# Definindo as variáveis (Tr é o grupo, Y é o escore de cada subescala, X são as variáveis independentes)
Tr <- cbind(Grupo)
Ypreocupacao <- cbind(Preocupacao)
Ycontrole <- cbind(Controle)
Ycuriosidade <- cbind(Curiosidade)
Yconfianca <- cbind(Confianca)
Ycuriosidade <- cbind(Curiosidade)
Ycooperacao <- cbind(Cooperacao)
Ycolaboration <- cbind(Colaboration)
Ytask <- cbind(Task_Performance)
Yemotional <- cbind(Emotional_Regulation)
Yengaging <- cbind(Engaging_With_Others)
Yopen <- cbind(Open_Mindedness)
X <- cbind(Idade, Residencia, Renda, Escolaridade_cuida, Ano)

# Variaveis para uso posterior
var1 <- Idade
var2 <- Residencia
var3 <- Renda
var4 <- Escolaridade_cuida
var5 <- Ano
var6 <- Periodo
# Descritivas gerais, sem divisão por grupo

summary(Ypreocupacao)
##   Preocupacao   
##  Min.   :1.833  
##  1st Qu.:3.333  
##  Median :3.833  
##  Mean   :3.773  
##  3rd Qu.:4.333  
##  Max.   :5.000
summary(Ycontrole)
##     Controle    
##  Min.   :1.667  
##  1st Qu.:3.458  
##  Median :3.917  
##  Mean   :3.870  
##  3rd Qu.:4.500  
##  Max.   :5.000
summary(Ycuriosidade)
##   Curiosidade   
##  Min.   :1.500  
##  1st Qu.:3.167  
##  Median :3.800  
##  Mean   :3.674  
##  3rd Qu.:4.167  
##  Max.   :5.000
summary(Yconfianca)
##    Confianca    
##  Min.   :2.167  
##  1st Qu.:3.500  
##  Median :4.000  
##  Mean   :3.997  
##  3rd Qu.:4.500  
##  Max.   :5.000
summary(Ycooperacao)
##    Cooperacao   
##  Min.   :1.833  
##  1st Qu.:3.500  
##  Median :4.000  
##  Mean   :3.975  
##  3rd Qu.:4.500  
##  Max.   :5.000
summary(Ycolaboration)
##   Colaboration  
##  Min.   :2.500  
##  1st Qu.:3.583  
##  Median :3.917  
##  Mean   :3.880  
##  3rd Qu.:4.167  
##  Max.   :5.000
summary(Ytask)
##  Task_Performance
##  Min.   :2.333   
##  1st Qu.:3.667   
##  Median :4.067   
##  Mean   :4.073   
##  3rd Qu.:4.467   
##  Max.   :5.000
summary(Yemotional)
##  Emotional_Regulation
##  Min.   :1.778       
##  1st Qu.:2.889       
##  Median :3.556       
##  Mean   :3.484       
##  3rd Qu.:4.000       
##  Max.   :5.000
summary(Yengaging)
##  Engaging_With_Others
##  Min.   :1.778       
##  1st Qu.:3.222       
##  Median :3.556       
##  Mean   :3.626       
##  3rd Qu.:4.111       
##  Max.   :5.000
summary(Yopen)
##  Open_Mindedness
##  Min.   :1.444  
##  1st Qu.:3.333  
##  Median :3.667  
##  Mean   :3.697  
##  3rd Qu.:4.222  
##  Max.   :5.000
summary(X)
##      Idade         Residencia      Renda       Escolaridade_cuida
##  Min.   :14.00   Min.   :1.0   Min.   :1.000   Min.   :1.00      
##  1st Qu.:16.00   1st Qu.:1.0   1st Qu.:2.000   1st Qu.:2.00      
##  Median :17.00   Median :1.0   Median :2.000   Median :4.00      
##  Mean   :16.57   Mean   :1.5   Mean   :2.215   Mean   :3.77      
##  3rd Qu.:17.00   3rd Qu.:2.0   3rd Qu.:3.000   3rd Qu.:5.00      
##  Max.   :19.00   Max.   :3.0   Max.   :4.000   Max.   :7.00      
##       Ano     
##  Min.   :1.0  
##  1st Qu.:2.0  
##  Median :3.0  
##  Mean   :2.5  
##  3rd Qu.:3.0  
##  Max.   :4.0
# Propensity score model
glm1 <- glm(Tr ~ X, family=binomial(link = "probit"), data=mydata)
summary(glm1)
## 
## Call:
## glm(formula = Tr ~ X, family = binomial(link = "probit"), data = mydata)
## 
## Deviance Residuals: 
##      Min        1Q    Median        3Q       Max  
## -3.14321  -0.74610  -0.00363   0.84149   1.73452  
## 
## Coefficients:
##                      Estimate Std. Error z value Pr(>|z|)    
## (Intercept)         -15.78516    2.10367  -7.504 6.21e-14 ***
## XIdade                0.99860    0.13937   7.165 7.78e-13 ***
## XResidencia          -0.10866    0.16891  -0.643    0.520    
## XRenda               -0.05495    0.15740  -0.349    0.727    
## XEscolaridade_cuida  -0.06804    0.06689  -1.017    0.309    
## XAno                 -0.09185    0.17110  -0.537    0.591    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 277.26  on 199  degrees of freedom
## Residual deviance: 186.92  on 194  degrees of freedom
## AIC: 198.92
## 
## Number of Fisher Scoring iterations: 6

Trocar o polo da residência???

library(MatchIt)
## Warning: package 'MatchIt' was built under R version 3.5.3
#install.packages("tidyr")
library(tidyr)
na.omit(mydata)
## # A tibble: 200 x 113
##    Protocolo Grupo Idade  Sexo Residencia Renda Escolaridade_cuida   Ano
##        <dbl> <dbl> <dbl> <dbl>      <dbl> <dbl>              <dbl> <dbl>
##  1         1     1    17     1          2     3                  5     3
##  2         2     1    17     2          2     2                  5     2
##  3         3     1    19     1          2     2                  2     3
##  4         4     1    16     1          2     2                  5     3
##  5         5     1    17     2          1     2                  4     2
##  6         6     1    17     2          1     3                  3     2
##  7         7     1    17     2          2     2                  4     3
##  8         8     1    18     2          1     2                  2     4
##  9         9     1    17     2          1     3                  2     2
## 10        10     1    17     2          2     2                  3     2
## # ... with 190 more rows, and 105 more variables: Periodo <dbl>,
## #   Trabalha <dbl>, Tipo_contrato <chr>, Tempo <chr>, Local <chr>,
## #   Trabalhou <dbl>, CAAS_1 <dbl>, CAAS_2 <dbl>, CAAS_3 <chr>,
## #   CAAS_4 <dbl>, CAAS_5 <dbl>, CAAS_6 <dbl>, CAAS_7 <chr>, CAAS_8 <dbl>,
## #   CAAS_9 <dbl>, CAAS_10 <chr>, CAAS_11 <chr>, CAAS_12 <dbl>,
## #   CAAS_13 <chr>, CAAS_14 <dbl>, CAAS_15 <chr>, CAAS_16 <chr>,
## #   CAAS_17 <dbl>, CAAS_18 <dbl>, CAAS_19 <dbl>, CAAS_20 <dbl>,
## #   CAAS_21 <chr>, CAAS_22 <chr>, CAAS_23 <dbl>, CAAS_24 <chr>,
## #   CAAS_25 <chr>, CAAS_26 <chr>, CAAS_27 <dbl>, CAAS_28 <dbl>,
## #   CAAS_29 <dbl>, CAAS_30 <chr>, CAAS_31 <dbl>, CAAS_32 <chr>,
## #   CAAS_33 <chr>, CAAS_34 <chr>, CAAS_35 <dbl>, SENNA_1_1 <dbl>,
## #   SENNA_1_2 <dbl>, SENNA_1_3 <dbl>, SENNA_1_4 <chr>, SENNA_1_5 <chr>,
## #   SENNA_1_6 <chr>, SENNA_1_7 <dbl>, SENNA_1_8 <chr>, SENNA_1_9 <dbl>,
## #   SENNA_1_10 <dbl>, SENNA_1_11 <dbl>, SENNA_1_12 <chr>,
## #   SENNA_1_13 <dbl>, SENNA_1_14 <chr>, SENNA_1_15 <chr>,
## #   SENNA_1_16 <dbl>, SENNA_1_17 <chr>, SENNA_1_18 <dbl>,
## #   SENNA_1_19 <dbl>, SENNA_1_20 <dbl>, SENNA_1_21 <dbl>,
## #   SENNA_1_22 <dbl>, SENNA_1_23 <chr>, SENNA_1_24 <dbl>,
## #   SENNA_1_25 <chr>, SENNA_1_26 <dbl>, SENNA_1_27 <dbl>,
## #   SENNA_1_28 <chr>, SENNA_1_29 <dbl>, SENNA_1_30 <chr>,
## #   SENNA_1_31 <dbl>, SENNA_1_32 <dbl>, SENNA_1_33 <dbl>,
## #   SENNA_1_34 <dbl>, SENNA_1_35 <dbl>, SENNA_1_36 <dbl>, SENNA_2_1 <chr>,
## #   SENNA_2_2 <chr>, SENNA_2_3 <dbl>, SENNA_2_4 <chr>, SENNA_2_5 <dbl>,
## #   SENNA_2_6 <dbl>, SENNA_2_7 <chr>, SENNA_2_8 <dbl>, SENNA_2_9 <dbl>,
## #   SENNA_2_10 <dbl>, SENNA_2_11 <dbl>, SENNA_2_12 <dbl>,
## #   SENNA_2_13 <dbl>, SENNA_2_14 <chr>, SENNA_2_15 <chr>,
## #   SENNA_2_16 <dbl>, SENNA_2_17 <dbl>, SENNA_2_18 <dbl>,
## #   Preocupacao <dbl>, Controle <dbl>, Curiosidade <dbl>, Confianca <dbl>,
## #   Cooperacao <dbl>, ...
  drop_na(mydata)
## # A tibble: 200 x 113
##    Protocolo Grupo Idade  Sexo Residencia Renda Escolaridade_cuida   Ano
##        <dbl> <dbl> <dbl> <dbl>      <dbl> <dbl>              <dbl> <dbl>
##  1         1     1    17     1          2     3                  5     3
##  2         2     1    17     2          2     2                  5     2
##  3         3     1    19     1          2     2                  2     3
##  4         4     1    16     1          2     2                  5     3
##  5         5     1    17     2          1     2                  4     2
##  6         6     1    17     2          1     3                  3     2
##  7         7     1    17     2          2     2                  4     3
##  8         8     1    18     2          1     2                  2     4
##  9         9     1    17     2          1     3                  2     2
## 10        10     1    17     2          2     2                  3     2
## # ... with 190 more rows, and 105 more variables: Periodo <dbl>,
## #   Trabalha <dbl>, Tipo_contrato <chr>, Tempo <chr>, Local <chr>,
## #   Trabalhou <dbl>, CAAS_1 <dbl>, CAAS_2 <dbl>, CAAS_3 <chr>,
## #   CAAS_4 <dbl>, CAAS_5 <dbl>, CAAS_6 <dbl>, CAAS_7 <chr>, CAAS_8 <dbl>,
## #   CAAS_9 <dbl>, CAAS_10 <chr>, CAAS_11 <chr>, CAAS_12 <dbl>,
## #   CAAS_13 <chr>, CAAS_14 <dbl>, CAAS_15 <chr>, CAAS_16 <chr>,
## #   CAAS_17 <dbl>, CAAS_18 <dbl>, CAAS_19 <dbl>, CAAS_20 <dbl>,
## #   CAAS_21 <chr>, CAAS_22 <chr>, CAAS_23 <dbl>, CAAS_24 <chr>,
## #   CAAS_25 <chr>, CAAS_26 <chr>, CAAS_27 <dbl>, CAAS_28 <dbl>,
## #   CAAS_29 <dbl>, CAAS_30 <chr>, CAAS_31 <dbl>, CAAS_32 <chr>,
## #   CAAS_33 <chr>, CAAS_34 <chr>, CAAS_35 <dbl>, SENNA_1_1 <dbl>,
## #   SENNA_1_2 <dbl>, SENNA_1_3 <dbl>, SENNA_1_4 <chr>, SENNA_1_5 <chr>,
## #   SENNA_1_6 <chr>, SENNA_1_7 <dbl>, SENNA_1_8 <chr>, SENNA_1_9 <dbl>,
## #   SENNA_1_10 <dbl>, SENNA_1_11 <dbl>, SENNA_1_12 <chr>,
## #   SENNA_1_13 <dbl>, SENNA_1_14 <chr>, SENNA_1_15 <chr>,
## #   SENNA_1_16 <dbl>, SENNA_1_17 <chr>, SENNA_1_18 <dbl>,
## #   SENNA_1_19 <dbl>, SENNA_1_20 <dbl>, SENNA_1_21 <dbl>,
## #   SENNA_1_22 <dbl>, SENNA_1_23 <chr>, SENNA_1_24 <dbl>,
## #   SENNA_1_25 <chr>, SENNA_1_26 <dbl>, SENNA_1_27 <dbl>,
## #   SENNA_1_28 <chr>, SENNA_1_29 <dbl>, SENNA_1_30 <chr>,
## #   SENNA_1_31 <dbl>, SENNA_1_32 <dbl>, SENNA_1_33 <dbl>,
## #   SENNA_1_34 <dbl>, SENNA_1_35 <dbl>, SENNA_1_36 <dbl>, SENNA_2_1 <chr>,
## #   SENNA_2_2 <chr>, SENNA_2_3 <dbl>, SENNA_2_4 <chr>, SENNA_2_5 <dbl>,
## #   SENNA_2_6 <dbl>, SENNA_2_7 <chr>, SENNA_2_8 <dbl>, SENNA_2_9 <dbl>,
## #   SENNA_2_10 <dbl>, SENNA_2_11 <dbl>, SENNA_2_12 <dbl>,
## #   SENNA_2_13 <dbl>, SENNA_2_14 <chr>, SENNA_2_15 <chr>,
## #   SENNA_2_16 <dbl>, SENNA_2_17 <dbl>, SENNA_2_18 <dbl>,
## #   Preocupacao <dbl>, Controle <dbl>, Curiosidade <dbl>, Confianca <dbl>,
## #   Cooperacao <dbl>, ...
# Average treatment on the treated effect
rrpreocupacao <- Match(Y = Ypreocupacao, Tr = Tr, X = glm1$fitted)
rrcontrole <- Match(Y = Ycontrole, Tr = Tr, X = glm1$fitted)
rrcuriosidade <- Match(Y = Ycuriosidade, Tr = Tr, X = glm1$fitted)
rrconfianca <- Match(Y = Yconfianca, Tr = Tr, X = glm1$fitted)
rrcooperacao <- Match(Y = Ycooperacao, Tr = Tr, X = glm1$fitted)
rrcolaboration <- Match(Y = Ycolaboration, Tr = Tr, X = glm1$fitted)
rrtask <- Match(Y = Ytask, Tr = Tr, X = glm1$fitted)
rremotional <- Match(Y = Yemotional, Tr = Tr, X = glm1$fitted)
rrengaging <- Match(Y = Yengaging, Tr = Tr, X = glm1$fitted)
rropen <- Match(Y = Yopen, Tr = Tr, X = glm1$fitted)


summary(rrpreocupacao)
## 
## Estimate...  0.51928 
## AI SE......  0.16998 
## T-stat.....  3.0549 
## p.val......  0.0022516 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155
summary(rrcontrole)
## 
## Estimate...  0.276 
## AI SE......  0.14867 
## T-stat.....  1.8565 
## p.val......  0.063379 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155
summary(rrcuriosidade)
## 
## Estimate...  0.60222 
## AI SE......  0.16266 
## T-stat.....  3.7023 
## p.val......  0.00021362 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155
summary(rrconfianca)
## 
## Estimate...  0.44383 
## AI SE......  0.13959 
## T-stat.....  3.1795 
## p.val......  0.0014754 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155
summary(rrcooperacao)
## 
## Estimate...  0.44289 
## AI SE......  0.15343 
## T-stat.....  2.8866 
## p.val......  0.0038941 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155
summary(rrcolaboration)
## 
## Estimate...  0.3573 
## AI SE......  0.10662 
## T-stat.....  3.3511 
## p.val......  0.00080502 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155
summary(rrtask)
## 
## Estimate...  0.60489 
## AI SE......  0.11521 
## T-stat.....  5.2502 
## p.val......  1.5194e-07 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155
summary(rremotional)
## 
## Estimate...  0.418 
## AI SE......  0.20105 
## T-stat.....  2.0791 
## p.val......  0.037606 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155
summary(rrengaging)
## 
## Estimate...  0.43503 
## AI SE......  0.14545 
## T-stat.....  2.9908 
## p.val......  0.0027824 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155
summary(rropen)
## 
## Estimate...  0.37578 
## AI SE......  0.15523 
## T-stat.....  2.4208 
## p.val......  0.015488 
## 
## Original number of observations..............  200 
## Original number of treated obs...............  100 
## Matched number of observations...............  100 
## Matched number of observations  (unweighted).  155