familias <- c(0,5,10,40,100,0,2,2,30,70,80)
area <- c(0.35,0.32,0.36,0.68,0.75,0.28,0.34,0.35,0.48,0.70,0.75)
parcelas<-c(1,1,1,1,1,2,2,2,2,2,2)
sample1 <- data.frame(familias, area, parcelas)
sample1
##    familias area parcelas
## 1         0 0.35        1
## 2         5 0.32        1
## 3        10 0.36        1
## 4        40 0.68        1
## 5       100 0.75        1
## 6         0 0.28        2
## 7         2 0.34        2
## 8         2 0.35        2
## 9        30 0.48        2
## 10       70 0.70        2
## 11       80 0.75        2
fit2 <- lm(familias ~ area + parcelas + area*parcelas , sample1)
summary(fit2)
## 
## Call:
## lm(formula = familias ~ area + parcelas + area * parcelas, data = sample1)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -25.6246  -3.5885   0.0543   4.4943  21.4833 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)  
## (Intercept)    -62.271     37.524  -1.660   0.1410  
## area           187.058     71.654   2.611   0.0349 *
## parcelas         2.657     23.082   0.115   0.9116  
## area:parcelas   -2.885     44.292  -0.065   0.9499  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 13.37 on 7 degrees of freedom
## Multiple R-squared:  0.9072, Adjusted R-squared:  0.8674 
## F-statistic: 22.81 on 3 and 7 DF,  p-value: 0.0005462
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.5.3
p<-ggplot(sample1,aes(area,familias,group=parcelas,color=parcelas))
p + geom_smooth(method=lm, se=F)+theme(legend.position = "top")+stat_smooth(method=lm, level=0.95)