Neural Networks

Neual networks are modeled after biological neural networks and attempt to allow computers to learn in a similar manner to humans - reinforrment learning.

Use cases: Pattern Recognition Time Series Predictions Signal Processing Anomaly Detaction *Control

Human brains: dendrites(receiving input), axons(producing electrical signal output)

Neural Networks attemp to solve problems that would normally be easy for humans but hard for computers!

Perceptron

A perceptron consists of one or more inputs, a processor and a single output.

A perceptron follows the “feed-forward” model, meaning input are sent into the neuron, are processed, and result in an output.

A perceptron process follows 4 main steps: Receive inputs Weight inputs Sum inputs Generate outputs

#install.packages'Mass')
library(MASS)
head(Boston)
##      crim zn indus chas   nox    rm  age    dis rad tax ptratio  black
## 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3 396.90
## 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8 396.90
## 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8 392.83
## 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7 394.63
## 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7 396.90
## 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7 394.12
##   lstat medv
## 1  4.98 24.0
## 2  9.14 21.6
## 3  4.03 34.7
## 4  2.94 33.4
## 5  5.33 36.2
## 6  5.21 28.7
str(Boston)
## 'data.frame':    506 obs. of  14 variables:
##  $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.06905 ...
##  $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
##  $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
##  $ chas   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
##  $ rm     : num  6.58 6.42 7.18 7 7.15 ...
##  $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
##  $ dis    : num  4.09 4.97 4.97 6.06 6.06 ...
##  $ rad    : int  1 2 2 3 3 3 5 5 5 5 ...
##  $ tax    : num  296 242 242 222 222 222 311 311 311 311 ...
##  $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
##  $ black  : num  397 397 393 395 397 ...
##  $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ...
##  $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
any(is.na(Boston))
## [1] FALSE
data <- Boston
# scaling and normalizeing data 
maxs <- apply(data, 2, max)
maxs
##     crim       zn    indus     chas      nox       rm      age      dis 
##  88.9762 100.0000  27.7400   1.0000   0.8710   8.7800 100.0000  12.1265 
##      rad      tax  ptratio    black    lstat     medv 
##  24.0000 711.0000  22.0000 396.9000  37.9700  50.0000
mins <- apply(data, 2, min)
mins
##      crim        zn     indus      chas       nox        rm       age 
##   0.00632   0.00000   0.46000   0.00000   0.38500   3.56100   2.90000 
##       dis       rad       tax   ptratio     black     lstat      medv 
##   1.12960   1.00000 187.00000  12.60000   0.32000   1.73000   5.00000

help(‘scale’)

scaled.data <-scale(data, center=mins, scale = maxs - mins)
scaled <- as.data.frame(scaled.data)
head(scaled)
##           crim   zn      indus chas       nox        rm       age
## 1 0.0000000000 0.18 0.06781525    0 0.3148148 0.5775053 0.6416066
## 2 0.0002359225 0.00 0.24230205    0 0.1728395 0.5479977 0.7826982
## 3 0.0002356977 0.00 0.24230205    0 0.1728395 0.6943859 0.5993821
## 4 0.0002927957 0.00 0.06304985    0 0.1502058 0.6585553 0.4418126
## 5 0.0007050701 0.00 0.06304985    0 0.1502058 0.6871048 0.5283213
## 6 0.0002644715 0.00 0.06304985    0 0.1502058 0.5497222 0.5746653
##         dis        rad        tax   ptratio     black      lstat      medv
## 1 0.2692031 0.00000000 0.20801527 0.2872340 1.0000000 0.08967991 0.4222222
## 2 0.3489620 0.04347826 0.10496183 0.5531915 1.0000000 0.20447020 0.3688889
## 3 0.3489620 0.04347826 0.10496183 0.5531915 0.9897373 0.06346578 0.6600000
## 4 0.4485446 0.08695652 0.06679389 0.6489362 0.9942761 0.03338852 0.6311111
## 5 0.4485446 0.08695652 0.06679389 0.6489362 1.0000000 0.09933775 0.6933333
## 6 0.4485446 0.08695652 0.06679389 0.6489362 0.9929901 0.09602649 0.5266667
head(Boston)
##      crim zn indus chas   nox    rm  age    dis rad tax ptratio  black
## 1 0.00632 18  2.31    0 0.538 6.575 65.2 4.0900   1 296    15.3 396.90
## 2 0.02731  0  7.07    0 0.469 6.421 78.9 4.9671   2 242    17.8 396.90
## 3 0.02729  0  7.07    0 0.469 7.185 61.1 4.9671   2 242    17.8 392.83
## 4 0.03237  0  2.18    0 0.458 6.998 45.8 6.0622   3 222    18.7 394.63
## 5 0.06905  0  2.18    0 0.458 7.147 54.2 6.0622   3 222    18.7 396.90
## 6 0.02985  0  2.18    0 0.458 6.430 58.7 6.0622   3 222    18.7 394.12
##   lstat medv
## 1  4.98 24.0
## 2  9.14 21.6
## 3  4.03 34.7
## 4  2.94 33.4
## 5  5.33 36.2
## 6  5.21 28.7
library(caTools)
split <- sample.split(scaled$medv, SplitRatio = 0.7)
train <- subset(scaled, split == T)
test <- subset(scaled, split == F)
head(train)
##           crim    zn      indus chas       nox        rm       age
## 1 0.0000000000 0.180 0.06781525    0 0.3148148 0.5775053 0.6416066
## 3 0.0002356977 0.000 0.24230205    0 0.1728395 0.6943859 0.5993821
## 4 0.0002927957 0.000 0.06304985    0 0.1502058 0.6585553 0.4418126
## 5 0.0007050701 0.000 0.06304985    0 0.1502058 0.6871048 0.5283213
## 6 0.0002644715 0.000 0.06304985    0 0.1502058 0.5497222 0.5746653
## 7 0.0009213230 0.125 0.27162757    0 0.2860082 0.4696302 0.6560247
##         dis        rad        tax   ptratio     black      lstat      medv
## 1 0.2692031 0.00000000 0.20801527 0.2872340 1.0000000 0.08967991 0.4222222
## 3 0.3489620 0.04347826 0.10496183 0.5531915 0.9897373 0.06346578 0.6600000
## 4 0.4485446 0.08695652 0.06679389 0.6489362 0.9942761 0.03338852 0.6311111
## 5 0.4485446 0.08695652 0.06679389 0.6489362 1.0000000 0.09933775 0.6933333
## 6 0.4485446 0.08695652 0.06679389 0.6489362 0.9929901 0.09602649 0.5266667
## 7 0.4029226 0.17391304 0.23664122 0.2765957 0.9967220 0.29525386 0.3977778
# install.packages('neuralnet')
library(neuralnet)
n <- names(train)
n
##  [1] "crim"    "zn"      "indus"   "chas"    "nox"     "rm"      "age"    
##  [8] "dis"     "rad"     "tax"     "ptratio" "black"   "lstat"   "medv"
# this is just so you don't have to copy paste all the column names

f <- as.formula(paste('medv ~', paste(n[!n %in% "medv"], collapse = '+')))
# Train 
nn <- neuralnet(f, data=train, hidden = c(5, 3), linear.output = T)
# Plot (it's like a black box)
plot(nn)
predicted.nn.value <- compute(nn, test[1:13])
str(predicted.nn.value)
## List of 2
##  $ neurons   :List of 3
##   ..$ : num [1:139, 1:14] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:139] "2" "8" "11" "12" ...
##   .. .. ..$ : chr [1:14] "" "crim" "zn" "indus" ...
##   ..$ : num [1:139, 1:6] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:139] "2" "8" "11" "12" ...
##   .. .. ..$ : NULL
##   ..$ : num [1:139, 1:4] 1 1 1 1 1 1 1 1 1 1 ...
##   .. ..- attr(*, "dimnames")=List of 2
##   .. .. ..$ : chr [1:139] "2" "8" "11" "12" ...
##   .. .. ..$ : NULL
##  $ net.result: num [1:139, 1] 0.449 0.314 0.324 0.325 0.299 ...
##   ..- attr(*, "dimnames")=List of 2
##   .. ..$ : chr [1:139] "2" "8" "11" "12" ...
##   .. ..$ : NULL
# Because we scaled our data, we have to try to use the real data 

# This will unscale your data
true.predictions <- predicted.nn.value$net.result*(max(data$medv)-min(data$medv)) + min(data$medv)
# convert the test data
test.r <- (test$medv) * (max(data$medv)-min(data$medv)) +min(data$medv)

MSE.nn <- sum((test.r - true.predictions)^2)/nrow(test)
MSE.nn
## [1] 16.90704
error.df <- data.frame(test.r, true.predictions)
head(error.df)
##    test.r true.predictions
## 2    21.6         25.22378
## 8    27.1         19.12695
## 11   15.0         19.57734
## 12   18.9         19.60570
## 15   18.2         18.44388
## 16   19.9         18.95035
# Visualize prediction 

library(ggplot2)
ggplot(error.df, aes(x=test.r, y=true.predictions)) + geom_point() + stat_smooth()
## `geom_smooth()` using method = 'loess' and formula 'y ~ x'