The statistical model:
\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)
Where:
Let’s define the parameters:
nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1
Simulate other variables:
set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
Simulate elevation and slope:
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
Simulate response variable:
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):
library(lmerTest)
## Warning: package 'lmerTest' was built under R version 3.5.3
## Loading required package: lme4
## Warning: package 'lme4' was built under R version 3.5.3
## Loading required package: Matrix
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
## lmer
## The following object is masked from 'package:stats':
##
## step
lmer(resp2~1+elevation+slope+(1|stand))
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
## REML criterion at convergence: 81.9874
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 1.099
## Residual 1.165
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## -21.31463 0.02060 0.09511
Y = function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1){
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep(rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand * nplot, 0, sd)
elevation = rep(runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand * nplot, 2, 75)
resp2 = b0 + b1 * elevation + b2 * slope + standeff + ploteff
mydata <- data.frame(resp2, stand, elevation, slope)
lmer(resp2 ~ 1 + elevation + slope + (1|stand), data = mydata)}
Y()
## Linear mixed model fit by REML ['lmerModLmerTest']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
## Data: mydata
## REML criterion at convergence: 80.9781
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 2.3573
## Residual 0.9754
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## 10.584601 -0.005464 0.086839
set.seed(16)
Replication= replicate(n=1000,expr=Y())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00350336 (tol =
## 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.0045514 (tol =
## 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00363544 (tol =
## 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00439561 (tol =
## 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00239513 (tol =
## 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00219495 (tol =
## 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00322495 (tol =
## 0.002, component 1)
## boundary (singular) fit: see ?isSingular
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 3.5.3
## -- Attaching packages -------------------------------------------------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.1.0 v purrr 0.2.5
## v tibble 2.0.1 v dplyr 0.8.0.1
## v tidyr 0.8.2 v stringr 1.3.1
## v readr 1.3.1 v forcats 0.4.0
## Warning: package 'tibble' was built under R version 3.5.2
## Warning: package 'tidyr' was built under R version 3.5.2
## Warning: package 'readr' was built under R version 3.5.3
## Warning: package 'dplyr' was built under R version 3.5.3
## Warning: package 'forcats' was built under R version 3.5.3
## -- Conflicts ----------------------------------------------------------------------------------- tidyverse_conflicts() --
## x tidyr::expand() masks Matrix::expand()
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(broom.mixed)
## Warning: package 'broom.mixed' was built under R version 3.5.3
## Warning in checkMatrixPackageVersion(): Package version inconsistency detected.
## TMB was built with Matrix version 1.2.17
## Current Matrix version is 1.2.14
## Please re-install 'TMB' from source using install.packages('TMB', type = 'source') or ask CRAN for a binary version of 'TMB' matching CRAN's 'Matrix' package
library(dplyr)
stand_variances = Replication %>%
map_dfr(tidy, effects="ran_pars", scales="vcov") %>%
filter(group == "stand")
residual_variances = Replication %>%
map_dfr(tidy, effects="ran_pars", scales="vcov") %>%
filter(group == "residual")
head(stand_variances)
## # A tibble: 6 x 4
## effect group term estimate
## <chr> <chr> <chr> <dbl>
## 1 ran_pars stand var__(Intercept) 1.21
## 2 ran_pars stand var__(Intercept) 5.56
## 3 ran_pars stand var__(Intercept) 2.61
## 4 ran_pars stand var__(Intercept) 9.73
## 5 ran_pars stand var__(Intercept) 0.827
## 6 ran_pars stand var__(Intercept) 9.59
head(residual_variances)
## # A tibble: 0 x 4
## # ... with 4 variables: effect <chr>, group <chr>, term <chr>,
## # estimate <dbl>
simulation = c(10,50,100) %>%
set_names() %>%
map(~replicate(1000, Y(nstand = .x)))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00848934 (tol =
## 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.00617958 (tol =
## 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control
## $checkConv, : Model failed to converge with max|grad| = 0.0154332 (tol =
## 0.002, component 1)
variance1 = simulation %>%
modify_depth(2, ~tidy(.x, effects = "ran_pars", scale = "vcov")) %>%
map_dfr(bind_rows, .id="num") %>%
filter(group=="stand")
variance1 <- mutate(variance1, num=fct_inorder(num))
ggplot(variance1, aes(x = estimate)) + geom_density(fill = "yellow", alpha = "0.25")
5. Plot the coefficients of the estimates of elevation and slope. Hint: the x-axis should have 1000 values. Discuss the graphs.