library(Deriv)
library(tidyverse)
library(rSymPy)
library(rJava)
Questions: 1. Use integration by substitution to solve the integral below.
Var("x")
## [1] "x"
sympy("integrate(4 * exp(-7 * x))")
## [1] "-4*exp(-7*x)/7"
\(\int - \frac{3150}{t^4}-220 dt = \int -3150t^{-4}-220dt\) \(N(t) = \frac{-3150}{-3}t^{-3} - 220t + c = \frac{1050}{t^3} - 220t + c\)
\(6350 = \frac{1050}{1^3} - 220(1) + c\)
\(= 1050 - 220 + c = 830 + c\) \(N(t)=1050t3â220t+5520\)
3.Find the total area of the red rectangles in the figure below, where the equation of the line is f(x)=2x9
f3 <- function(x) {
2*x-9
}
area <- integrate(f3, 4.5, 8.5)$value
area
## [1] 16
\(y = x^2 -2x -2y = x + 2\)
\(y1 = y2\) \(0=x2â3xây\) \(0=(xâ4)(x+1)\)
interg <- function(x){x + 2 - (x**2 -2*x - 2)}
integrate(interg, -1, 4)
## 20.83333 with absolute error < 2.3e-13
5.A beauty supply store expects to sell 110 flat irons during the next year. It costs $3.75 to store one flat iron for one year. There is a fixed cost of $8.25 for each order. Find the lot size and the number of orders per year that will minimize inventory costs.
\(n*x = 110\) \(x=110/n\) \(Câ²=8.25â206.25/n2\) \(8.25 -206.25/n^2 = 0\) \(x=1105=22\)
x <- Var("x")
sympy("integrate(log( 9 * x ) * x**6)")
## [1] "x**7*log(9)/7 + x**7*log(x)/7 - x**7/49"
7.Determine whether f(x) is a probability density function on the interval [1,e6]. If not, determine the value of the definite integral.
\(f(x) = \frac{1}{6x}\) \(\int_{1}^{e^6} \frac{1}{6x}dx = \frac{1}{6}*ln(x)\) \(\frac{1}{6} * ln(e^6) - \frac{1}{6}*ln(1) = 1\)