 3012.604
## 809 0 0.33536200 -0.6840320 0.0621 3000.148
## 811 0 0.24417723 -1.1299126 0.0407 3009.780
## 813 1 0.70951380 0.8930239 0.2427 2966.022
## 815 1 0.43691702 -0.2536837 0.0924 2990.838
## 820 1 0.33190883 -0.6995643 0.0612 3000.485
## 821 0 0.24417723 -1.1299126 0.0407 3009.780
## 822 0 0.36778022 -0.5417515 0.0709 2997.076
## 823 1 0.33536200 -0.6840320 0.0621 3000.148
## 824 0 0.22129927 -1.2581109 0.0359 3012.604
## 826 0 0.33190883 -0.6995643 0.0612 3000.485
## 827 1 0.24417723 -1.1299126 0.0407 3009.780
## 829 1 0.33536200 -0.6840320 0.0621 3000.148
## 830 0 0.43691702 -0.2536837 0.0924 2990.838
## 832 1 0.47217795 -0.1114033 0.1050 2987.769
## 834 0 0.15597859 -1.6884591 0.0237 3021.862
## 835 1 0.24417723 -1.1299126 0.0407 3009.780
## 837 0 0.47217795 -0.1114033 0.1050 2987.769
## 838 0 0.13546484 -1.8534798 0.0201 3025.507
## 839 0 0.22129927 -1.2581109 0.0359 3012.604
## 840 0 0.22129927 -1.2581109 0.0359 3012.604
## 841 1 0.57563085 0.3048628 0.1511 2978.748
## 842 0 0.24417723 -1.1299126 0.0407 3009.780
## 843 1 0.47217795 -0.1114033 0.1050 2987.769
## 844 0 0.22129927 -1.2581109 0.0359 3012.604
## 848 0 0.33190883 -0.6995643 0.0612 3000.485
## 849 0 0.15597859 -1.6884591 0.0237 3021.862
## 850 1 0.22129927 -1.2581109 0.0359 3012.604
## 852 0 0.15597859 -1.6884591 0.0237 3021.862
## 853 0 0.22129927 -1.2581109 0.0359 3012.604
## 854 1 0.33190883 -0.6995643 0.0612 3000.485
## 855 0 0.33536200 -0.6840320 0.0621 3000.148
## 856 0 0.33190883 -0.6995643 0.0612 3000.485
## 858 0 0.33190883 -0.6995643 0.0612 3000.485
## 859 1 0.24417723 -1.1299126 0.0407 3009.780
## 861 0 0.33190883 -0.6995643 0.0612 3000.485
## 862 1 0.33190883 -0.6995643 0.0612 3000.485
## 864 0 0.33190883 -0.6995643 0.0612 3000.485
## 865 1 0.24417723 -1.1299126 0.0407 3009.780
## 866 0 0.36778022 -0.5417515 0.0709 2997.076
## 868 0 0.15597859 -1.6884591 0.0237 3021.862
## 870 0 0.47217795 -0.1114033 0.1050 2987.769
## 871 0 0.33536200 -0.6840320 0.0621 3000.148
## 872 0 0.04741741 -3.0001874 0.0065 3050.236
## 873 0 0.33190883 -0.6995643 0.0612 3000.485
## 874 0 0.47217795 -0.1114033 0.1050 2987.769
## 875 0 0.24417723 -1.1299126 0.0407 3009.780
## 876 0 0.22129927 -1.2581109 0.0359 3012.604
## 877 0 0.15597859 -1.6884591 0.0237 3021.862
## 880 0 0.15597859 -1.6884591 0.0237 3021.862
## 882 0 0.15597859 -1.6884591 0.0237 3021.862
## 883 0 0.22129927 -1.2581109 0.0359 3012.604
## 884 0 0.22129927 -1.2581109 0.0359 3012.604
## 886 1 0.22129927 -1.2581109 0.0359 3012.604
## 887 0 0.22129927 -1.2581109 0.0359 3012.604
## 889 0 0.43691702 -0.2536837 0.0924 2990.838
## 890 0 0.15597859 -1.6884591 0.0237 3021.862
## 891 0 0.22129927 -1.2581109 0.0359 3012.604
## 892 0 0.22129927 -1.2581109 0.0359 3012.604
## 893 0 0.22129927 -1.2581109 0.0359 3012.604
## 896 0 0.46866974 -0.1254854 0.1037 2988.070
## 897 0 0.33190883 -0.6995643 0.0612 3000.485
## 898 0 0.15597859 -1.6884591 0.0237 3021.862
## 899 0 0.24417723 -1.1299126 0.0407 3009.780
## 902 0 0.15597859 -1.6884591 0.0237 3021.862
## 903 0 0.33536200 -0.6840320 0.0621 3000.148
## 904 0 0.22129927 -1.2581109 0.0359 3012.604
## 905 0 0.22129927 -1.2581109 0.0359 3012.604
## 906 0 0.36778022 -0.5417515 0.0709 2997.076
## 910 0 0.24417723 -1.1299126 0.0407 3009.780
## 911 0 0.43691702 -0.2536837 0.0924 2990.838
## 912 1 0.24417723 -1.1299126 0.0407 3009.780
## 913 0 0.24417723 -1.1299126 0.0407 3009.780
## 914 0 0.24417723 -1.1299126 0.0407 3009.780
## 915 1 0.33190883 -0.6995643 0.0612 3000.485
## 916 1 0.46866974 -0.1254854 0.1037 2988.070
## 917 0 0.24417723 -1.1299126 0.0407 3009.780
## 919 1 0.24417723 -1.1299126 0.0407 3009.780
## 921 0 0.33190883 -0.6995643 0.0612 3000.485
## 922 0 0.43691702 -0.2536837 0.0924 2990.838
## 924 0 0.24417723 -1.1299126 0.0407 3009.780
## 925 1 0.15597859 -1.6884591 0.0237 3021.862
## 926 1 0.22129927 -1.2581109 0.0359 3012.604
## 927 0 0.47217795 -0.1114033 0.1050 2987.769
## 928 1 0.43691702 -0.2536837 0.0924 2990.838
## 930 0 0.22129927 -1.2581109 0.0359 3012.604
## 932 1 0.47217795 -0.1114033 0.1050 2987.769
## 933 0 0.24417723 -1.1299126 0.0407 3009.780
## 936 1 0.33190883 -0.6995643 0.0612 3000.485
## 938 0 0.11802236 -2.0112926 0.0173 3028.815
## 939 1 0.43691702 -0.2536837 0.0924 2990.838
## 940 0 0.15597859 -1.6884591 0.0237 3021.862
## 942 0 0.24417723 -1.1299126 0.0407 3009.780
## 943 0 0.33190883 -0.6995643 0.0612 3000.485
## 944 0 0.04741741 -3.0001874 0.0065 3050.236
## 945 0 0.22129927 -1.2581109 0.0359 3012.604
## 946 0 0.46866974 -0.1254854 0.1037 2988.070
## 949 1 0.22129927 -1.2581109 0.0359 3012.604
## 950 1 0.24417723 -1.1299126 0.0407 3009.780
## 951 0 0.15597859 -1.6884591 0.0237 3021.862
## 952 1 0.61364871 0.4626756 0.1724 2975.344
## 953 1 0.24417723 -1.1299126 0.0407 3009.780
## 954 1 0.57563085 0.3048628 0.1511 2978.748
## 955 0 0.33190883 -0.6995643 0.0612 3000.485
## 956 0 0.22129927 -1.2581109 0.0359 3012.604
## 957 0 0.22129927 -1.2581109 0.0359 3012.604
## 960 0 0.33190883 -0.6995643 0.0612 3000.485
## 962 0 0.15597859 -1.6884591 0.0237 3021.862
## 963 0 0.24417723 -1.1299126 0.0407 3009.780
## 965 0 0.13546484 -1.8534798 0.0201 3025.507
## 967 1 0.47217795 -0.1114033 0.1050 2987.769
## 968 0 0.22129927 -1.2581109 0.0359 3012.604
## 969 0 0.46866974 -0.1254854 0.1037 2988.070
## 970 0 0.15597859 -1.6884591 0.0237 3021.862
## 971 0 0.47217795 -0.1114033 0.1050 2987.769
## 973 1 0.24417723 -1.1299126 0.0407 3009.780
## 974 1 0.43691702 -0.2536837 0.0924 2990.838
## 975 0 0.33190883 -0.6995643 0.0612 3000.485
## 976 0 0.15597859 -1.6884591 0.0237 3021.862
## 977 0 0.04741741 -3.0001874 0.0065 3050.236
## 978 0 0.22129927 -1.2581109 0.0359 3012.604
## 980 1 0.24417723 -1.1299126 0.0407 3009.780
## 982 1 0.46866974 -0.1254854 0.1037 2988.070
## 984 1 0.46866974 -0.1254854 0.1037 2988.070
## 985 0 0.24417723 -1.1299126 0.0407 3009.780
## 988 0 0.15597859 -1.6884591 0.0237 3021.862
## 990 0 0.22129927 -1.2581109 0.0359 3012.604
## 991 0 0.15597859 -1.6884591 0.0237 3021.862
## 994 0 0.57563085 0.3048628 0.1511 2978.748
## 997 0 0.22129927 -1.2581109 0.0359 3012.604
## 998 0 0.22129927 -1.2581109 0.0359 3012.604
## 999 1 0.70951380 0.8930239 0.2427 2966.022
## 1000 0 0.46866974 -0.1254854 0.1037 2988.070
#Calculating the Vif values of the variables.
vif.calc(model)
## woe.duration.in.month.binned
## 1.008253
## woe.age.in.years.binned
## 1.013963
## woe.installment.rate.in.percentage.of.disposable.income.binned
## 1.007966
#Calculating the Gini for the model
Gini(model$fitted.values,ms_train_data$creditability)
## [1] 0.3577422
#Performing the 5 Fold cross validation
k.fold.cross.validation.glm(ms_train_data,"creditability",5,1)
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Warning in predict.lm(object, newdata, se.fit, scale = 1, type =
## ifelse(type == : prediction from a rank-deficient fit may be misleading
## Fold GiniTrain GiniTest
## 1 1 0.400376911152315 0.151181968114349
## 2 2 0.376178390137781 0.260832625318607
## 3 3 0.315072535038112 0.505598621877692
## 4 4 0.347456161044271 0.332859848484848
## 5 5 0.355831037649219 0.328042328042328
## 6 Average 0.35898300700434 0.315703078367565
#The KS test is performed on the distributions of the estimates for good and bad observations
Kolmogorov.Smirnov(ms_train_data,"creditability","PD")
## Warning in ks.test(as.vector(t(Events[1])), as.vector(t(NonEvents[1]))): p-
## value will be approximate in the presence of ties
## KS Statistic (%) P-Value
## D 25.46549 1.663272e-08
##
## Two-sample Kolmogorov-Smirnov test
##
## data: as.vector(t(Events[1])) and as.vector(t(NonEvents[1]))
## D = 0.25465, p-value = 1.663e-08
## alternative hypothesis: two-sided
Kolmogorov.Smirnov(ms_test_data,"creditability","PD")
## Warning in ks.test(as.vector(t(Events[1])), as.vector(t(NonEvents[1]))): p-
## value will be approximate in the presence of ties
## KS Statistic (%) P-Value
## D 12.30902 0.2691131
##
## Two-sample Kolmogorov-Smirnov test
##
## data: as.vector(t(Events[1])) and as.vector(t(NonEvents[1]))
## D = 0.12309, p-value = 0.2691
## alternative hypothesis: two-sided
#Variable stabilities are measured
SSI.calc.data(train_woe,test_woe,"creditability")
## Variable
## 1 woe.duration.in.month.binned
## 2 woe.age.in.years.binned
## 3 woe.installment.rate.in.percentage.of.disposable.income.binned
## 4 woe.credit.amount.binned
## SSI
## 1 0.000439898132479022
## 2 0.00923101380175131
## 3 0.0151877872027667
## 4 0.00272853164681345
#The HHI test is performed to measure the concentration of the master scale
Herfindahl.Hirschman.Index(master_scale,"Total.Observations")
## Final.PD.Range Total.Observations Total.Distr Good.Count Bad.Count
## 1 <= 0.1559785868 164 23.4% 143 21
## 2 <= 0.2212992684 130 18.5% 100 30
## 3 <= 0.2441772337 106 15.1% 79 27
## 4 <= 0.3319088324 100 14.2% 68 32
## 5 <= 0.3353620015 22 3.1% 14 8
## 6 <= 0.3677802245 38 5.4% 26 12
## 7 <= 0.4369170215 37 5.3% 21 16
## 8 <= 0.4686697435 26 3.7% 16 10
## 9 <= 0.472177952 41 5.8% 22 19
## 10 <= Inf 38 5.4% 12 26
## Good.Distr Bad.Distr Bad.Rate PD Score SumTotal concentration
## 1 28.5% 10.4% 12.8% 0.12720 -1.9259458 702 0.23361823
## 2 20.0% 14.9% 23.1% 0.22088 -1.2605455 702 0.18518519
## 3 15.8% 13.4% 25.5% 0.24418 -1.1298976 702 0.15099715
## 4 13.6% 15.9% 32.0% 0.33191 -0.6995590 702 0.14245014
## 5 2.8% 4.0% 36.4% 0.33536 -0.6840410 702 0.03133903
## 6 5.2% 6.0% 31.6% 0.36778 -0.5417525 702 0.05413105
## 7 4.2% 8.0% 43.2% 0.43692 -0.2536716 702 0.05270655
## 8 3.2% 5.0% 38.5% 0.46867 -0.1254844 702 0.03703704
## 9 4.4% 9.5% 46.3% 0.47218 -0.1113950 702 0.05840456
## 10 2.4% 12.9% 68.4% 0.61282 0.4591816 702 0.05413105
## HHI
## 1 0.0545774791
## 2 0.0342935528
## 3 0.0228001396
## 4 0.0202920431
## 5 0.0009821349
## 6 0.0029301710
## 7 0.0027779807
## 8 0.0013717421
## 9 0.0034110924
## 10 0.0029301710
## [1] 0.1463665
#Performing the Anchor point test
Anchor.point(master_scale,"PD","Total.Observations",0.30)
## central_tendency avg_pd lower_r lower_g upper_g upper_r
## 1 0.3 0.286326 0.2004282 0.2290608 0.3435912 0.3722238
## test_result
## 1 Green
#The Chi-square test is applied on the master scale
chisquare.test(master_scale,"PD","Bad.Count","Total.Observations",0.90)
## $data
## Final.PD.Range Total.Observations Total.Distr Good.Count Bad.Count
## 1 <= 0.1559785868 164 23.4% 143 21
## 2 <= 0.2212992684 130 18.5% 100 30
## 3 <= 0.2441772337 106 15.1% 79 27
## 4 <= 0.3319088324 100 14.2% 68 32
## 5 <= 0.3353620015 22 3.1% 14 8
## 6 <= 0.3677802245 38 5.4% 26 12
## 7 <= 0.4369170215 37 5.3% 21 16
## 8 <= 0.4686697435 26 3.7% 16 10
## 9 <= 0.472177952 41 5.8% 22 19
## 10 <= Inf 38 5.4% 12 26
## Good.Distr Bad.Distr Bad.Rate PD Score expected.bad
## 1 28.5% 10.4% 12.8% 0.12720 -1.9259458 20.86080
## 2 20.0% 14.9% 23.1% 0.22088 -1.2605455 28.71440
## 3 15.8% 13.4% 25.5% 0.24418 -1.1298976 25.88308
## 4 13.6% 15.9% 32.0% 0.33191 -0.6995590 33.19100
## 5 2.8% 4.0% 36.4% 0.33536 -0.6840410 7.37792
## 6 5.2% 6.0% 31.6% 0.36778 -0.5417525 13.97564
## 7 4.2% 8.0% 43.2% 0.43692 -0.2536716 16.16604
## 8 3.2% 5.0% 38.5% 0.46867 -0.1254844 12.18542
## 9 4.4% 9.5% 46.3% 0.47218 -0.1113950 19.35938
## 10 2.4% 12.9% 68.4% 0.61282 0.4591816 23.28716
## chi.square
## 1 0.0009288541
## 2 0.0575588332
## 3 0.0481979071
## 4 0.0427369166
## 5 0.0524515753
## 6 0.2792826239
## 7 0.0017053825
## 8 0.3919487860
## 9 0.0066713905
## 10 0.3160325632
##
## $p_value
## [1] 0.7261811
##
## $result
## [1] "The rating scale did not pass the test 0.726 > 0.1"
#The Binomial test is applied on the master scale
master_scale$DR <- master_scale$Bad.Count/master_scale$Total.Observations
Binomial.test(master_scale,"Total.Observations","PD","DR",0.90,"one")
## Final.PD.Range Total.Observations Total.Distr Good.Count Bad.Count
## 1 <= 0.1559785868 164 23.4% 143 21
## 2 <= 0.2212992684 130 18.5% 100 30
## 3 <= 0.2441772337 106 15.1% 79 27
## 4 <= 0.3319088324 100 14.2% 68 32
## 5 <= 0.3353620015 22 3.1% 14 8
## 6 <= 0.3677802245 38 5.4% 26 12
## 7 <= 0.4369170215 37 5.3% 21 16
## 8 <= 0.4686697435 26 3.7% 16 10
## 9 <= 0.472177952 41 5.8% 22 19
## 10 <= Inf 38 5.4% 12 26
## Good.Distr Bad.Distr Bad.Rate PD Score DR BadObs
## 1 28.5% 10.4% 12.8% 0.12720 -1.9259458 0.1280488 21
## 2 20.0% 14.9% 23.1% 0.22088 -1.2605455 0.2307692 30
## 3 15.8% 13.4% 25.5% 0.24418 -1.1298976 0.2547170 27
## 4 13.6% 15.9% 32.0% 0.33191 -0.6995590 0.3200000 32
## 5 2.8% 4.0% 36.4% 0.33536 -0.6840410 0.3636364 8
## 6 5.2% 6.0% 31.6% 0.36778 -0.5417525 0.3157895 12
## 7 4.2% 8.0% 43.2% 0.43692 -0.2536716 0.4324324 16
## 8 3.2% 5.0% 38.5% 0.46867 -0.1254844 0.3846154 10
## 9 4.4% 9.5% 46.3% 0.47218 -0.1113950 0.4634146 19
## 10 2.4% 12.9% 68.4% 0.61282 0.4591816 0.6842105 26
## BadEstimations TestEstimation Test_Result
## 1 20.86080 26.32918 Target Value Correct
## 2 28.71440 34.77601 Target Value Correct
## 3 25.88308 31.55139 Target Value Correct
## 4 33.19100 39.22581 Target Value Correct
## 5 7.37792 10.21581 Target Value Correct
## 6 13.97564 17.78504 Target Value Correct
## 7 16.16604 20.03258 Target Value Correct
## 8 12.18542 15.44633 Target Value Correct
## 9 19.35938 23.45599 Target Value Correct
## 10 23.28716 27.13530 Target Value Correct