Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found that instructors who are viewed to be better looking receive higher instructional ratings. (Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013. http://www.sciencedirect.com/science/article/pii/S0272775704001165.)
In this lab we will analyze the data from this study in order to learn what goes into a positive professor evaluation.
The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. (This is aslightly modified version of the original data set that was released as part of the replication data for Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).) The result is a data frame where each row contains a different course and columns represent variables about the courses and professors.
load("more/evals.RData")
variable | description |
---|---|
score |
average professor evaluation score: (1) very unsatisfactory - (5) excellent. |
rank |
rank of professor: teaching, tenure track, tenured. |
ethnicity |
ethnicity of professor: not minority, minority. |
gender |
gender of professor: female, male. |
language |
language of school where professor received education: english or non-english. |
age |
age of professor. |
cls_perc_eval |
percent of students in class who completed evaluation. |
cls_did_eval |
number of students in class who completed evaluation. |
cls_students |
total number of students in class. |
cls_level |
class level: lower, upper. |
cls_profs |
number of professors teaching sections in course in sample: single, multiple. |
cls_credits |
number of credits of class: one credit (lab, PE, etc.), multi credit. |
bty_f1lower |
beauty rating of professor from lower level female: (1) lowest - (10) highest. |
bty_f1upper |
beauty rating of professor from upper level female: (1) lowest - (10) highest. |
bty_f2upper |
beauty rating of professor from second upper level female: (1) lowest - (10) highest. |
bty_m1lower |
beauty rating of professor from lower level male: (1) lowest - (10) highest. |
bty_m1upper |
beauty rating of professor from upper level male: (1) lowest - (10) highest. |
bty_m2upper |
beauty rating of professor from second upper level male: (1) lowest - (10) highest. |
bty_avg |
average beauty rating of professor. |
pic_outfit |
outfit of professor in picture: not formal, formal. |
pic_color |
color of professor’s picture: color, black & white. |
This is an experiment. It sounds like the study design could be used to determine if a causal relationship exists, however, without knowing more about the study design we cannot be sure.
score
. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?hist(evals$score)
The score
variable is left-skewed, and tells me that most students are decently happy with their courses. I think it is more or less what I expected to see.
score
, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).plot(x=evals$age, y=evals$bty_avg, ylab = "Beauty Rating", xlab = "Age")
The age
and bty_avg
variables do not seem to have any discernable relationship.
The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:
plot(evals$score ~ evals$bty_avg)
Before we draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?
jitter()
on the \(y\)- or the \(x\)-coordinate. (Use ?jitter
to learn more.) What was misleading about the initial scatterplot?scoreNoise <- jitter(evals$score, factor = 1, amount = NULL)
plot(scoreNoise ~ evals$bty_avg)
In the initial scatterplot, many points overlapped, which presented a misleading visual representation.
m_bty
to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty)
. Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?m_bty <- lm(evals$score ~ evals$bty_avg)
plot(evals$score ~ jitter(evals$bty_avg))
abline(m_bty, lty = 3, col = "red")
summary(m_bty)
##
## Call:
## lm(formula = evals$score ~ evals$bty_avg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9246 -0.3690 0.1420 0.3977 0.9309
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.88034 0.07614 50.96 < 2e-16 ***
## evals$bty_avg 0.06664 0.01629 4.09 5.08e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared: 0.03502, Adjusted R-squared: 0.03293
## F-statistic: 16.73 on 1 and 461 DF, p-value: 5.083e-05
The linear model equation is: \(\hat{y}=0.06664x+3.88034\). The slope value indicates that each point increase on the rating of beauty, the overall score is estimated to increase by 0.06664. Although this predictor shows as statistically significant, it is certainly not practically significant, as the amount of rating it explains is very, very small.
plot(jitter(evals$bty_avg), m_bty$residuals)
hist(m_bty$residuals, breaks=20)
The residuals do not display any particular pattern. Looking at the distribution of the residuals on the histogram, however, they are decently far from normal.
The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.
plot(evals$bty_avg ~ evals$bty_f1lower)
cor(evals$bty_avg, evals$bty_f1lower)
As expected the relationship is quite strong - after all, the average score is calculated using the individual scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19) using the following command:
plot(evals[,13:19])
These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.
In order to see if beauty is still a significant predictor of professor score after we’ve accounted for the gender of the professor, we can add the gender term into the model.
m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
layout(matrix(c(1,2,3,3), 2, 2, byrow = TRUE))
plot(evals$bty_avg, m_bty_gen$residuals, ylab="Residuals",xlab="Avg Beauty")
plot(evals$gender, m_bty_gen$residuals, xlab="Gender",ylab="Residuals")
hist(m_bty_gen$residuals, xlab="Residuals", main="Residual Plot")
By looking at the histogram we can observe that the residuals seems not to follow some sort of normality in respect to their frequency distribution.Based on the plot the variability of points around the least squares line remains roughly constant so the condition constant variability has been met.
bty_avg
still a significant predictor of score
? Has the addition of gender
to the model changed the parameter estimate for bty_avg
?Yes, bty_avg
is a significant predictor. With the addition of gender
it has added even more significance since the p-value became smaller.
Note that the estimate for gender
is now called gendermale
. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender
from having the values of female
and male
to being an indicator variable called gendermale
that takes a value of \(0\) for females and a value of \(1\) for males. (Such variables are often referred to as “dummy” variables.)
As a result, for females, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.
\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]
We can plot this line and the line corresponding to males with the following custom function.
multiLines(m_bty_gen)
Answer
summary(m_bty_gen)
##
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8305 -0.3625 0.1055 0.4213 0.9314
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.74734 0.08466 44.266 < 2e-16 ***
## bty_avg 0.07416 0.01625 4.563 6.48e-06 ***
## gendermale 0.17239 0.05022 3.433 0.000652 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared: 0.05912, Adjusted R-squared: 0.05503
## F-statistic: 14.45 on 2 and 460 DF, p-value: 8.177e-07
Since the gender male
can be represented with \(1\). From the original equation we have as follows:
\(\widehat{score} = \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times Male\)
\(\widehat{score} = 3.74734 + 0.07416 \times bty\_avg + 0.17239 \times 1\)
\(\widehat{score} = 3.91973 + 0.07416 \times bty\_avg\)
For two professors who received the same beauty rating, which gender tends to have the higher course evaluation score?
In this predictive model, Male professors will receive the highest score by 0.17239.
The decision to call the indicator variable gendermale
instead ofgenderfemale
has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel
function. Use ?relevel
to learn more.)
m_bty_rank
with gender
removed and rank
added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching
, tenure track
, tenured
.m_bty_rank <- lm(score ~ bty_avg + rank, data = evals)
summary(m_bty_rank)
##
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8713 -0.3642 0.1489 0.4103 0.9525
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.98155 0.09078 43.860 < 2e-16 ***
## bty_avg 0.06783 0.01655 4.098 4.92e-05 ***
## ranktenure track -0.16070 0.07395 -2.173 0.0303 *
## ranktenured -0.12623 0.06266 -2.014 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared: 0.04652, Adjusted R-squared: 0.04029
## F-statistic: 7.465 on 3 and 459 DF, p-value: 6.88e-05
With variables that have more than 2 levels, it creates \(n-1\) dummy variables. So with 3 levels, it makes 2 variables.
The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg
reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg
scores that are one point apart.
We will start with a full model that predicts professor score based on rank, ethnicity, gender, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.
Language; since we are evaluating the physical appearance of the instructor; the language should not have a major association with the professor score.
Let’s run the model…
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_profs + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full)
The highest p value for this model is \(0.77806\) for cls_profs
.The p value for the variable I was expecting to be the highest is \(0.03965\) for language
; which is a big difference in between the two of them.
By considering all other variables being equal; the score for instructors that are not minority** tends to be \(0.1234929\) higher.**
m_full1 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval
+ cls_students + cls_level + cls_credits + bty_avg
+ pic_outfit + pic_color, data = evals)
summary(m_full1)
##
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age +
## cls_perc_eval + cls_students + cls_level + cls_credits +
## bty_avg + pic_outfit + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7836 -0.3257 0.0859 0.3513 0.9551
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.0872523 0.2888562 14.150 < 2e-16 ***
## ranktenure track -0.1476746 0.0819824 -1.801 0.072327 .
## ranktenured -0.0973829 0.0662614 -1.470 0.142349
## ethnicitynot minority 0.1274458 0.0772887 1.649 0.099856 .
## gendermale 0.2101231 0.0516873 4.065 5.66e-05 ***
## languagenon-english -0.2282894 0.1111305 -2.054 0.040530 *
## age -0.0089992 0.0031326 -2.873 0.004262 **
## cls_perc_eval 0.0052888 0.0015317 3.453 0.000607 ***
## cls_students 0.0004687 0.0003737 1.254 0.210384
## cls_levelupper 0.0606374 0.0575010 1.055 0.292200
## cls_creditsone credit 0.5061196 0.1149163 4.404 1.33e-05 ***
## bty_avg 0.0398629 0.0174780 2.281 0.023032 *
## pic_outfitnot formal -0.1083227 0.0721711 -1.501 0.134080
## pic_colorcolor -0.2190527 0.0711469 -3.079 0.002205 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.1634
## F-statistic: 7.943 on 13 and 449 DF, p-value: 2.336e-14
Did the coefficients and significance of the other explanatory variables change?
Yes, the coefficients changed, which means the dropped variable depends on other variables as well.
m_full2 <- lm(score ~ gender + language + age + cls_perc_eval
+ cls_credits + bty_avg + pic_color, data = evals)
summary(m_full2)
##
## Call:
## lm(formula = score ~ gender + language + age + cls_perc_eval +
## cls_credits + bty_avg + pic_color, data = evals)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.81919 -0.32035 0.09272 0.38526 0.88213
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.967255 0.215824 18.382 < 2e-16 ***
## gendermale 0.221457 0.049937 4.435 1.16e-05 ***
## languagenon-english -0.281933 0.098341 -2.867 0.00434 **
## age -0.005877 0.002622 -2.241 0.02551 *
## cls_perc_eval 0.004295 0.001432 2.999 0.00286 **
## cls_creditsone credit 0.444392 0.100910 4.404 1.33e-05 ***
## bty_avg 0.048679 0.016974 2.868 0.00432 **
## pic_colorcolor -0.216556 0.066625 -3.250 0.00124 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5014 on 455 degrees of freedom
## Multiple R-squared: 0.1631, Adjusted R-squared: 0.1502
## F-statistic: 12.67 on 7 and 455 DF, p-value: 6.996e-15
score <- function(gender, language, age, cls_perc_eval, cls_credits, bty_avg, pic_color){
score <-( 3.967255
+ 0.221457 * gender
- 0.281933 * language
- 0.005877 * age
+ 0.004295 * cls_perc_eval
+ 0.444392 * cls_credits
+ 0.048679 * bty_avg
- 0.216556 * pic_color)
return(round(score,1))
}
backwardSelection <- score(1, 1, evals$age, evals$cls_perc_eval, 1, evals$bty_avg, 1)
compareScores <- data.frame(evals$score, backwardSelection, backwardSelection - evals$score)
names(compareScores) <- c("Original", "Prediction", "Difference")
head(compareScores,20)
## Original Prediction Difference
## 1 4.7 4.4 -0.3
## 2 4.1 4.5 0.4
## 3 3.9 4.4 0.5
## 4 4.8 4.4 -0.4
## 5 4.6 4.3 -0.3
## 6 4.3 4.3 0.0
## 7 2.8 4.3 1.5
## 8 4.1 4.4 0.3
## 9 3.4 4.2 0.8
## 10 4.5 4.4 -0.1
## 11 3.8 4.4 0.6
## 12 4.5 4.5 0.0
## 13 4.6 4.4 -0.2
## 14 3.9 4.3 0.4
## 15 3.9 4.4 0.5
## 16 4.3 4.4 0.1
## 17 4.5 4.4 -0.1
## 18 4.8 4.7 -0.1
## 19 4.6 4.7 0.1
## 20 4.6 4.6 0.0
hist(m_full2$residuals)
qqnorm(m_full2$residuals)
qqline(m_full2$residuals)
plot(scoreNoise ~ evals$gender)
plot(scoreNoise ~ evals$language)
plot(scoreNoise ~ evals$age)
plot(scoreNoise ~ evals$cls_perc_eval)
plot(scoreNoise ~ evals$cls_credits)
plot(scoreNoise ~ evals$bty_avg)
plot(scoreNoise ~ evals$pic_color)
Yes. Rather than each row be a rating, we’re summarizing across each course and we’d lose individual-level data such as gender of the rater.
Based on this model, the characteristics of the highest scores will be obtained by male instructors who obtained their degree in an english speaking university, teach one credit class and has a black and white picture.
No. Students differ vastly at different institutions and so do their professors. Also, the types of courses differ.
This is a product of OpenIntro that is released under a Creative Commons Attribution-ShareAlike 3.0 Unported. This lab was written by Mine Çetinkaya-Rundel and Andrew Bray.