The statistical model:
\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)
Where:
Let’s define the parameters:
nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1
Simulate other variables:
set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
Simulate elevation and slope:
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
Simulate response variable:
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):
library(lme4)
## Warning: package 'lme4' was built under R version 3.5.2
## Loading required package: Matrix
library(lmerTest)
## Warning: package 'lmerTest' was built under R version 3.5.2
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
m1 <- lmer(resp2 ~ 1 + elevation + slope + (1|stand))
summary(m1)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
##
## REML criterion at convergence: 82
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.65583 -0.62467 -0.01693 0.53669 1.41736
##
## Random effects:
## Groups Name Variance Std.Dev.
## stand (Intercept) 1.208 1.099
## Residual 1.358 1.165
## Number of obs: 20, groups: stand, 5
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) -21.314628 6.602053 3.001313 -3.228 0.0482 *
## elevation 0.020600 0.004916 3.113482 4.190 0.0230 *
## slope 0.095105 0.016441 15.868032 5.785 2.88e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) elevtn
## elevation -0.991
## slope 0.049 -0.148
cat("b0 = ", b0, sep = "")
## b0 = -1
cat("b1 = ", b1, sep = "")
## b1 = 0.005
cat("b2 = ", b2, sep = "")
## b2 = 0.1
lmm_simul <- function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1) {
stand <- rep(LETTERS[1:nstand], each = nplot)
standeff <- rep(rnorm(nstand, 0, sds), each = nplot)
ploteff <- rnorm(nstand * nplot, 0, sd)
elevation <- rep(runif(nstand, 1000, 1500), each = nplot)
slope <- runif(nstand * nplot, 2, 75)
resp2 <- b0 + b1 * elevation + b2 * slope + standeff + ploteff
dat <- data.frame(resp2, elevation, slope, stand)
lmer(resp2 ~ 1 + elevation + slope + (1|stand), data = dat)
}
lmm_simul()
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
## Data: dat
## REML criterion at convergence: 80.9781
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 2.3573
## Residual 0.9754
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## 10.584601 -0.005464 0.086839
simul_result <- replicate(n = 1000, expr = lmm_simul())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00350336
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.0045514
## (tol = 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00363544
## (tol = 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00439561
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00239513
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00219495
## (tol = 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00322495
## (tol = 0.002, component 1)
## boundary (singular) fit: see ?isSingular
length(simul_result)
## [1] 1000
library(tidyverse)
## ── Attaching packages ────────────────────────────────────────── tidyverse 1.2.1 ──
## ✔ ggplot2 3.1.0 ✔ purrr 0.2.5
## ✔ tibble 2.0.1 ✔ dplyr 0.8.0
## ✔ tidyr 0.8.2 ✔ stringr 1.3.1
## ✔ readr 1.3.1 ✔ forcats 0.3.0
## Warning: package 'tibble' was built under R version 3.5.2
## ── Conflicts ───────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ tidyr::expand() masks Matrix::expand()
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
library(broom)
library(broom.mixed)
## Warning: package 'broom.mixed' was built under R version 3.5.2
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.2.15
## Current Matrix version is 1.2.14
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
##
## Attaching package: 'broom.mixed'
## The following object is masked from 'package:broom':
##
## tidyMCMC
variances <- simul_result %>% map_dfr(tidy, effects = "ran_pars", scales = "vcov")
variances %>% print(n = 6)
## # A tibble: 2,000 x 4
## effect group term estimate
## <chr> <chr> <chr> <dbl>
## 1 ran_pars stand var__(Intercept) 2.61
## 2 ran_pars Residual var__Observation 1.11
## 3 ran_pars stand var__(Intercept) 9.73
## 4 ran_pars Residual var__Observation 1.36
## 5 ran_pars stand var__(Intercept) 0.827
## 6 ran_pars Residual var__Observation 0.914
## # … with 1,994 more rows
library(ggplot2)
library(furrr)
## Loading required package: future
## Warning: package 'future' was built under R version 3.5.2
plan(multiprocess)
simul_result_list <- c(10, 50, 100) %>%
set_names(c("size_10", "size_50", "size_100")) %>%
future_map(function(.size) replicate(n = 1000, expr = lmm_simul(nstand = .size)))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.0104574
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00231036
## (tol = 0.002, component 1)
simul_result_stand_df <- simul_result_list %>%
modify_depth(.depth = 2, function(x) tidy(x, effects = "ran_pars", scales = "vcov")) %>%
map_dfr(bind_rows, .id = "id") %>%
filter(group == "stand")
simul_result_stand_df
## # A tibble: 3,000 x 5
## id effect group term estimate
## <chr> <chr> <chr> <chr> <dbl>
## 1 size_10 ran_pars stand var__(Intercept) 3.71
## 2 size_10 ran_pars stand var__(Intercept) 3.62
## 3 size_10 ran_pars stand var__(Intercept) 4.23
## 4 size_10 ran_pars stand var__(Intercept) 2.95
## 5 size_10 ran_pars stand var__(Intercept) 3.61
## 6 size_10 ran_pars stand var__(Intercept) 6.75
## 7 size_10 ran_pars stand var__(Intercept) 5.21
## 8 size_10 ran_pars stand var__(Intercept) 4.11
## 9 size_10 ran_pars stand var__(Intercept) 2.35
## 10 size_10 ran_pars stand var__(Intercept) 3.34
## # … with 2,990 more rows
simul_result_stand_df %>%
mutate(
id = case_when(
id == "size_10" ~ "size = 10",
id == "size_50" ~ "size = 50",
id == "size_100" ~ "size = 100"
)
) %>%
ggplot(aes(x = estimate) ) +
geom_density(fill = "green", alpha = .25) +
facet_wrap(~ id) +
geom_vline(xintercept = 4) +
theme_bw()
simul_estimates <- simul_result %>%
future_map(tidy, effects = "fixed") %>%
bind_rows()
simul_estimates
## # A tibble: 3,000 x 7
## effect term estimate std.error statistic df p.value
## <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 fixed (Intercept) -15.9 5.63 -2.83 2.99 0.0661
## 2 fixed elevation 0.0152 0.00426 3.57 2.99 0.0377
## 3 fixed slope 0.121 0.0157 7.73 15.5 0.00000107
## 4 fixed (Intercept) -13.9 13.3 -1.05 3.00 0.372
## 5 fixed elevation 0.0156 0.0117 1.33 2.99 0.276
## 6 fixed slope 0.124 0.0166 7.48 14.3 0.00000257
## 7 fixed (Intercept) -12.3 4.45 -2.75 2.92 0.0729
## 8 fixed elevation 0.0130 0.00336 3.87 3.01 0.0304
## 9 fixed slope 0.0937 0.0100 9.32 14.7 0.000000151
## 10 fixed (Intercept) -11.9 21.4 -0.556 3.06 0.616
## # … with 2,990 more rows
simul_estimates %>%
dplyr::filter(term %in% c("elevation", "slope")) %>%
group_by(term) %>%
mutate(x = 1:1000) %>%
ungroup() %>%
mutate(real_value = ifelse(term == "elevation", 0.005, 0.1)) %>%
ggplot(aes(x = x, y = estimate)) +
geom_line() +
facet_wrap(~ term) +
geom_hline(aes(yintercept = real_value, color = term), linetype = 4, size = 0.6) +
theme_bw()