We have a supermarket data. We will group the customers so that we can target the right group to increase sales.
We load the data and describe the data.

library("dplyr")
market <- tbl_df(market)
market
## Source: local data frame [3,000 x 6]
## 
##    cust_id age Estimated_income recent_spends family_size
## 1        1  30             3300     7.716e+02           1
## 2        2  46            12454     1.289e+02           3
## 3        3  76                0     0.000e+00           1
## 4        4  38             3000     7.697e+01           3
## 5        5  39             2500     2.500e+03           1
## 6        6  24              750     7.500e+02           1
## 7        7  68                1     3.689e-01           1
## 8        8  38            13000     1.084e+04           3
## 9        9  62                0     0.000e+00           1
## 10      10  29             2231     2.213e+03           1
## ..     ... ...              ...           ...         ...
## Variables not shown: Avg_visits_permonth (int)

We will see if there’re missing values in the data.

sapply(market, function(x) sum(is.na(x)))
##             cust_id                 age    Estimated_income 
##                   0                   0                   0 
##       recent_spends         family_size Avg_visits_permonth 
##                   0                   0                   0

We’ll see into how many clusters we can group the observations. We can use a simple technique to figure out how many clusters to form.

sqrt(3000)/2
## [1] 27.39

We’ll drop the the variable ‘cust_id’ so that we can process the other variables for cluster analysis.

market2 <- market %>%
  select(age:Avg_visits_permonth)
market2
## Source: local data frame [3,000 x 5]
## 
##    age Estimated_income recent_spends family_size Avg_visits_permonth
## 1   30             3300     7.716e+02           1                   4
## 2   46            12454     1.289e+02           3                   3
## 3   76                0     0.000e+00           1                   8
## 4   38             3000     7.697e+01           3                   3
## 5   39             2500     2.500e+03           1                   1
## 6   24              750     7.500e+02           1                   5
## 7   68                1     3.689e-01           1                   3
## 8   38            13000     1.084e+04           3                   9
## 9   62                0     0.000e+00           1                   3
## 10  29             2231     2.213e+03           1                   6
## .. ...              ...           ...         ...                 ...

We’ll start cluster analysis process. We will see into how many clusters we can group the observations until there is almost equal observations across all the clusters. We try with 7 clusters first.

market2_cluster1 <- kmeans(market2, centers = 7)
market2_cluster1
## K-means clustering with 7 clusters of sizes 1171, 10, 97, 994, 218, 507, 3
## 
## Cluster means:
##     age Estimated_income recent_spends family_size Avg_visits_permonth
## 1 51.51           4622.1        1381.6       1.752               5.440
## 2 51.90          36800.5       22150.9       1.800               6.600
## 3 55.56          19336.0        3633.7       2.258               5.814
## 4 53.16            617.9         176.5       1.385               5.667
## 5 48.89           9336.7        6972.7       2.179               5.381
## 6 53.37           9705.9        1139.0       2.024               5.489
## 7 52.00         101864.3       10441.2       4.000               8.333
## 
## Clustering vector:
##    [1] 1 6 4 1 1 4 4 5 4 1 1 4 4 4 6 6 3 1 1 6 4 6 1 1 1 5 4 1 3 4 1 6 4 1
##   [35] 1 1 4 4 1 5 1 4 4 1 6 1 6 4 3 4 1 5 6 1 1 4 6 4 1 4 6 5 1 6 1 1 6 5
##   [69] 4 5 4 1 4 5 1 1 6 5 1 4 1 5 4 1 1 6 6 1 1 4 1 4 4 1 1 3 1 1 3 4 4 1
##  [103] 4 4 4 6 4 1 4 4 1 6 4 4 4 4 6 6 5 1 1 3 3 1 4 5 4 4 1 5 4 6 4 4 1 1
##  [137] 4 5 1 1 1 6 6 1 1 1 1 4 5 1 1 1 4 1 6 1 4 1 1 4 4 1 1 1 1 1 5 1 6 1
##  [171] 1 4 5 4 1 1 1 1 5 1 4 4 4 1 4 5 1 4 3 1 6 4 4 5 5 1 4 1 5 1 6 1 1 6
##  [205] 1 6 4 1 6 1 4 1 4 4 3 4 1 5 1 6 1 4 1 4 1 1 6 4 1 1 5 6 4 1 6 4 4 1
##  [239] 4 1 1 4 4 3 1 3 5 4 1 4 1 1 6 4 4 3 4 5 1 1 4 1 4 4 4 6 5 1 4 4 1 4
##  [273] 4 4 1 4 1 1 6 4 1 1 6 6 4 4 1 1 6 1 4 5 4 1 4 6 6 3 1 1 1 1 4 4 3 5
##  [307] 1 5 6 4 6 6 6 4 4 1 1 1 1 3 4 5 1 5 6 4 4 1 1 6 4 1 4 1 4 1 1 6 1 1
##  [341] 1 1 1 5 1 1 6 1 1 4 4 4 6 6 6 1 4 6 1 4 4 1 4 1 1 5 4 1 1 4 1 4 4 6
##  [375] 6 1 4 1 4 4 1 1 1 4 1 4 1 1 4 1 5 4 1 4 1 6 5 1 1 1 6 1 4 1 4 1 4 6
##  [409] 6 5 1 1 6 1 5 4 6 1 1 6 1 1 1 6 5 6 5 1 4 1 3 1 4 6 6 1 6 1 1 4 3 1
##  [443] 6 1 5 4 5 1 4 4 5 5 1 1 4 4 4 4 1 6 4 1 1 1 4 6 6 4 1 4 1 1 5 1 4 4
##  [477] 4 4 1 1 1 1 6 1 1 1 6 4 1 1 4 6 4 1 4 6 1 1 4 1 1 6 4 4 1 1 6 1 4 6
##  [511] 6 1 4 4 6 4 1 1 4 4 6 4 1 1 1 4 1 1 1 4 6 5 4 4 6 1 1 4 4 6 4 1 1 6
##  [545] 1 4 4 6 6 4 4 2 5 6 4 4 1 1 4 1 5 4 4 4 4 4 6 1 6 5 1 6 6 4 4 4 6 4
##  [579] 6 4 1 4 6 1 4 5 1 1 4 4 4 4 1 4 1 5 1 4 5 5 1 4 6 4 4 4 4 4 1 4 4 1
##  [613] 1 1 1 4 1 1 4 4 4 1 1 1 1 1 1 1 4 4 3 1 4 6 1 6 1 1 5 4 1 1 1 5 4 5
##  [647] 1 6 6 6 1 1 6 4 4 3 1 1 4 6 6 1 4 4 4 4 6 1 6 3 4 6 5 1 4 3 4 6 4 4
##  [681] 4 4 3 1 6 6 1 1 1 5 1 4 1 1 1 4 4 1 3 6 1 4 6 1 4 4 4 1 3 5 1 6 1 1
##  [715] 5 5 5 1 4 6 6 6 4 4 4 1 1 6 4 1 1 1 1 1 1 1 6 1 5 5 6 1 4 1 1 4 1 4
##  [749] 1 4 4 3 1 5 1 4 4 4 4 5 1 6 1 4 1 1 1 1 1 1 3 1 4 6 1 4 6 1 4 1 1 1
##  [783] 6 4 1 6 1 1 5 6 1 4 6 4 4 4 1 6 1 1 2 6 3 4 6 1 4 1 6 1 4 1 6 1 6 5
##  [817] 1 6 1 4 1 6 4 1 4 4 6 1 4 1 6 1 1 6 1 6 4 1 4 1 1 5 4 4 4 4 4 4 6 1
##  [851] 1 4 1 1 4 1 4 1 1 6 6 4 4 5 1 4 1 6 1 1 1 1 1 5 4 6 1 1 6 1 1 4 1 4
##  [885] 1 5 6 4 4 6 1 1 6 6 4 1 1 1 4 4 4 1 4 4 1 1 5 4 1 1 6 1 4 4 1 1 5 4
##  [919] 1 4 1 1 4 6 4 4 4 1 4 1 1 1 1 1 1 3 6 6 1 6 6 1 4 4 1 4 6 6 1 6 1 4
##  [953] 6 5 4 3 5 1 1 1 4 4 6 1 1 1 6 4 4 4 4 1 1 4 1 6 6 4 6 6 4 1 6 5 4 1
##  [987] 3 1 1 1 6 4 4 5 4 1 4 1 4 1 1 1 6 3 4 4 1 6 4 1 6 4 1 4 1 1 1 1 1 1
## [1021] 1 1 6 1 1 6 1 1 3 4 4 4 4 4 4 3 4 4 6 4 3 6 1 4 4 4 1 1 4 6 1 5 6 6
## [1055] 1 4 1 4 4 4 6 6 4 6 1 5 4 4 4 1 4 4 4 4 1 1 6 4 4 6 4 1 6 4 6 1 5 1
## [1089] 1 4 6 1 3 1 4 6 1 6 6 1 1 1 4 4 6 4 1 4 1 4 6 6 6 4 1 4 4 4 1 4 1 1
## [1123] 1 4 3 4 4 4 4 6 4 4 6 6 1 1 5 1 4 1 6 1 1 1 6 4 1 6 6 1 1 1 6 4 4 6
## [1157] 1 4 1 6 1 1 4 4 6 4 5 4 1 3 4 6 1 4 1 4 1 4 1 1 4 4 1 1 6 4 6 1 1 4
## [1191] 4 1 4 4 1 6 4 4 1 1 4 1 1 1 4 6 4 1 4 4 4 6 1 5 1 4 1 4 6 4 4 4 4 5
## [1225] 4 4 1 6 1 1 4 4 5 6 5 1 4 1 1 6 5 1 4 4 1 1 1 6 4 4 1 4 1 3 4 1 6 1
## [1259] 5 5 4 3 4 1 1 5 4 1 6 6 4 3 4 1 4 6 1 4 1 5 3 4 1 1 1 6 1 4 4 1 6 1
## [1293] 3 4 1 1 1 4 4 4 4 1 1 4 6 1 6 4 5 4 1 1 1 4 6 4 6 6 1 4 1 1 1 1 5 5
## [1327] 1 6 6 1 4 4 6 6 5 1 5 3 4 4 4 5 5 1 1 1 6 1 5 4 1 4 1 6 5 4 4 5 4 1
## [1361] 4 4 1 4 1 1 4 4 5 6 4 4 5 1 1 4 6 5 6 6 1 6 1 1 1 4 1 4 1 1 1 6 1 1
## [1395] 6 4 1 1 1 1 6 4 4 1 4 4 1 4 4 1 4 4 1 6 4 1 4 5 1 1 1 6 4 5 1 1 4 4
## [1429] 6 1 1 6 6 1 5 4 4 1 1 1 6 4 4 4 1 1 1 1 1 1 6 1 1 1 1 6 6 5 1 4 3 3
## [1463] 1 6 1 6 1 1 4 6 6 1 6 4 5 4 3 4 4 1 4 4 4 6 4 4 4 4 1 4 1 1 1 4 4 4
## [1497] 1 6 1 1 6 6 4 4 1 4 5 6 6 4 1 6 1 1 1 4 4 1 6 4 6 4 6 1 1 1 4 6 6 1
## [1531] 1 6 1 4 5 4 4 1 1 1 1 5 4 4 3 6 5 1 4 4 6 1 4 1 6 4 5 5 1 4 1 4 1 4
## [1565] 6 6 4 4 4 4 1 1 1 5 6 1 4 1 4 4 1 3 5 4 4 1 1 6 4 1 1 3 1 1 4 6 4 4
## [1599] 1 1 4 4 5 1 5 1 5 5 4 1 1 1 4 4 6 1 4 6 4 1 4 1 5 1 1 4 1 4 1 1 6 1
## [1633] 4 5 1 1 1 4 1 4 1 4 1 1 1 5 1 4 6 4 1 1 4 6 1 4 6 1 4 4 1 6 1 5 4 4
## [1667] 4 1 4 4 4 3 5 1 5 4 5 4 1 4 5 1 4 1 1 1 6 4 1 4 1 6 1 1 6 1 1 1 4 4
## [1701] 1 6 6 1 1 1 1 4 6 4 5 4 3 5 1 1 4 3 1 1 1 1 1 4 1 1 6 6 4 1 6 1 1 4
## [1735] 1 1 1 4 3 3 6 4 1 1 5 1 6 1 1 6 6 5 1 2 4 6 1 5 6 4 5 4 1 6 1 1 1 6
## [1769] 4 6 4 4 1 1 1 1 6 4 4 6 6 1 1 1 4 6 1 4 4 1 1 4 4 4 4 4 1 4 1 1 4 3
## [1803] 4 1 1 4 4 4 6 4 4 3 1 1 1 1 1 1 1 1 6 4 1 1 4 4 1 4 4 1 6 4 3 1 1 6
## [1837] 1 3 1 4 6 4 6 4 6 1 4 6 1 6 4 4 1 4 4 3 1 1 1 3 6 4 4 4 1 6 5 1 4 1
## [1871] 1 6 4 1 1 4 4 1 6 4 1 6 6 4 1 6 5 4 1 4 1 4 4 1 5 5 6 4 1 1 6 6 4 4
## [1905] 6 1 4 6 1 1 1 1 1 5 6 5 4 4 6 4 1 1 5 1 6 4 1 1 1 4 6 4 3 6 1 4 1 1
## [1939] 4 1 4 6 4 4 1 1 1 1 1 1 1 2 4 4 1 2 3 1 4 6 4 4 4 4 4 4 6 4 4 1 1 1
## [1973] 1 6 1 4 1 1 1 1 5 4 5 6 6 4 4 4 6 5 1 1 4 1 4 1 4 4 1 1 1 1 1 4 1 6
## [2007] 6 6 4 1 1 1 6 6 5 4 6 6 1 5 4 4 4 6 1 1 5 1 1 1 1 4 1 1 1 4 3 1 3 1
## [2041] 1 4 6 1 4 4 1 4 1 4 1 1 1 4 4 1 6 1 6 1 6 6 4 6 1 4 4 4 1 1 1 1 3 1
## [2075] 6 4 3 1 6 5 4 4 4 5 1 1 6 1 1 5 1 4 5 6 1 4 4 1 1 4 4 1 4 1 1 6 4 6
## [2109] 4 1 3 4 4 6 4 4 1 4 5 4 5 1 4 1 6 4 6 1 3 4 4 4 1 6 1 1 1 1 6 1 3 4
## [2143] 1 4 1 6 4 4 1 4 1 7 4 1 4 4 1 4 4 6 6 5 1 1 1 5 5 6 2 1 4 6 1 4 1 3
## [2177] 6 1 4 1 6 6 4 5 1 3 1 6 1 5 1 5 4 1 6 4 1 4 4 4 4 4 1 4 5 4 1 6 1 4
## [2211] 3 1 1 1 6 1 6 4 4 1 5 6 1 1 1 4 1 5 6 1 1 4 1 1 4 4 4 4 6 4 4 1 5 6
## [2245] 4 4 3 4 1 4 6 4 3 1 6 4 4 4 1 4 6 1 1 1 6 5 1 1 1 4 4 1 1 5 1 4 1 3
## [2279] 1 6 1 4 5 1 1 1 1 4 1 6 4 4 6 6 4 4 4 1 4 6 4 4 1 4 1 4 6 1 6 1 4 1
## [2313] 1 1 4 4 4 1 1 4 1 4 6 1 1 5 1 1 6 1 1 1 1 1 5 5 1 1 4 1 1 4 4 5 6 1
## [2347] 1 4 4 1 1 4 1 6 4 4 7 4 4 4 1 1 1 1 1 6 3 1 4 6 6 1 4 5 4 6 1 4 1 6
## [2381] 6 6 1 4 1 4 1 6 1 1 4 1 6 1 6 4 4 4 5 4 6 1 6 6 1 4 6 1 1 4 1 1 1 1
## [2415] 1 4 1 5 6 1 5 4 4 4 4 1 1 1 1 6 4 4 3 4 6 7 4 4 4 6 4 1 4 3 4 1 6 1
## [2449] 5 4 1 1 4 1 1 4 4 5 1 1 1 5 1 6 4 1 4 1 1 4 6 6 4 4 4 5 4 6 1 1 4 4
## [2483] 4 1 1 4 1 4 6 4 1 6 6 1 4 6 1 4 5 6 4 6 5 1 4 6 6 6 4 1 5 1 6 3 6 1
## [2517] 2 4 1 6 6 3 1 1 5 1 1 6 4 1 4 6 6 4 6 1 4 6 5 4 1 4 1 6 3 1 4 6 5 4
## [2551] 1 4 4 1 1 4 5 1 5 1 4 1 6 4 4 3 6 4 3 4 4 2 4 1 4 5 1 1 6 6 4 1 5 1
## [2585] 5 6 4 6 1 1 4 4 6 4 3 6 4 4 4 1 4 5 3 5 4 6 6 1 1 6 1 4 3 1 1 5 5 3
## [2619] 4 4 1 4 6 1 1 1 4 4 4 1 1 4 4 6 4 4 5 1 4 1 6 4 4 4 4 4 4 6 1 6 4 1
## [2653] 1 4 4 3 3 6 1 1 6 4 4 4 1 4 5 1 4 1 4 6 6 1 6 1 4 6 1 6 1 4 6 4 1 4
## [2687] 1 1 1 1 1 4 1 4 1 4 6 4 1 4 6 4 1 6 4 4 4 1 6 1 1 1 5 5 4 6 3 1 6 4
## [2721] 5 1 1 4 4 6 6 1 4 4 4 4 6 1 6 1 4 6 6 1 4 3 4 1 4 4 4 1 6 1 1 6 4 1
## [2755] 1 6 1 1 1 1 4 1 4 4 1 1 5 3 5 4 1 4 4 4 6 4 4 3 1 4 5 6 1 1 1 4 1 6
## [2789] 3 4 4 1 1 4 1 1 1 4 1 1 4 1 6 4 6 2 1 1 1 1 4 6 1 6 6 1 6 1 1 4 5 4
## [2823] 4 1 6 1 6 1 1 6 1 4 6 1 4 3 1 1 6 4 1 1 5 4 1 4 6 4 4 1 1 4 4 6 4 4
## [2857] 1 6 4 1 4 5 5 6 1 1 4 1 1 4 5 1 5 4 1 4 1 5 1 1 1 4 1 1 4 4 1 1 4 4
## [2891] 1 1 6 1 1 4 4 1 4 1 4 4 1 4 1 4 1 1 1 1 5 1 6 1 6 3 1 4 1 4 1 4 4 4
## [2925] 1 4 1 1 4 4 4 4 1 2 1 5 4 4 4 4 4 1 4 6 1 4 1 1 4 6 4 6 1 1 6 4 1 1
## [2959] 5 4 1 4 1 1 5 6 4 4 1 5 4 6 4 4 3 1 6 1 1 4 4 1 5 6 6 4 5 4 4 4 1 6
## [2993] 1 1 6 5 4 4 1 4
## 
## Within cluster sum of squares by cluster:
## [1] 4.061e+09 2.422e+09 3.472e+09 1.047e+09 2.516e+09 2.458e+09 2.815e+09
##  (between_SS / total_SS =  84.9 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"
market2_cluster2 <- kmeans(market2, centers = 5)
market2_cluster2
## K-means clustering with 5 clusters of sizes 653, 111, 1210, 1021, 5
## 
## Cluster means:
##     age Estimated_income recent_spends family_size Avg_visits_permonth
## 1 52.04           9834.8        2745.4       2.113               5.449
## 2 54.39          19835.9        6504.6       2.207               5.676
## 3 51.65           4801.6        1392.3       1.745               5.445
## 4 53.04            669.9         199.9       1.399               5.676
## 5 53.40          82838.6       18498.8       3.000               8.600
## 
## Clustering vector:
##    [1] 3 1 4 3 3 4 4 2 4 4 3 4 4 4 1 1 2 3 3 1 4 1 3 3 3 1 4 3 2 4 3 1 4 3
##   [35] 3 3 4 4 3 2 3 4 4 3 1 3 1 4 2 4 3 1 1 3 3 4 1 4 3 4 1 1 3 1 3 3 1 1
##   [69] 4 2 4 3 4 1 3 3 1 3 3 4 3 1 4 3 3 1 1 3 3 4 3 4 4 3 3 2 3 3 2 4 4 3
##  [103] 4 4 4 1 4 3 4 4 3 1 4 4 4 4 1 1 1 3 3 2 2 3 4 1 4 4 3 1 4 1 4 4 3 3
##  [137] 4 1 3 3 3 1 3 3 3 3 3 4 1 3 3 3 4 3 1 3 4 3 3 4 4 3 3 3 3 3 1 3 1 3
##  [171] 3 4 1 4 3 3 3 3 1 3 4 4 4 3 4 1 3 4 2 3 1 4 4 1 1 3 4 3 1 3 1 3 3 1
##  [205] 3 1 4 3 1 3 4 4 4 4 2 4 3 1 3 1 3 4 3 4 3 3 1 4 3 3 2 1 4 3 1 4 4 3
##  [239] 4 3 3 4 4 2 3 2 1 4 3 4 3 3 1 4 4 1 4 1 3 3 4 3 4 4 4 1 1 3 4 4 3 4
##  [273] 4 4 3 4 3 4 1 4 3 3 1 3 4 4 3 3 1 3 4 1 4 3 4 1 1 2 3 3 3 3 4 4 2 1
##  [307] 3 1 1 4 1 1 1 4 4 3 3 3 3 1 4 1 3 1 1 4 4 3 3 1 4 3 4 3 4 3 3 1 3 3
##  [341] 3 3 3 1 3 3 3 3 3 4 4 4 1 1 1 3 4 1 3 4 4 3 4 3 3 1 4 4 3 4 3 4 4 3
##  [375] 3 3 4 3 4 4 3 3 3 4 3 4 3 3 4 3 1 4 3 4 3 1 3 3 3 3 1 1 4 3 4 3 4 3
##  [409] 1 1 3 3 1 3 1 4 1 3 3 1 3 3 3 3 1 1 1 3 4 3 1 3 4 1 1 3 1 3 3 4 2 3
##  [443] 1 3 1 4 1 3 4 4 1 1 3 3 4 4 4 4 3 1 4 3 3 3 4 1 1 4 3 4 3 3 1 3 4 4
##  [477] 4 4 3 3 3 3 3 3 3 3 1 4 4 3 4 1 4 3 4 1 3 3 4 3 3 1 4 4 3 3 1 3 4 1
##  [511] 1 3 4 4 1 4 3 4 4 4 1 4 3 3 3 4 3 3 3 4 3 1 4 4 1 3 3 4 4 1 4 3 4 1
##  [545] 3 4 4 1 1 4 4 5 2 1 4 4 3 3 4 3 1 4 4 4 4 4 1 3 1 1 3 1 1 4 4 4 1 4
##  [579] 1 4 1 4 1 3 4 1 3 3 4 4 4 4 3 4 3 1 3 4 1 1 3 4 1 4 4 4 4 4 3 4 4 3
##  [613] 3 3 3 4 3 3 4 4 4 3 3 3 3 3 3 3 4 4 2 3 4 1 3 1 3 3 1 4 3 3 3 1 4 1
##  [647] 3 1 1 1 3 3 1 4 4 2 3 3 4 3 1 3 4 4 4 4 1 3 1 2 4 1 1 3 4 2 4 1 4 4
##  [681] 4 4 2 3 1 3 3 3 3 1 3 4 3 3 3 4 4 3 2 1 3 4 1 3 4 4 4 4 2 1 3 1 3 3
##  [715] 1 1 1 3 4 1 1 1 4 4 4 3 3 1 4 3 3 3 3 3 3 3 1 3 1 3 1 3 4 3 3 4 3 4
##  [749] 3 4 4 2 3 1 3 4 4 4 4 3 3 1 3 4 3 4 3 3 3 3 2 3 4 1 3 4 1 3 4 3 3 3
##  [783] 1 4 3 1 1 3 2 1 3 4 1 4 4 4 3 1 3 3 2 1 2 4 1 3 4 3 1 3 4 3 1 3 1 2
##  [817] 3 1 3 4 4 1 4 3 4 4 1 3 4 3 3 3 3 1 3 1 4 3 4 3 3 1 4 4 4 4 4 4 1 3
##  [851] 3 4 3 3 4 3 4 3 3 1 1 4 4 1 3 4 3 1 3 3 3 3 3 1 4 1 3 3 1 3 3 4 3 4
##  [885] 3 1 1 4 4 1 3 3 1 1 4 3 3 3 4 4 4 1 4 4 3 3 1 4 3 3 1 3 4 4 3 3 2 4
##  [919] 3 4 3 3 4 1 4 4 4 3 4 3 3 3 3 3 3 2 1 3 3 1 1 3 4 4 3 4 1 1 3 1 3 4
##  [953] 1 1 4 1 2 3 3 3 4 4 3 3 3 3 1 4 4 4 4 3 3 4 3 1 1 4 1 1 4 3 1 1 4 3
##  [987] 1 3 3 3 1 4 4 1 4 1 4 3 4 3 3 3 1 1 4 4 3 1 4 3 1 4 3 4 3 3 3 3 3 3
## [1021] 3 3 1 3 3 3 3 3 2 4 4 4 4 4 4 2 4 4 1 4 2 1 3 4 4 4 3 3 4 1 3 1 1 1
## [1055] 3 4 3 4 4 4 1 1 4 1 3 1 4 4 4 3 4 4 4 4 3 3 1 4 4 1 4 3 1 4 1 3 1 3
## [1089] 3 4 1 3 2 3 4 3 3 1 1 3 3 3 4 4 1 4 3 4 3 4 1 3 1 4 3 4 4 4 3 4 3 3
## [1123] 3 4 2 4 4 4 4 1 4 4 1 1 3 3 1 3 4 3 1 3 3 3 1 4 3 1 1 3 3 3 1 4 4 1
## [1157] 3 4 3 1 3 3 4 4 1 4 1 4 3 2 4 1 3 4 3 4 3 4 3 3 4 4 3 3 1 4 1 3 3 4
## [1191] 4 3 4 4 3 1 4 4 3 3 4 3 3 3 4 1 4 3 4 4 4 1 3 1 3 4 3 4 1 4 4 4 4 1
## [1225] 4 4 3 1 3 3 4 4 1 1 1 3 4 3 3 1 1 3 4 4 3 3 3 1 4 4 3 4 3 1 4 3 1 3
## [1259] 1 1 4 1 4 3 3 1 4 3 1 1 4 2 4 3 4 3 3 4 3 1 2 4 3 3 3 1 3 4 4 3 1 3
## [1293] 1 4 3 3 3 4 4 4 4 3 3 4 1 3 1 4 1 4 3 3 3 4 1 4 1 1 3 4 3 3 3 3 2 1
## [1327] 3 1 1 3 4 4 1 1 1 3 1 2 4 4 4 1 2 3 3 3 1 3 1 4 3 4 3 1 1 4 4 1 4 3
## [1361] 4 4 3 4 3 3 4 4 1 1 4 4 1 3 3 4 1 1 1 1 3 1 3 3 3 4 3 4 3 3 3 1 3 3
## [1395] 3 4 3 3 3 3 1 4 4 3 4 4 4 4 4 3 4 4 3 1 4 3 4 1 3 3 3 1 4 1 3 3 4 4
## [1429] 1 3 3 3 1 3 1 4 4 3 3 3 3 4 4 4 3 3 3 3 3 3 3 3 3 3 3 3 1 1 4 4 2 2
## [1463] 1 1 3 1 3 3 4 1 3 3 1 4 1 4 2 4 4 3 4 4 4 1 4 4 4 4 3 4 3 3 3 4 4 4
## [1497] 3 1 3 3 1 1 4 4 3 4 1 1 1 4 3 1 3 3 3 4 4 3 1 4 3 4 3 3 3 3 4 1 1 3
## [1531] 3 1 3 4 1 4 4 3 3 3 3 1 4 4 1 1 3 3 4 4 3 3 4 3 1 4 1 2 3 4 3 4 3 4
## [1565] 1 1 4 4 4 4 3 3 3 1 1 3 4 3 4 4 3 2 3 4 4 3 3 1 4 3 4 2 3 3 4 1 4 4
## [1599] 3 3 4 4 1 3 1 3 1 2 4 3 3 3 4 4 1 3 4 1 4 3 4 3 1 3 3 4 3 4 3 3 1 3
## [1633] 4 1 3 3 3 4 3 4 3 4 3 3 3 1 3 4 1 4 4 3 4 1 3 4 1 3 4 4 3 1 3 1 4 4
## [1667] 4 3 4 4 4 2 2 3 1 4 2 4 1 4 1 3 4 3 3 3 1 4 3 4 3 1 3 3 1 3 3 3 4 4
## [1701] 3 1 3 3 3 3 3 4 3 4 3 4 2 1 3 3 4 2 3 3 3 3 3 4 3 3 1 1 4 3 1 3 3 4
## [1735] 3 3 3 4 1 2 1 4 3 3 1 3 1 3 3 1 3 1 3 2 4 1 3 1 1 4 1 4 3 1 3 3 3 1
## [1769] 4 1 4 4 3 3 3 3 1 4 4 1 1 3 3 3 4 1 3 4 4 3 3 4 4 4 4 4 3 4 3 3 4 2
## [1803] 4 3 3 4 4 4 1 4 4 2 3 3 3 3 3 3 3 3 3 4 3 3 4 4 3 4 4 3 1 4 2 3 3 1
## [1837] 3 2 1 4 1 4 1 4 1 3 4 3 3 1 4 4 3 4 4 2 3 3 3 2 1 4 4 4 3 3 1 3 4 3
## [1871] 3 1 4 3 3 4 4 3 1 4 3 1 1 4 3 1 3 4 3 4 3 4 4 3 1 1 1 4 3 3 1 1 4 4
## [1905] 1 3 4 1 3 3 3 3 3 1 1 3 4 4 1 4 3 3 1 3 1 4 3 3 4 4 1 4 2 3 3 4 3 3
## [1939] 4 3 4 1 4 4 3 3 3 3 3 3 3 5 4 4 3 2 2 3 4 1 4 4 4 4 4 4 1 4 4 3 3 3
## [1973] 3 1 3 4 3 3 3 3 1 4 1 1 1 4 4 4 3 1 3 3 4 3 4 3 4 4 3 3 3 3 3 4 3 1
## [2007] 1 1 4 3 3 4 1 1 1 4 3 1 3 1 4 4 4 1 3 3 1 3 3 3 3 4 3 3 3 4 2 3 1 3
## [2041] 3 4 1 3 4 4 3 4 3 4 3 3 3 4 4 3 3 3 3 3 1 3 4 1 3 4 4 4 3 3 3 3 1 3
## [2075] 1 4 2 3 1 1 4 4 4 1 3 4 1 3 3 1 3 4 3 1 3 4 4 3 3 4 4 3 4 3 3 1 4 1
## [2109] 4 3 2 4 4 1 4 4 3 4 1 4 1 3 4 3 3 4 1 3 2 4 4 4 3 1 3 3 3 3 3 3 2 4
## [2143] 3 4 3 1 4 4 3 4 3 5 4 3 4 4 3 4 4 1 1 1 3 3 3 1 3 1 2 3 4 1 3 4 3 2
## [2177] 1 3 4 3 1 1 4 1 3 2 3 1 3 1 3 3 4 3 1 4 3 4 4 4 4 4 3 4 2 4 3 1 3 4
## [2211] 2 3 3 3 1 3 1 4 4 3 1 1 3 3 3 4 3 1 1 3 3 4 4 3 4 4 4 4 1 4 4 3 1 1
## [2245] 4 4 2 4 3 4 3 4 2 3 1 4 4 4 3 4 1 3 3 3 1 1 3 3 3 4 4 3 3 1 3 4 3 2
## [2279] 3 1 3 4 1 3 3 3 3 4 4 1 4 4 1 1 4 4 4 3 4 1 4 4 3 4 4 4 1 3 1 3 4 3
## [2313] 3 3 4 4 4 3 3 4 3 4 1 3 3 1 3 1 1 3 3 3 3 3 1 2 3 3 4 3 3 4 4 3 1 3
## [2347] 3 4 4 3 3 4 3 3 4 4 5 4 4 4 3 3 3 4 3 1 2 3 4 1 1 3 4 1 4 1 3 4 3 1
## [2381] 1 1 3 4 3 4 3 1 3 3 4 3 1 3 1 4 4 4 1 4 1 3 3 1 3 4 1 3 3 4 3 3 3 3
## [2415] 3 4 3 1 1 3 1 4 4 4 4 3 3 3 3 3 4 4 2 4 1 5 4 4 4 1 4 3 4 2 4 3 1 3
## [2449] 3 4 3 3 4 4 3 4 4 1 3 3 3 1 3 3 4 3 4 3 3 4 1 3 4 4 4 1 4 1 3 3 4 4
## [2483] 4 3 4 4 3 4 1 4 3 1 1 4 4 1 3 4 1 1 4 3 1 3 4 1 1 1 4 3 1 3 1 2 1 3
## [2517] 2 4 3 3 1 2 3 3 1 3 3 1 4 3 4 1 1 4 1 3 4 1 1 4 3 4 3 1 2 3 4 1 3 4
## [2551] 3 4 4 3 3 4 2 3 1 3 4 3 1 4 4 2 3 4 2 4 4 2 4 3 4 1 3 3 3 1 4 3 1 3
## [2585] 1 1 4 1 3 3 4 4 1 4 2 1 4 4 4 3 4 1 2 1 4 1 1 3 3 1 3 4 2 3 3 1 1 2
## [2619] 4 4 3 4 1 3 3 3 4 4 4 3 3 4 4 1 4 4 1 3 4 3 1 4 4 4 4 4 4 1 3 1 4 1
## [2653] 3 4 4 2 2 1 3 3 1 4 4 4 3 4 1 3 4 3 4 1 1 3 1 3 4 3 3 1 3 4 1 4 3 4
## [2687] 3 3 3 3 3 4 3 4 3 4 1 4 3 4 1 4 3 3 4 4 4 3 1 3 3 3 1 3 4 1 2 3 1 4
## [2721] 1 3 3 4 4 1 1 3 4 4 4 4 1 3 1 4 4 1 1 3 4 2 4 3 4 4 4 3 1 3 3 1 4 3
## [2755] 3 1 3 3 3 3 4 3 4 4 3 3 2 2 3 4 3 4 4 4 1 4 4 2 3 4 3 3 3 3 3 4 3 1
## [2789] 2 4 4 3 3 4 3 3 3 4 3 3 4 4 1 4 1 2 3 3 3 3 4 1 3 1 3 3 3 3 3 4 1 4
## [2823] 4 3 1 3 1 3 3 1 3 4 1 3 4 2 3 3 1 4 3 3 2 4 3 4 1 4 4 3 3 4 4 1 4 4
## [2857] 3 1 4 3 4 1 1 1 3 3 4 3 3 4 3 3 1 4 3 4 3 1 3 3 3 4 3 3 4 4 3 3 4 4
## [2891] 3 3 1 3 3 4 4 3 4 3 4 4 4 4 3 4 3 3 3 3 1 3 1 3 1 1 3 4 3 4 3 4 4 4
## [2925] 3 4 3 3 4 4 4 4 3 2 3 1 4 4 4 4 4 3 4 1 3 4 3 3 4 1 4 1 3 3 1 4 3 3
## [2959] 1 4 3 4 3 3 1 1 4 4 3 3 4 1 4 4 2 3 1 3 3 4 4 3 1 1 1 4 1 4 4 4 3 1
## [2993] 3 3 1 1 4 4 3 4
## 
## Within cluster sum of squares by cluster:
## [1] 7.620e+09 9.052e+09 4.698e+09 1.189e+09 6.152e+09
##  (between_SS / total_SS =  77.0 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"
market2_cluster3 <- kmeans(market2, centers = 4)
market2_cluster3
## K-means clustering with 4 clusters of sizes 250, 7, 1237, 1506
## 
## Cluster means:
##     age Estimated_income recent_spends family_size Avg_visits_permonth
## 1 53.61            15500        5210.4       2.236               5.432
## 2 54.86            72436       17881.6       2.571               8.429
## 3 51.57             7081        1917.0       1.914               5.475
## 4 52.69             1588         462.8       1.483               5.594
## 
## Clustering vector:
##    [1] 4 3 4 4 4 4 4 1 4 4 4 4 4 4 3 3 1 4 3 3 4 3 4 4 3 1 4 4 1 4 4 3 4 4
##   [35] 3 4 4 4 3 1 3 4 4 4 3 3 3 4 1 4 3 3 3 3 3 4 3 4 3 4 1 3 3 3 4 4 3 3
##   [69] 4 1 4 3 4 3 3 4 3 3 3 4 3 1 4 3 3 3 3 3 4 4 3 4 4 3 4 1 4 4 1 4 4 3
##  [103] 4 4 4 3 4 3 4 4 3 3 4 4 4 4 3 3 3 3 4 1 1 3 4 3 4 4 4 1 4 3 4 4 4 4
##  [137] 4 1 4 3 4 3 3 3 4 4 3 4 3 3 4 3 4 3 3 3 4 3 4 4 4 4 4 3 3 4 3 3 3 3
##  [171] 4 4 3 4 3 3 4 3 1 3 4 4 4 3 4 1 4 4 1 3 3 4 4 3 1 3 4 3 1 3 3 3 3 3
##  [205] 3 3 4 4 3 4 4 4 4 4 1 4 3 3 4 3 3 4 3 4 3 3 3 4 3 4 1 3 4 4 3 4 4 3
##  [239] 4 4 4 4 4 1 3 1 1 4 3 4 3 4 3 4 4 1 4 1 3 4 4 4 4 4 4 3 3 4 4 4 3 4
##  [273] 4 4 4 4 4 4 3 4 3 3 3 3 4 4 4 3 3 3 4 3 4 4 4 1 3 1 3 3 3 4 4 4 1 3
##  [307] 4 3 3 4 3 3 3 4 4 3 4 4 4 1 4 1 3 1 3 4 4 4 4 3 4 3 4 3 4 3 4 3 3 3
##  [341] 4 4 4 1 4 4 3 3 3 4 4 4 3 3 3 4 4 3 4 4 4 3 4 4 4 3 4 4 4 4 3 4 4 3
##  [375] 3 3 4 4 4 4 3 3 3 4 4 4 3 4 4 3 3 4 4 4 3 3 3 3 3 3 3 3 4 3 4 4 4 3
##  [409] 3 3 4 4 3 3 1 4 3 3 3 3 3 3 3 3 3 3 1 3 4 3 1 4 4 3 3 4 3 4 3 4 1 4
##  [443] 3 3 3 4 1 4 4 4 1 1 3 4 4 4 4 4 3 3 4 4 3 4 4 3 3 4 3 4 4 3 3 4 4 4
##  [477] 4 4 4 3 3 3 3 3 4 3 3 4 4 3 4 3 4 3 4 3 3 4 4 4 4 3 4 4 3 3 1 4 4 3
##  [511] 3 4 4 4 3 4 4 4 4 4 3 4 3 4 4 4 4 3 3 4 3 3 4 4 3 3 4 4 4 3 4 3 4 1
##  [545] 4 4 4 3 1 4 4 2 1 3 4 4 3 3 4 3 3 4 4 4 4 4 1 4 1 3 4 3 3 4 4 4 3 4
##  [579] 3 4 3 4 3 3 4 3 4 3 4 4 4 4 4 4 3 1 3 4 1 3 4 4 3 4 4 4 4 4 4 4 4 4
##  [613] 3 4 4 4 4 4 4 4 4 3 3 3 3 4 3 3 4 4 1 3 4 3 4 1 3 4 3 4 3 3 4 1 4 1
##  [647] 3 3 3 3 3 3 1 4 4 1 3 4 4 3 3 3 4 4 4 4 3 3 3 1 4 3 3 4 4 1 4 3 4 4
##  [681] 4 4 1 3 3 3 3 3 3 1 4 4 3 4 3 4 4 3 1 3 3 4 3 3 4 4 4 4 1 3 3 3 3 3
##  [715] 1 3 3 4 4 3 1 3 4 4 4 3 3 3 4 4 4 3 4 3 4 3 3 3 3 3 3 3 4 3 3 4 4 4
##  [749] 4 4 4 1 3 3 3 4 4 4 4 3 4 3 3 4 4 4 3 3 4 3 1 3 4 3 4 4 3 3 4 4 3 4
##  [783] 3 4 3 3 3 3 1 3 3 4 3 4 4 4 3 1 4 4 1 3 1 4 3 3 4 3 3 3 4 3 3 4 1 1
##  [817] 3 3 4 4 4 3 4 3 4 4 3 3 4 3 3 3 3 1 4 3 4 3 4 3 3 1 4 4 4 4 4 4 3 4
##  [851] 3 4 3 4 4 3 4 4 3 1 3 4 4 3 4 4 3 3 4 4 3 3 4 3 4 3 3 4 3 3 4 4 3 4
##  [885] 3 3 3 4 4 3 4 3 3 1 4 3 4 3 4 4 4 3 4 4 3 3 1 4 3 4 3 3 4 4 3 3 1 4
##  [919] 4 4 4 4 4 3 4 4 4 4 4 3 3 4 3 4 3 1 3 3 4 3 3 4 4 4 4 4 3 3 3 3 4 4
##  [953] 3 1 4 1 1 3 3 4 4 4 3 4 3 3 3 4 4 4 4 3 3 4 4 1 3 4 1 1 4 3 3 3 4 4
##  [987] 1 3 3 3 1 4 4 3 4 3 4 4 4 4 4 3 3 1 4 4 4 3 4 3 3 4 3 4 3 3 3 4 3 3
## [1021] 3 3 3 3 4 3 3 4 1 4 4 4 4 4 4 1 4 4 3 4 1 3 4 4 4 4 3 3 4 3 3 3 3 3
## [1055] 3 4 4 4 4 4 3 3 4 3 4 3 4 4 4 3 4 4 4 4 4 3 1 4 4 3 4 4 3 4 3 4 1 3
## [1089] 3 4 3 3 1 3 4 3 3 1 3 4 3 3 4 4 3 4 3 4 4 4 1 3 3 4 3 4 4 4 4 4 3 3
## [1123] 3 4 1 4 4 4 4 3 4 4 3 3 3 3 1 3 4 3 1 3 3 4 3 4 3 3 3 3 3 3 3 4 4 3
## [1157] 3 4 4 3 4 3 4 4 3 4 3 4 4 1 4 3 3 4 4 4 4 4 3 3 4 4 3 3 1 4 3 4 3 4
## [1191] 4 4 4 4 3 3 4 4 3 4 4 4 4 3 4 3 4 4 4 4 4 3 3 3 3 4 3 4 3 4 4 4 4 3
## [1225] 4 4 3 3 3 3 4 4 3 3 3 4 4 4 4 3 3 3 4 4 3 3 4 3 4 4 3 4 4 1 4 4 1 4
## [1259] 1 3 4 1 4 4 4 1 4 3 3 1 4 1 4 3 4 3 3 4 4 3 1 4 4 4 4 1 3 4 4 4 3 3
## [1293] 1 4 4 4 4 4 4 4 4 3 4 4 3 4 3 4 3 4 3 3 3 4 3 4 3 3 3 4 4 3 4 3 1 3
## [1327] 3 3 3 4 4 4 3 3 3 4 1 1 4 4 4 3 1 3 4 3 3 4 3 4 3 4 3 3 3 4 4 1 4 3
## [1361] 4 4 4 4 3 4 4 4 3 1 4 4 3 3 3 4 3 1 3 3 3 3 3 4 4 4 4 4 4 4 3 3 4 3
## [1395] 3 4 4 4 3 4 3 4 4 3 4 4 4 4 4 4 4 4 4 1 4 3 4 1 3 4 3 1 4 3 3 3 4 4
## [1429] 1 4 4 3 3 3 3 4 4 4 3 4 3 4 4 4 3 4 3 4 4 3 3 4 3 3 4 3 3 1 4 4 1 1
## [1463] 3 3 3 1 4 4 4 3 3 4 3 4 1 4 1 4 4 3 4 4 4 1 4 4 4 4 3 4 3 3 3 4 4 4
## [1497] 3 3 4 3 3 3 4 4 3 4 1 3 3 4 3 3 4 3 3 4 4 4 1 4 3 4 3 3 3 3 4 3 3 4
## [1531] 4 3 3 4 3 4 4 3 4 3 3 3 4 4 1 3 3 3 4 4 3 3 4 3 3 4 3 1 4 4 3 4 3 4
## [1565] 1 3 4 4 4 4 4 3 4 3 3 4 4 3 4 4 3 1 3 4 4 3 3 3 4 3 4 1 3 3 4 3 4 4
## [1599] 3 3 4 4 3 3 3 4 3 1 4 4 3 3 4 4 1 4 4 3 4 3 4 3 1 4 4 4 4 4 4 4 1 4
## [1633] 4 1 3 4 4 4 4 4 3 4 4 4 4 1 3 4 3 4 4 4 4 3 3 4 3 3 4 4 3 3 3 3 4 4
## [1667] 4 3 4 4 4 1 1 3 3 4 1 4 3 4 3 3 4 3 4 4 3 4 4 4 4 3 3 3 3 4 4 4 4 4
## [1701] 4 3 3 3 3 3 3 4 3 4 3 4 1 1 3 3 4 1 4 3 3 3 3 4 4 3 1 3 4 4 3 3 4 4
## [1735] 4 3 4 4 1 1 3 4 3 4 3 3 3 3 4 3 3 3 3 1 4 3 4 1 3 4 3 4 3 3 3 3 3 3
## [1769] 4 3 4 4 3 3 4 3 3 4 4 3 1 4 3 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 3 3 4 1
## [1803] 4 4 4 4 4 4 1 4 4 1 3 4 4 3 3 3 3 3 3 4 4 3 4 4 3 4 4 4 3 4 1 4 4 1
## [1837] 4 1 3 4 3 4 3 4 3 4 4 3 4 3 4 4 3 4 4 1 4 3 3 1 3 4 4 4 3 3 3 3 4 3
## [1871] 4 3 4 3 4 4 4 4 1 4 4 1 3 4 4 3 3 4 3 4 4 4 4 3 3 1 3 4 4 3 1 3 4 4
## [1905] 3 4 4 1 3 3 4 4 3 1 3 3 4 4 3 4 4 3 1 3 3 4 3 3 4 4 3 4 1 3 3 4 3 3
## [1939] 4 4 4 3 4 4 3 4 4 4 3 4 3 2 4 4 4 1 1 3 4 3 4 4 4 4 4 4 3 4 4 3 3 4
## [1973] 3 3 4 4 3 3 4 4 1 4 3 3 1 4 4 4 3 1 3 3 4 4 4 3 4 4 3 3 4 3 3 4 3 3
## [2007] 1 3 4 4 4 4 3 1 3 4 3 3 3 3 4 4 4 3 4 3 3 3 4 3 3 4 3 4 3 4 1 4 1 3
## [2041] 4 4 3 4 4 4 4 4 3 4 3 4 3 4 4 3 3 4 3 4 3 3 4 3 4 4 4 4 4 4 4 3 1 4
## [2075] 3 4 1 4 3 3 4 4 4 3 3 4 1 3 4 3 4 4 3 3 4 4 4 3 4 4 4 4 4 3 4 3 4 3
## [2109] 4 3 1 4 4 1 4 4 3 4 1 4 3 3 4 3 3 4 3 4 1 4 4 4 3 3 3 4 3 3 3 3 1 4
## [2143] 3 4 4 3 4 4 4 4 3 2 4 3 4 4 3 4 4 3 3 1 3 3 3 3 3 3 1 4 4 3 4 4 3 1
## [2177] 1 3 4 3 3 3 4 1 4 1 4 1 3 3 4 3 4 4 3 4 4 4 4 4 4 4 3 4 1 4 3 3 4 4
## [2211] 1 3 3 4 3 3 3 4 4 4 3 3 3 3 4 4 4 1 3 3 3 4 4 3 4 4 4 4 3 4 4 3 1 1
## [2245] 4 4 1 4 3 4 3 4 1 4 3 4 4 4 4 4 3 3 3 4 3 3 4 4 3 4 4 3 3 3 3 4 3 1
## [2279] 3 3 3 4 3 4 3 3 3 4 4 3 4 4 3 3 4 4 4 3 4 3 4 4 3 4 4 4 3 4 3 3 4 4
## [2313] 4 3 4 4 4 3 4 4 3 4 3 4 4 3 3 3 3 3 4 3 4 3 1 1 3 3 4 3 3 4 4 3 3 4
## [2347] 3 4 4 3 4 4 3 3 4 4 2 4 4 4 4 4 3 4 3 3 1 4 4 3 3 3 4 3 4 3 3 4 3 3
## [2381] 3 3 3 4 4 4 3 3 4 4 4 4 3 4 3 4 4 4 3 4 1 3 3 3 4 4 3 3 3 4 3 3 3 4
## [2415] 4 4 4 1 3 3 3 4 4 4 4 4 3 3 3 3 4 4 1 4 3 2 4 4 4 3 4 4 4 1 4 4 3 3
## [2449] 3 4 3 3 4 4 3 4 4 1 3 3 3 3 3 3 4 4 4 3 3 4 3 3 4 4 4 3 4 3 3 4 4 4
## [2483] 4 3 4 4 4 4 3 4 4 3 3 4 4 3 3 4 1 3 4 3 1 3 4 1 3 3 4 4 3 3 3 1 3 4
## [2517] 2 4 4 3 3 1 4 3 3 4 4 3 4 4 4 3 3 4 3 4 4 3 3 4 3 4 4 3 1 3 4 3 3 4
## [2551] 4 4 4 4 3 4 1 4 3 3 4 3 3 4 4 1 3 4 1 4 4 2 4 3 4 3 3 3 3 1 4 4 3 3
## [2585] 3 1 4 3 3 3 4 4 3 4 1 3 4 4 4 3 4 1 1 3 4 3 3 3 4 3 4 4 1 3 3 3 3 1
## [2619] 4 4 3 4 3 4 3 4 4 4 4 3 4 4 4 3 4 4 1 4 4 3 3 4 4 4 4 4 4 3 3 3 4 3
## [2653] 4 4 4 1 1 3 3 3 3 4 4 4 4 4 1 4 4 3 4 3 3 4 3 3 4 3 3 3 3 4 3 4 4 4
## [2687] 3 3 4 4 3 4 3 4 3 4 3 4 4 4 3 4 4 3 4 4 4 3 3 3 4 4 3 3 4 3 1 4 3 4
## [2721] 3 3 3 4 4 3 3 4 4 4 4 4 3 3 3 4 4 3 1 3 4 1 4 4 4 4 4 3 3 3 4 3 4 3
## [2755] 3 3 4 4 4 4 4 3 4 4 4 4 1 1 3 4 4 4 4 4 1 4 4 1 4 4 3 3 4 3 3 4 3 3
## [2789] 1 4 4 3 3 4 3 3 3 4 4 4 4 4 3 4 1 1 3 3 3 4 4 3 3 3 3 3 3 4 4 4 3 4
## [2823] 4 3 3 4 3 4 4 3 4 4 3 4 4 1 3 4 3 4 3 4 1 4 4 4 1 4 4 4 3 4 4 3 4 4
## [2857] 4 1 4 3 4 3 1 3 3 3 4 3 4 4 3 3 3 4 4 4 4 3 4 4 3 4 4 4 4 4 4 4 4 4
## [2891] 4 4 3 3 3 4 4 4 4 3 4 4 4 4 4 4 3 3 4 3 3 4 3 4 1 1 3 4 3 4 3 4 4 4
## [2925] 3 4 3 4 4 4 4 4 3 1 4 3 4 4 4 4 4 3 4 3 4 4 3 4 4 3 4 1 3 3 3 4 4 4
## [2959] 3 4 3 4 3 4 3 3 4 4 4 3 4 3 4 4 1 3 3 3 4 4 4 3 1 3 3 4 3 4 4 4 4 3
## [2993] 4 4 3 3 4 4 3 4
## 
## Within cluster sum of squares by cluster:
## [1] 1.219e+10 8.563e+09 9.959e+09 4.711e+09
##  (between_SS / total_SS =  71.6 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"
market2_cluster4 <- kmeans(market2, centers = 3)
market2_cluster4
## K-means clustering with 3 clusters of sizes 885, 7, 2108
## 
## Cluster means:
##     age Estimated_income recent_spends family_size Avg_visits_permonth
## 1 52.27            10599        3108.9       2.079               5.480
## 2 54.86            72436       17881.6       2.571               8.429
## 3 52.32             2678         768.3       1.575               5.553
## 
## Clustering vector:
##    [1] 3 1 3 3 3 3 3 1 3 3 3 3 3 3 1 1 1 3 3 1 3 1 3 3 3 1 3 3 1 3 3 1 3 3
##   [35] 3 3 3 3 3 1 3 3 3 3 1 3 1 3 1 3 3 1 1 1 3 3 1 3 3 3 1 1 3 1 3 3 1 1
##   [69] 3 1 3 3 3 1 3 3 1 3 3 3 3 1 3 1 3 1 1 3 3 3 1 3 3 3 3 1 3 3 1 3 3 3
##  [103] 3 3 3 1 3 3 3 3 1 1 3 3 3 3 1 1 1 3 3 1 1 3 3 1 3 3 3 1 3 1 3 3 3 3
##  [137] 3 1 3 3 3 1 1 3 3 3 3 3 1 1 3 1 3 3 1 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3
##  [171] 3 3 1 3 3 3 3 3 1 3 3 3 3 1 3 1 3 3 1 3 1 3 3 1 1 3 3 3 1 3 1 3 3 1
##  [205] 3 1 3 3 1 3 3 3 3 3 1 3 3 1 3 1 3 3 3 3 3 3 1 3 3 3 1 1 3 3 1 3 3 3
##  [239] 3 3 3 3 3 1 3 1 1 3 3 3 3 3 1 3 3 1 3 1 3 3 3 3 3 3 3 1 1 3 3 3 3 3
##  [273] 3 3 3 3 3 3 1 3 3 3 1 1 3 3 3 3 1 3 3 1 3 3 3 1 1 1 3 3 3 3 3 3 1 1
##  [307] 3 1 1 3 1 1 1 3 3 3 3 3 3 1 3 1 3 1 1 3 3 3 3 1 3 3 3 3 3 1 3 1 3 3
##  [341] 3 3 3 1 3 3 1 3 3 3 3 3 1 1 1 3 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 1
##  [375] 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 1 3 3 3 1 1 3 3 3 3 3 1
##  [409] 1 1 3 3 1 1 1 3 1 3 3 1 3 3 3 1 1 1 1 3 3 1 1 3 3 1 1 3 1 3 3 3 1 3
##  [443] 1 3 1 3 1 3 3 3 1 1 3 3 3 3 3 3 3 1 3 3 3 3 3 1 1 3 3 3 3 3 1 3 3 3
##  [477] 3 3 3 3 3 3 1 3 3 3 1 3 3 3 3 1 3 3 3 1 3 3 3 3 3 1 3 3 3 3 1 3 3 1
##  [511] 1 3 3 3 1 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 1 3 3 1 3 3 3 3 1 3 3 3 1
##  [545] 3 3 3 1 1 3 3 2 1 1 3 3 3 3 3 3 1 3 3 3 3 3 1 3 1 1 3 1 1 3 3 3 1 3
##  [579] 1 3 1 3 1 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 1 1 3 3 1 3 3 3 3 3 3 3 3 3
##  [613] 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1 3 1 3 3 1 3 3 3 3 1 3 1
##  [647] 3 1 1 1 3 3 1 3 3 1 3 3 3 1 1 3 3 3 3 3 1 3 1 1 3 1 1 3 3 1 3 1 3 3
##  [681] 3 3 1 3 1 1 3 3 1 1 3 3 3 3 1 3 3 3 1 1 3 3 1 3 3 3 3 3 1 1 3 1 3 3
##  [715] 1 1 1 3 3 1 1 1 3 3 3 3 3 1 3 3 3 3 3 3 3 3 1 3 1 1 1 3 3 3 3 3 3 3
##  [749] 3 3 3 1 3 1 1 3 3 3 3 1 3 1 3 3 3 3 1 3 3 3 1 3 3 1 3 3 1 3 3 3 3 3
##  [783] 1 3 1 1 1 1 1 1 3 3 1 3 3 3 3 1 3 3 1 1 1 3 1 3 3 3 1 3 3 1 1 3 1 1
##  [817] 3 1 3 3 3 1 3 3 3 3 1 3 3 3 1 1 3 1 3 1 3 3 3 3 3 1 3 3 3 3 3 3 1 3
##  [851] 3 3 3 3 3 3 3 3 3 1 1 3 3 1 3 3 3 1 3 3 3 3 3 1 3 1 3 3 1 3 3 3 3 3
##  [885] 3 1 1 3 3 1 3 3 1 1 3 3 3 3 3 3 3 1 3 3 3 3 1 3 3 3 1 3 3 3 1 3 1 3
##  [919] 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 1 1 1 3 1 1 3 3 3 3 3 1 1 3 1 3 3
##  [953] 1 1 3 1 1 3 3 3 3 3 1 3 3 3 1 3 3 3 3 3 3 3 3 1 1 3 1 1 3 3 1 1 3 3
##  [987] 1 3 3 3 1 3 3 1 3 1 3 3 3 3 3 3 1 1 3 3 3 1 3 3 1 3 1 3 3 1 3 3 3 3
## [1021] 3 3 1 3 3 1 3 3 1 3 3 3 3 3 3 1 3 3 1 3 1 1 3 3 3 3 3 3 3 1 3 1 1 1
## [1055] 3 3 3 3 3 3 1 1 3 1 3 1 3 3 3 3 3 3 3 3 3 3 1 3 3 1 3 3 1 3 1 3 1 3
## [1089] 1 3 1 3 1 3 3 1 3 1 1 3 3 3 3 3 1 3 3 3 3 3 1 1 1 3 3 3 3 3 3 3 1 1
## [1123] 3 3 1 3 3 3 3 1 3 3 1 1 3 3 1 3 3 3 1 3 3 3 1 3 3 1 1 3 3 3 1 3 3 1
## [1157] 3 3 3 1 3 3 3 3 1 3 1 3 3 1 3 1 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3
## [1191] 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 3 3 3 1 3 1 3 3 3 3 1 3 3 3 3 1
## [1225] 3 3 3 1 3 1 3 3 1 1 1 3 3 3 3 1 1 3 3 3 3 3 3 1 3 3 3 3 3 1 3 3 1 3
## [1259] 1 1 3 1 3 3 3 1 3 3 1 1 3 1 3 1 3 1 3 3 3 1 1 3 3 3 3 1 3 3 3 3 1 3
## [1293] 1 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3 1 3 3 3 3 3 1 3 1 1 3 3 3 3 3 1 1 1
## [1327] 3 1 1 3 3 3 1 1 1 3 1 1 3 3 3 1 1 3 3 3 1 3 1 3 3 3 3 1 1 3 3 1 3 3
## [1361] 3 3 3 3 3 3 3 3 1 1 3 3 1 3 3 3 1 1 1 1 3 1 3 3 3 3 3 3 3 3 3 1 3 3
## [1395] 1 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 3 1 3 3 3 1 3 1 3 3 3 3
## [1429] 1 3 3 1 1 3 1 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 3 3 1 1 1 3 3 1 1
## [1463] 1 1 3 1 3 3 3 1 3 3 1 3 1 3 1 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3
## [1497] 3 1 3 3 1 1 3 3 3 3 1 1 1 3 3 1 3 3 3 3 3 3 1 3 1 3 1 3 3 3 3 1 1 3
## [1531] 3 1 3 3 1 3 3 3 3 1 3 1 3 3 1 1 1 3 3 3 1 3 3 3 1 3 1 1 3 3 3 3 1 3
## [1565] 1 1 3 3 3 3 3 3 3 1 1 3 3 3 3 3 1 1 1 3 3 1 3 1 3 3 3 1 3 3 3 1 3 3
## [1599] 3 3 3 3 1 3 1 3 1 1 3 3 3 3 3 3 1 3 3 1 3 3 3 3 1 3 3 3 3 3 3 3 1 3
## [1633] 3 1 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1 3 3 3 3 1 3 3 1 3 3 3 3 1 3 1 3 3
## [1667] 3 3 3 3 3 1 1 3 1 3 1 3 1 3 1 3 3 3 3 3 1 3 3 3 3 1 3 3 1 3 3 3 3 3
## [1701] 3 1 1 3 3 3 3 3 1 3 1 3 1 1 3 3 3 1 3 3 3 3 3 3 3 3 1 1 3 3 1 3 3 3
## [1735] 3 3 3 3 1 1 1 3 3 3 1 3 1 3 3 1 1 1 3 1 3 1 3 1 1 3 1 3 3 1 3 3 3 1
## [1769] 3 1 3 3 3 3 3 3 1 3 3 1 1 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 1 3 3 1
## [1803] 3 3 3 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 1 3 3 3 3 3 3 3 3 3 1 3 1 3 3 1
## [1837] 3 1 1 3 1 3 1 3 1 3 3 1 3 1 3 3 3 3 3 1 3 1 3 1 1 3 3 3 3 1 1 1 3 3
## [1871] 3 1 3 3 3 3 3 3 1 3 3 1 1 3 3 1 1 3 3 3 3 3 3 3 1 1 1 3 3 3 1 1 3 3
## [1905] 1 3 3 1 3 3 3 3 3 1 1 1 3 3 1 3 3 3 1 3 1 3 3 1 3 3 1 3 1 1 3 3 1 3
## [1939] 3 3 3 1 3 3 3 3 3 3 3 3 3 2 3 3 3 1 1 3 3 1 3 3 3 3 3 3 1 3 3 1 3 3
## [1973] 3 1 3 3 1 3 3 3 1 3 1 1 1 3 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1
## [2007] 1 1 3 3 3 3 1 1 1 3 1 1 3 1 3 3 3 1 3 3 1 3 3 3 3 3 3 3 3 3 1 3 1 3
## [2041] 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3 1 1 3 1 3 3 3 3 3 3 3 3 1 3
## [2075] 1 3 1 3 1 1 3 3 3 1 3 3 1 3 3 1 3 3 1 1 3 3 3 3 3 3 3 3 3 3 3 1 3 1
## [2109] 3 3 1 3 3 1 3 3 3 3 1 3 1 3 3 3 1 3 1 3 1 3 3 3 3 1 3 3 3 3 1 3 1 3
## [2143] 3 3 3 1 3 3 3 3 3 2 3 3 3 3 3 3 3 1 1 1 3 3 3 1 1 1 1 3 3 1 3 3 3 1
## [2177] 1 3 3 3 1 1 3 1 3 1 3 1 3 1 3 1 3 3 1 3 3 3 3 3 3 3 3 3 1 3 3 1 3 3
## [2211] 1 3 3 3 1 3 1 3 3 3 1 1 3 1 3 3 3 1 1 3 1 3 3 3 3 3 3 3 1 3 3 3 1 1
## [2245] 3 3 1 3 3 3 1 3 1 3 1 3 3 3 3 3 1 3 3 3 1 1 3 3 3 3 3 3 3 1 3 3 3 1
## [2279] 3 1 3 3 1 3 3 3 3 3 3 1 3 3 1 1 3 3 3 3 3 1 3 3 1 3 3 3 1 3 1 3 3 3
## [2313] 3 1 3 3 3 3 3 3 3 3 1 3 3 1 3 1 1 3 3 3 3 3 1 1 3 3 3 3 3 3 3 1 1 3
## [2347] 3 3 3 3 3 3 3 1 3 3 2 3 3 3 3 3 3 3 3 1 1 3 3 1 1 3 3 1 3 1 3 3 3 1
## [2381] 1 1 3 3 3 3 3 1 3 3 3 3 1 3 1 3 3 3 1 3 1 3 1 1 3 3 1 3 3 3 3 3 3 3
## [2415] 3 3 3 1 1 3 1 3 3 3 3 3 3 3 3 1 3 3 1 3 1 2 3 3 3 1 3 3 3 1 3 3 1 3
## [2449] 1 3 3 3 3 3 3 3 3 1 1 3 3 1 3 1 3 3 3 1 3 3 1 1 3 3 3 1 3 1 3 3 3 3
## [2483] 3 3 3 3 3 3 1 3 3 1 1 3 3 1 3 3 1 1 3 1 1 3 3 1 1 1 3 3 1 3 1 1 1 3
## [2517] 2 3 3 1 1 1 3 3 1 3 3 1 3 3 3 1 1 3 1 3 3 1 1 3 3 3 3 1 1 1 3 1 1 3
## [2551] 3 3 3 3 3 3 1 3 1 3 3 3 1 3 3 1 1 3 1 3 3 2 3 3 3 1 3 3 1 1 3 3 1 3
## [2585] 1 1 3 1 3 3 3 3 1 3 1 1 3 3 3 3 3 1 1 1 3 1 1 3 3 1 3 3 1 3 3 1 1 1
## [2619] 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 1 3 3 1 3 3 3 1 3 3 3 3 3 3 1 3 1 3 1
## [2653] 3 3 3 1 1 1 3 3 1 3 3 3 3 3 1 3 3 3 3 1 1 3 1 3 3 3 3 1 1 3 1 3 3 3
## [2687] 3 1 3 3 3 3 3 3 3 3 1 3 3 3 1 3 3 1 3 3 3 3 1 3 3 3 1 1 3 1 1 3 1 3
## [2721] 1 3 3 3 3 1 1 3 3 3 3 3 1 3 1 3 3 1 1 3 3 1 3 3 3 3 3 3 1 3 3 1 3 3
## [2755] 3 1 3 3 3 3 3 3 3 3 3 3 1 1 1 3 3 3 3 3 1 3 3 1 3 3 1 1 3 3 3 3 3 1
## [2789] 1 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 1 3 3 3 3 3 1 3 1 1 3 1 3 3 3 1 3
## [2823] 3 3 1 3 1 3 3 1 3 3 1 3 3 1 3 3 1 3 3 3 1 3 3 3 1 3 3 3 3 3 3 1 3 3
## [2857] 3 1 3 3 3 1 1 1 1 3 3 3 3 3 1 3 1 3 3 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3
## [2891] 3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 1 3 1 3 1 1 3 3 3 3 1 3 3 3
## [2925] 3 3 3 3 3 3 3 3 3 1 3 1 3 3 3 3 3 3 3 1 3 3 3 3 3 1 3 1 3 3 1 3 3 3
## [2959] 1 3 3 3 3 3 1 1 3 3 3 1 3 1 3 3 1 3 1 3 3 3 3 3 1 1 1 3 1 3 3 3 3 1
## [2993] 3 3 1 1 3 3 3 3
## 
## Within cluster sum of squares by cluster:
## [1] 2.680e+10 8.563e+09 1.327e+10
##  (between_SS / total_SS =  61.0 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"
summary(market2)
##       age       Estimated_income recent_spends    family_size  
##  Min.   :21.0   Min.   :     0   Min.   :    0   Min.   :1.00  
##  1st Qu.:41.0   1st Qu.:  1500   1st Qu.:    0   1st Qu.:1.00  
##  Median :52.0   Median :  4200   Median :  437   Median :1.00  
##  Mean   :52.3   Mean   :  5177   Mean   : 1499   Mean   :1.73  
##  3rd Qu.:63.0   3rd Qu.:  7370   3rd Qu.: 2005   3rd Qu.:2.00  
##  Max.   :97.0   Max.   :142000   Max.   :38786   Max.   :8.00  
##  Avg_visits_permonth
##  Min.   : 1.00      
##  1st Qu.: 3.00      
##  Median : 6.00      
##  Mean   : 5.54      
##  3rd Qu.: 8.00      
##  Max.   :10.00

Since we are not able to arrive with proper cluster, we’ll do some changes in the data.

market3 <- market2 %>%
  filter(recent_spends != 0) #removing observations who didn't spend at all in the supermarket
market3
## Source: local data frame [2,215 x 5]
## 
##    age Estimated_income recent_spends family_size Avg_visits_permonth
## 1   30             3300     7.716e+02           1                   4
## 2   46            12454     1.289e+02           3                   3
## 3   38             3000     7.697e+01           3                   3
## 4   39             2500     2.500e+03           1                   1
## 5   24              750     7.500e+02           1                   5
## 6   68                1     3.689e-01           1                   3
## 7   38            13000     1.084e+04           3                   9
## 8   29             2231     2.213e+03           1                   6
## 9   46             3326     3.256e+01           3                   2
## 10  27              764     5.195e+00           1                   8
## .. ...              ...           ...         ...                 ...

We will also take the log transformation of variables ‘Estimated_income’ and ‘recent_spends’ and add the log transformated variables for cluster analysis instead of original variables.

market4 <- market3 %>%
  mutate(est_income = log(Estimated_income), rec_spends = log(recent_spends))

market5 <- market4 %>%
  select(age, family_size:rec_spends)
market5
## Source: local data frame [2,215 x 5]
## 
##    age family_size Avg_visits_permonth est_income rec_spends
## 1   30           1                   4      8.102     6.6484
## 2   46           3                   3      9.430     4.8592
## 3   38           3                   3      8.006     4.3434
## 4   39           1                   1      7.824     7.8240
## 5   24           1                   5      6.620     6.6201
## 6   68           1                   3      0.000    -0.9973
## 7   38           3                   9      9.473     9.2912
## 8   29           1                   6      7.710     7.7022
## 9   46           3                   2      8.110     3.4830
## 10  27           1                   8      6.639     1.6476
## .. ...         ...                 ...        ...        ...

Looking for the best cluster

market5_cluster1 <- kmeans(market5, 6)
market5_cluster1
## K-means clustering with 6 clusters of sizes 446, 498, 143, 258, 362, 508
## 
## Cluster means:
##     age family_size Avg_visits_permonth est_income rec_spends
## 1 59.72       1.621               5.527      8.654      6.488
## 2 41.66       2.412               5.542      8.477      6.918
## 3 80.10       1.182               5.867      8.423      5.284
## 4 69.07       1.256               5.333      8.506      6.024
## 5 31.05       1.688               5.528      8.148      6.760
## 6 51.16       2.059               5.443      8.667      6.835
## 
## Clustering vector:
##    [1] 5 2 2 2 5 4 2 5 2 5 5 6 5 4 1 2 1 6 2 2 5 1 3 1 1 1 3 1 6 1 2 4 1 5
##   [35] 6 6 1 4 2 2 2 5 1 2 6 2 2 2 3 1 6 5 6 5 5 1 4 4 1 6 4 4 6 5 5 6 5 2
##   [69] 1 6 5 2 6 4 1 6 6 6 1 1 3 2 6 1 5 4 1 1 6 5 3 1 6 6 2 2 2 6 5 4 5 5
##  [103] 2 3 2 5 1 4 4 6 2 6 5 2 5 1 1 2 2 5 4 3 6 1 1 3 6 6 6 2 1 5 3 6 1 2
##  [137] 6 6 5 1 1 2 4 4 5 6 6 1 5 1 6 3 2 6 1 6 5 2 3 4 6 2 1 1 5 6 6 1 4 6
##  [171] 5 6 2 3 5 5 4 4 1 5 4 3 6 6 1 3 2 1 5 1 2 6 5 5 6 2 2 5 5 5 2 5 2 3
##  [205] 4 6 6 5 6 6 1 1 6 2 2 1 2 5 5 2 2 2 6 5 2 2 5 1 3 6 6 1 4 1 6 5 5 4
##  [239] 2 4 5 6 6 1 6 5 6 2 3 5 1 6 3 6 2 1 1 3 1 2 4 4 6 1 4 1 5 4 2 1 6 1
##  [273] 2 6 3 6 2 4 5 1 6 1 5 5 2 5 5 5 2 2 2 1 6 3 1 2 4 6 6 1 5 2 1 5 2 6
##  [307] 5 3 1 1 1 2 1 2 6 2 2 2 1 6 5 6 6 6 2 2 5 4 2 6 6 2 5 5 6 6 2 2 4 4
##  [341] 5 2 2 3 5 4 3 6 2 1 5 1 2 1 5 3 2 2 4 2 6 1 4 6 6 1 2 5 2 5 1 1 4 6
##  [375] 6 1 2 2 6 2 5 2 2 3 1 5 4 6 6 1 2 6 5 5 4 1 6 2 1 1 5 1 1 3 5 2 1 6
##  [409] 1 1 2 6 2 3 2 5 5 5 6 2 4 6 6 5 4 5 6 1 6 4 2 5 6 5 1 6 6 6 4 5 5 6
##  [443] 1 3 1 2 2 1 1 5 1 5 6 1 1 6 3 2 2 1 5 6 6 6 1 6 5 6 6 6 6 5 4 1 2 6
##  [477] 1 6 4 6 1 1 2 5 6 1 5 2 6 6 5 1 4 4 3 6 6 4 1 1 3 5 6 1 4 5 3 6 4 3
##  [511] 6 4 6 4 2 6 5 2 3 1 2 6 6 1 6 6 5 5 5 6 2 6 6 3 6 6 6 1 4 2 4 6 2 6
##  [545] 2 6 1 2 2 2 2 1 4 1 3 2 2 4 1 2 5 6 5 5 3 2 3 5 6 2 2 1 1 6 1 2 5 6
##  [579] 6 4 5 2 4 1 1 5 2 2 2 4 6 1 4 1 2 6 5 5 3 1 6 4 2 2 1 1 6 2 3 1 2 1
##  [613] 3 2 2 2 5 5 2 6 2 1 2 2 5 1 5 2 2 5 6 4 6 5 1 2 6 1 5 2 4 2 1 2 1 4
##  [647] 1 1 5 1 4 6 4 6 3 5 6 2 5 6 3 6 4 6 5 6 2 2 1 5 1 3 4 6 5 2 1 1 5 1
##  [681] 2 6 4 1 6 2 4 6 4 3 6 6 6 4 1 1 1 6 5 5 6 5 6 3 6 5 6 5 1 6 6 6 1 1
##  [715] 2 1 6 1 6 2 2 5 2 6 5 1 3 6 6 4 2 2 1 3 6 2 6 1 5 6 1 1 3 4 3 5 1 5
##  [749] 6 2 4 2 3 5 5 6 5 1 1 6 5 2 5 4 6 4 5 2 5 6 3 5 4 6 5 1 5 5 3 5 3 5
##  [783] 1 4 4 2 6 4 1 6 5 6 2 6 1 2 2 4 2 6 5 6 3 5 4 5 2 1 6 1 2 5 5 1 6 6
##  [817] 6 6 1 2 1 1 1 5 1 6 3 6 1 4 6 6 4 2 6 6 5 3 2 5 1 4 2 5 5 6 5 1 2 1
##  [851] 3 6 4 4 1 1 5 6 1 1 2 5 6 3 4 5 6 5 4 2 4 1 4 6 6 4 2 5 1 5 6 4 5 6
##  [885] 5 5 6 2 4 6 6 6 2 5 6 5 2 6 6 5 4 6 3 2 4 2 6 1 6 1 3 6 1 2 4 6 5 5
##  [919] 6 1 2 6 6 1 3 6 6 3 6 4 1 6 2 1 5 2 2 2 5 2 5 1 1 1 1 2 5 3 3 5 6 5
##  [953] 2 1 2 4 4 1 1 5 2 1 4 6 6 2 6 1 2 4 2 6 2 3 6 1 4 1 4 6 2 2 4 4 6 5
##  [987] 4 5 2 4 1 2 3 2 6 6 1 1 2 6 2 2 6 1 2 1 2 5 2 6 6 4 3 2 6 4 5 5 5 2
## [1021] 5 6 1 4 6 4 1 4 6 2 4 5 6 6 2 4 2 6 3 6 2 6 5 2 5 2 6 4 1 5 4 1 5 5
## [1055] 2 6 2 6 6 4 6 2 5 3 1 1 2 1 3 1 1 5 6 1 2 2 4 2 4 6 2 6 1 1 1 1 2 5
## [1089] 2 6 4 6 2 2 6 4 4 2 2 6 1 2 6 1 4 2 1 6 4 3 4 1 1 6 5 1 5 4 2 3 4 4
## [1123] 3 3 1 2 2 1 1 2 2 6 6 4 2 1 4 6 2 6 5 5 1 3 3 6 6 6 2 3 4 1 2 6 1 6
## [1157] 5 2 2 1 2 2 6 6 4 2 2 6 6 6 2 1 6 2 2 3 3 2 2 4 1 4 1 5 4 1 2 5 6 4
## [1191] 5 4 6 4 2 5 2 1 6 5 2 2 1 2 2 6 4 5 5 6 1 5 2 1 1 2 4 5 6 5 2 5 6 5
## [1225] 4 2 6 2 2 4 6 6 2 5 2 5 1 1 1 6 5 1 2 6 5 2 5 1 5 3 1 1 1 2 6 2 1 5
## [1259] 5 6 5 6 1 1 6 6 1 1 1 5 6 6 5 5 6 6 4 6 6 2 4 1 1 5 6 1 1 3 4 1 2 1
## [1293] 1 4 1 2 2 2 6 6 1 1 6 5 2 6 2 2 4 5 6 2 3 6 2 5 2 1 3 6 6 2 5 5 1 1
## [1327] 1 5 2 4 4 1 4 2 1 5 1 5 5 2 2 6 5 3 2 2 4 6 6 5 1 2 6 2 5 1 6 1 3 2
## [1361] 1 1 2 4 6 4 2 6 1 3 4 2 6 6 2 6 2 5 6 5 2 6 1 1 4 2 2 6 2 3 4 2 2 2
## [1395] 2 5 6 6 4 4 6 2 4 6 2 4 1 6 6 1 6 3 6 2 5 1 6 6 2 2 5 2 1 1 2 2 2 6
## [1429] 1 6 4 6 4 6 5 6 6 5 6 5 4 2 1 5 5 4 4 1 2 1 6 4 6 6 1 5 1 2 6 6 2 2
## [1463] 2 6 2 1 6 5 1 6 5 5 2 1 6 2 5 4 3 5 1 6 2 6 1 6 6 3 4 4 4 6 2 3 5 5
## [1497] 6 6 4 6 2 2 6 3 5 4 2 1 3 1 1 2 3 6 2 2 5 1 6 2 1 1 5 4 2 5 1 6 2 5
## [1531] 2 1 6 2 2 3 4 2 1 5 1 2 5 2 1 6 1 6 3 2 3 6 3 5 5 2 1 1 5 4 2 5 5 2
## [1565] 2 5 1 2 2 3 2 5 1 5 1 1 4 4 6 6 2 4 1 4 5 5 6 6 1 6 6 1 6 6 2 1 1 2
## [1599] 5 1 6 4 5 2 2 1 5 1 1 5 6 1 1 1 3 5 2 1 2 2 6 2 2 4 4 6 4 4 1 4 6 1
## [1633] 1 6 2 3 1 2 2 6 2 6 5 6 5 4 1 2 3 6 2 2 2 5 1 2 3 2 5 6 1 6 5 6 4 5
## [1667] 4 6 6 6 1 5 2 6 1 1 2 1 3 2 5 3 6 1 3 2 1 3 1 1 3 1 2 6 5 6 1 1 5 1
## [1701] 2 5 1 1 1 5 2 6 6 2 3 4 4 6 4 2 5 1 2 2 6 6 2 5 1 5 6 6 4 2 2 6 1 1
## [1735] 6 2 3 1 4 2 4 6 1 5 2 2 4 6 1 3 1 5 1 2 2 6 1 1 6 2 5 4 2 2 1 2 1 2
## [1769] 1 1 4 1 2 1 6 5 1 2 6 2 4 5 4 6 6 6 3 5 1 4 5 3 5 5 1 2 2 3 4 4 2 3
## [1803] 6 2 3 1 1 6 1 2 4 6 6 1 2 1 2 5 6 2 2 6 1 4 3 1 1 1 5 6 4 5 3 6 2 6
## [1837] 2 2 6 3 6 2 4 2 6 6 2 2 6 5 3 2 1 1 6 5 3 2 6 4 1 6 4 2 6 5 1 1 1 4
## [1871] 5 2 5 1 4 5 5 6 6 1 6 5 4 1 6 1 5 5 4 4 6 1 2 5 4 5 3 1 4 1 5 6 1 1
## [1905] 6 6 4 2 2 6 4 6 2 3 4 6 6 1 2 5 4 2 6 2 2 6 2 2 6 3 6 6 3 2 1 2 1 2
## [1939] 1 1 4 2 4 3 2 6 6 2 6 5 2 5 6 5 4 6 1 2 2 1 5 1 1 4 5 6 6 1 5 6 2 1
## [1973] 1 6 5 1 5 1 2 4 6 5 6 4 3 2 2 4 3 6 2 6 4 3 2 2 2 1 4 5 3 2 1 6 2 2
## [2007] 6 6 3 1 1 6 2 2 2 2 2 2 2 6 1 1 5 4 1 6 5 6 1 3 1 2 2 2 2 4 4 2 2 4
## [2041] 1 4 5 2 6 5 5 4 1 2 5 5 2 5 2 6 4 3 1 6 5 4 4 3 2 5 2 6 6 2 2 2 1 1
## [2075] 1 6 1 5 5 4 3 2 2 1 4 1 4 2 1 2 2 4 5 2 6 2 5 2 5 1 1 1 6 4 6 5 3 1
## [2109] 1 2 6 6 2 5 4 1 6 1 6 6 2 1 1 1 2 1 5 2 5 6 4 6 2 3 2 5 4 6 6 2 4 2
## [2143] 1 3 3 2 2 1 5 6 1 6 2 2 2 4 5 4 5 5 4 5 2 2 1 3 1 1 4 2 5 6 6 5 6 4
## [2177] 4 2 6 2 2 6 6 6 2 6 6 5 6 1 5 1 1 5 1 1 4 3 6 2 6 4 6 6 6 6 2 1 2 5
## [2211] 1 4 5 5 6
## 
## Within cluster sum of squares by cluster:
## [1]  9150 11376  4639  5290  9705 10334
##  (between_SS / total_SS =  89.4 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"
market5_cluster2 <- kmeans(market5, 4)
market5_cluster2
## K-means clustering with 4 clusters of sizes 401, 765, 680, 369
## 
## Cluster means:
##     age family_size Avg_visits_permonth est_income rec_spends
## 1 31.63       1.748               5.586      8.169      6.745
## 2 57.47       1.722               5.584      8.678      6.642
## 3 44.18       2.359               5.422      8.518      6.875
## 4 73.70       1.225               5.439      8.472      5.710
## 
## Clustering vector:
##    [1] 1 3 3 3 1 4 3 1 3 1 1 3 1 4 2 1 2 3 3 3 1 2 4 2 2 2 4 2 2 2 1 4 2 1
##   [35] 3 2 2 4 3 3 1 1 2 3 3 3 3 3 4 2 2 1 3 1 1 2 4 4 2 3 4 4 3 1 1 3 1 3
##   [69] 2 2 1 3 3 4 2 3 2 2 2 2 4 3 2 2 1 4 2 2 3 1 4 2 2 2 3 3 3 2 1 4 1 1
##  [103] 3 4 3 1 2 4 4 2 3 3 1 3 1 2 2 3 3 1 4 4 2 2 2 4 2 3 2 3 2 1 4 2 2 1
##  [137] 2 2 1 2 2 3 4 2 1 3 2 2 1 2 3 4 3 2 2 3 1 3 4 4 3 3 2 2 1 3 2 2 4 3
##  [171] 1 2 3 4 1 1 4 4 2 1 4 4 2 3 2 4 3 2 1 2 3 2 1 1 2 1 3 1 1 1 3 1 3 4
##  [205] 2 3 2 1 2 3 2 2 3 3 3 2 3 1 1 1 3 3 3 1 3 3 1 2 4 2 3 2 4 2 2 1 1 4
##  [239] 3 4 1 3 2 2 2 1 2 3 4 1 2 3 4 3 3 2 2 4 2 3 4 4 2 2 4 2 1 4 3 2 2 2
##  [273] 3 2 4 2 3 4 1 2 2 2 1 1 3 1 1 1 3 3 3 2 3 4 2 3 4 2 3 2 1 3 2 1 3 2
##  [307] 1 4 2 2 2 3 2 3 3 3 3 3 2 3 1 2 2 2 3 3 1 2 3 3 2 3 1 1 2 2 1 3 4 4
##  [341] 1 3 3 4 1 2 4 3 3 2 1 2 3 2 1 4 3 1 4 3 3 2 4 2 2 2 3 1 3 1 2 2 4 3
##  [375] 2 2 1 3 3 3 1 3 3 4 2 1 4 2 2 2 3 3 1 1 4 2 2 3 2 2 1 2 2 4 1 3 2 2
##  [409] 2 2 3 3 3 4 3 1 1 1 3 3 4 3 3 1 4 1 3 2 2 4 3 1 2 1 2 2 2 3 2 1 1 2
##  [443] 2 4 2 3 3 2 2 1 2 1 2 2 2 2 4 3 3 2 1 3 2 2 2 3 1 2 2 2 2 1 4 2 3 2
##  [477] 2 2 4 2 2 2 3 1 2 2 1 3 2 3 1 2 4 4 4 3 3 2 2 2 4 1 2 2 4 1 4 3 4 4
##  [511] 3 4 3 4 3 2 1 3 4 2 3 3 2 2 3 2 1 1 1 3 3 2 3 4 2 2 2 2 4 3 4 2 3 3
##  [545] 3 2 2 3 3 3 3 2 4 2 4 3 3 4 2 3 1 3 1 1 4 3 4 1 3 3 3 2 2 2 2 3 1 3
##  [579] 2 4 1 3 4 2 2 1 3 3 1 2 3 2 4 2 3 3 1 1 4 2 3 4 3 3 2 2 3 3 4 2 1 2
##  [613] 4 3 3 3 1 1 3 2 3 2 3 3 1 2 1 1 3 1 3 4 2 1 2 3 2 2 1 3 4 3 2 3 2 4
##  [647] 2 2 1 2 4 3 4 2 4 1 3 3 1 2 4 2 4 2 1 2 3 3 2 1 2 4 4 2 1 3 2 2 1 2
##  [681] 3 3 4 2 3 3 4 3 4 4 2 2 2 4 2 2 2 3 1 1 3 1 3 4 2 1 2 1 2 3 2 2 2 2
##  [715] 3 2 3 2 2 3 3 1 3 3 1 2 4 3 3 4 3 3 2 4 2 1 2 2 1 2 2 2 4 4 4 1 2 1
##  [749] 2 3 4 3 4 1 1 3 1 2 2 3 1 3 1 4 2 2 1 3 1 3 4 1 4 3 1 2 1 1 4 1 4 1
##  [783] 2 4 4 3 2 4 2 2 1 2 3 2 2 1 3 2 3 2 1 3 4 1 4 1 3 2 3 2 3 1 1 2 3 3
##  [817] 2 3 2 3 2 2 2 1 2 3 4 3 2 4 2 2 4 3 3 2 1 4 3 1 2 4 1 1 1 2 1 2 3 2
##  [851] 4 3 4 2 2 2 1 3 2 2 3 1 2 4 4 1 2 1 4 3 4 2 2 2 2 4 3 1 2 1 2 2 1 3
##  [885] 1 1 2 3 4 3 3 2 3 1 3 1 3 2 2 1 4 2 4 3 4 3 3 2 2 2 4 2 2 3 4 3 1 1
##  [919] 2 2 3 3 2 2 4 2 2 4 2 4 2 3 3 2 1 3 3 3 1 3 1 2 2 2 2 1 1 4 4 1 3 1
##  [953] 3 2 3 4 4 2 2 1 3 2 4 2 2 3 3 2 3 4 3 2 3 4 3 2 2 2 4 3 3 3 2 4 2 1
##  [987] 4 1 3 4 2 3 4 1 3 2 2 2 3 2 3 3 2 2 3 2 1 1 3 2 3 4 4 3 3 4 1 1 1 3
## [1021] 1 3 2 4 2 4 2 4 3 3 4 1 2 2 3 2 3 3 4 2 3 3 1 3 1 1 2 4 2 1 4 2 1 1
## [1055] 3 2 3 2 2 4 2 3 1 4 2 2 3 2 4 2 2 1 2 2 3 3 4 3 2 3 3 2 2 2 2 2 3 1
## [1089] 3 3 2 2 3 3 3 4 2 3 3 2 2 3 2 2 4 3 2 2 2 4 4 2 2 3 1 2 1 4 3 4 2 4
## [1123] 4 4 2 3 3 2 2 3 3 2 3 4 3 2 4 2 3 3 1 1 2 4 4 2 2 2 3 4 4 2 3 2 2 3
## [1157] 1 3 3 2 3 3 3 3 4 3 3 3 2 2 3 2 3 3 3 4 4 3 3 4 2 4 2 1 4 2 1 1 2 4
## [1191] 1 4 2 4 3 1 1 2 3 1 3 3 2 3 3 2 4 1 1 3 2 1 3 2 2 3 4 1 2 1 3 1 3 1
## [1225] 4 3 2 3 3 4 2 3 3 1 3 1 2 2 2 3 1 2 3 2 1 3 1 2 1 4 2 2 2 3 2 3 2 1
## [1259] 1 3 1 2 2 2 2 2 2 2 2 1 3 3 1 1 2 3 4 2 2 3 4 2 2 1 2 2 2 4 4 2 3 2
## [1293] 2 4 2 3 3 3 3 3 2 2 3 1 3 3 3 1 4 1 2 3 4 3 3 1 3 2 4 2 3 1 1 1 2 2
## [1327] 2 1 3 4 4 2 4 3 2 1 2 1 1 3 3 2 1 4 3 3 2 2 2 1 2 3 2 3 1 2 3 2 4 3
## [1361] 2 2 3 4 2 4 3 3 2 4 4 3 2 2 3 2 3 1 3 1 3 2 2 2 4 3 3 3 3 4 4 3 1 3
## [1395] 3 1 3 3 4 4 2 3 4 2 3 4 2 3 3 2 2 4 2 3 1 2 2 2 3 3 1 3 2 2 3 3 3 3
## [1429] 2 2 4 2 4 2 1 3 2 1 2 1 4 3 2 1 1 4 4 2 3 2 2 4 2 3 2 1 2 3 2 2 3 1
## [1463] 3 3 3 2 3 1 2 2 1 1 3 2 2 3 1 4 4 1 2 2 3 3 2 2 2 4 4 4 4 3 3 4 1 1
## [1497] 2 2 4 3 3 3 2 4 1 4 3 2 4 2 2 1 4 3 1 3 1 2 3 1 2 2 1 2 3 1 2 3 3 1
## [1531] 3 2 3 3 3 4 4 3 2 1 2 3 1 3 2 3 2 3 4 3 4 2 4 1 1 3 2 2 1 4 3 1 1 3
## [1565] 3 1 2 3 3 4 3 1 2 1 2 2 4 4 2 2 3 4 2 2 1 1 3 2 2 3 3 2 3 2 3 2 2 3
## [1599] 1 2 3 2 1 3 3 2 1 2 2 1 2 2 2 2 4 1 3 2 3 3 2 3 3 4 4 2 4 4 2 4 2 2
## [1633] 2 3 3 4 2 1 3 2 3 3 1 3 1 4 2 3 4 2 3 3 3 1 2 3 4 3 1 2 2 2 1 2 4 1
## [1667] 4 2 3 2 2 1 3 3 2 2 3 2 4 3 1 4 2 2 4 3 2 4 2 2 4 2 3 3 1 2 2 2 1 2
## [1701] 3 1 2 2 2 1 3 2 2 3 4 4 4 2 4 3 1 2 3 3 3 2 3 1 2 1 2 2 4 3 3 3 2 2
## [1735] 2 3 4 2 2 3 4 2 2 1 3 1 4 3 2 4 2 1 2 3 3 2 2 2 2 1 1 2 3 3 2 3 2 3
## [1769] 2 2 4 2 3 2 3 1 2 3 2 3 4 1 4 2 2 2 4 1 2 4 1 4 1 1 2 3 3 4 4 4 3 4
## [1803] 2 3 4 2 2 2 2 3 4 3 3 2 3 2 3 1 2 3 3 3 2 4 4 2 2 2 1 2 4 1 4 2 3 3
## [1837] 3 3 3 4 2 3 4 3 2 3 3 3 3 1 4 3 2 2 3 1 4 3 3 4 2 2 4 3 2 1 2 2 2 4
## [1871] 1 3 1 2 4 1 1 2 3 2 3 1 4 2 2 2 1 1 4 4 3 2 3 1 4 1 4 2 4 2 1 3 2 2
## [1905] 3 3 4 3 1 2 4 3 3 4 2 2 3 2 1 1 4 1 2 3 3 2 3 3 3 4 2 3 4 3 2 3 2 3
## [1939] 2 2 4 3 4 4 3 3 2 3 3 1 3 1 2 1 4 3 2 3 3 2 1 2 2 2 1 2 2 2 1 3 3 2
## [1973] 2 2 1 2 1 2 3 4 3 1 3 4 4 3 3 4 4 2 3 3 2 4 3 3 3 2 4 1 4 3 2 3 3 3
## [2007] 3 3 4 2 2 3 3 3 1 3 3 3 3 2 2 2 1 4 2 2 1 2 2 4 2 3 3 3 3 4 4 3 3 4
## [2041] 2 4 1 3 2 1 1 4 2 3 1 1 1 1 3 2 4 4 2 2 1 4 2 4 3 1 3 3 2 3 3 3 2 2
## [2075] 2 2 2 1 1 2 4 3 3 2 2 2 4 3 2 3 3 4 1 3 2 3 1 3 1 2 2 2 3 4 2 1 4 2
## [2109] 2 1 3 2 3 1 4 2 2 2 3 2 3 2 2 2 3 2 1 3 1 2 4 2 1 4 3 1 4 3 2 3 4 1
## [2143] 2 4 4 3 3 2 1 2 2 3 3 3 3 4 1 4 1 1 4 1 3 3 2 4 2 2 4 3 1 2 2 1 3 4
## [2177] 4 3 3 3 3 2 3 2 3 3 3 1 3 2 1 2 2 1 2 2 4 4 3 3 3 4 3 2 2 3 3 2 3 1
## [2211] 2 4 1 1 3
## 
## Within cluster sum of squares by cluster:
## [1] 11671 23445 19572 18548
##  (between_SS / total_SS =  84.7 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"
market5_cluster3 <- kmeans(market5, 3)
market5_cluster3
## K-means clustering with 3 clusters of sizes 754, 490, 971
## 
## Cluster means:
##     age family_size Avg_visits_permonth est_income rec_spends
## 1 36.03       2.080               5.544      8.324      6.845
## 2 71.27       1.259               5.537      8.500      5.842
## 3 53.35       1.945               5.472      8.642      6.740
## 
## Clustering vector:
##    [1] 1 3 1 1 1 2 1 1 3 1 1 3 1 2 2 1 3 3 1 1 1 3 2 3 3 2 2 3 3 2 1 2 2 1
##   [35] 3 3 2 2 3 1 1 1 2 1 3 1 1 1 2 3 3 1 3 1 1 3 2 2 3 3 2 2 3 1 1 3 1 1
##   [69] 2 3 1 1 3 2 3 3 3 3 2 2 2 1 3 3 1 2 3 3 3 1 2 3 3 3 1 1 1 3 1 2 1 1
##  [103] 1 2 3 1 2 2 2 3 1 3 1 1 1 3 2 1 1 1 2 2 3 2 3 2 3 3 3 1 3 1 2 3 2 1
##  [137] 3 3 1 3 3 1 2 2 1 3 3 2 1 3 3 2 1 3 3 3 1 1 2 2 3 1 3 3 1 3 3 3 2 3
##  [171] 1 3 1 2 1 1 2 2 3 1 2 2 3 3 2 2 1 3 1 3 1 3 1 1 3 1 1 1 1 1 1 1 1 2
##  [205] 2 3 3 1 3 3 3 2 3 3 1 3 1 1 1 1 1 3 3 1 1 1 1 3 2 3 3 2 2 3 3 1 1 2
##  [239] 1 2 1 3 3 3 3 1 3 3 2 1 3 3 2 3 1 3 3 2 3 3 2 2 3 3 2 3 1 2 1 2 3 3
##  [273] 3 3 2 3 3 2 1 2 3 3 1 1 1 1 1 1 3 1 1 3 3 2 2 1 2 3 3 3 1 1 3 1 1 3
##  [307] 1 2 3 2 3 1 3 1 3 1 1 1 3 3 1 3 3 3 1 1 1 2 1 3 3 3 1 1 3 3 1 1 2 2
##  [341] 1 1 1 2 1 2 2 3 1 3 1 3 1 2 1 2 1 1 2 1 3 3 2 3 3 3 3 1 1 1 3 3 2 3
##  [375] 3 3 1 1 3 1 1 1 1 2 3 1 2 3 3 3 1 3 1 1 2 3 3 1 2 3 1 3 3 2 1 1 3 3
##  [409] 3 3 1 3 1 2 1 1 1 1 3 1 2 3 3 1 2 1 3 2 3 2 3 1 3 1 3 3 3 3 2 1 1 3
##  [443] 2 2 2 1 1 3 2 1 3 1 3 3 3 3 2 1 1 3 1 3 3 3 2 3 1 3 3 3 3 1 2 3 3 3
##  [477] 3 3 2 3 3 3 1 1 3 3 1 1 3 3 1 3 2 2 2 3 3 2 2 2 2 1 3 3 2 1 2 3 2 2
##  [511] 3 2 3 2 3 3 1 1 2 3 1 3 3 3 3 3 1 1 1 3 3 3 3 2 3 3 3 3 2 1 2 3 1 3
##  [545] 3 3 3 1 1 3 1 3 2 2 2 1 1 2 3 1 1 3 1 1 2 3 2 1 3 1 3 3 3 3 3 1 1 3
##  [579] 3 2 1 1 2 3 3 1 1 1 1 2 3 3 2 3 1 3 1 1 2 2 3 2 1 3 3 3 3 1 2 3 1 3
##  [613] 2 1 1 1 1 1 1 3 1 3 1 1 1 3 1 1 1 1 3 2 3 1 2 1 3 3 1 1 2 1 3 1 2 2
##  [647] 3 3 1 3 2 3 2 3 2 1 3 3 1 3 2 3 2 3 1 3 3 3 3 1 3 2 2 3 1 1 3 3 1 3
##  [681] 3 3 2 3 3 1 2 3 2 2 3 3 3 2 2 2 3 3 1 1 3 1 3 2 3 1 3 1 3 3 3 3 3 3
##  [715] 3 3 3 3 3 1 3 1 1 3 1 3 2 3 3 2 1 1 3 2 3 1 3 3 1 3 3 2 2 2 2 1 3 1
##  [749] 3 1 2 1 2 1 1 3 1 2 3 3 1 1 1 2 3 2 1 1 1 3 2 1 2 3 1 3 1 1 2 1 2 1
##  [783] 3 2 2 3 3 2 3 3 1 3 1 3 3 1 1 2 3 3 1 3 2 1 2 1 1 2 3 3 1 1 1 3 3 3
##  [817] 3 3 2 1 3 3 3 1 3 3 2 3 3 2 3 3 2 3 3 3 1 2 1 1 3 2 1 1 1 3 1 3 3 3
##  [851] 2 3 2 2 3 3 1 3 3 2 3 1 3 2 2 1 3 1 2 1 2 3 2 3 3 2 1 1 3 1 3 2 1 3
##  [885] 1 1 3 3 2 3 3 3 1 1 3 1 1 3 3 1 2 3 2 1 2 1 3 3 3 3 2 3 3 1 2 3 1 1
##  [919] 3 3 3 3 3 3 2 3 3 2 3 2 3 3 3 3 1 1 3 1 1 1 1 3 3 3 2 1 1 2 2 1 3 1
##  [953] 1 3 1 2 2 3 3 1 1 3 2 3 3 3 3 3 3 2 3 3 1 2 3 3 2 3 2 3 3 1 2 2 3 1
##  [987] 2 1 1 2 3 1 2 1 3 3 3 3 1 3 1 1 3 3 1 2 1 1 1 3 3 2 2 3 3 2 1 1 1 1
## [1021] 1 3 3 2 3 2 2 2 3 1 2 1 3 3 1 2 1 3 2 3 1 3 1 3 1 1 3 2 3 1 2 3 1 1
## [1055] 1 3 1 3 3 2 3 1 1 2 3 3 1 3 2 3 3 1 3 3 1 1 2 1 2 3 3 3 2 3 2 3 3 1
## [1089] 1 3 2 3 3 1 3 2 2 1 1 3 3 1 3 3 2 1 3 3 2 2 2 3 3 3 1 3 1 2 1 2 2 2
## [1123] 2 2 3 3 3 3 3 1 3 3 3 2 1 3 2 3 1 3 1 1 3 2 2 3 3 3 1 2 2 3 1 3 3 3
## [1157] 1 1 1 3 1 1 3 3 2 1 1 3 3 3 1 3 3 3 3 2 2 1 1 2 3 2 3 1 2 3 1 1 3 2
## [1191] 1 2 3 2 1 1 1 3 3 1 3 1 3 1 1 3 2 1 1 3 2 1 3 2 3 3 2 1 3 1 1 1 3 1
## [1225] 2 1 3 3 1 2 3 3 1 1 1 1 3 3 3 3 1 3 3 3 1 1 1 2 1 2 2 3 3 1 3 3 3 1
## [1259] 1 3 1 3 3 2 3 3 3 2 3 1 3 3 1 1 3 3 2 3 3 3 2 3 3 1 3 2 3 2 2 3 1 3
## [1293] 3 2 3 3 1 1 3 3 3 3 3 1 1 3 1 1 2 1 3 1 2 3 3 1 3 2 2 3 3 1 1 1 3 3
## [1327] 3 1 3 2 2 3 2 1 2 1 3 1 1 3 1 3 1 2 3 1 2 3 3 1 2 1 3 3 1 2 3 3 2 1
## [1361] 2 3 1 2 3 2 3 3 3 2 2 3 3 3 1 3 3 1 3 1 1 3 3 3 2 1 1 3 3 2 2 1 1 1
## [1395] 1 1 3 3 2 2 3 1 2 3 3 2 3 3 3 3 3 2 3 3 1 2 3 3 1 1 1 3 2 3 1 1 3 3
## [1429] 3 3 2 3 2 3 1 3 3 1 3 1 2 1 2 1 1 2 2 3 3 3 3 2 3 3 3 1 2 1 3 3 3 1
## [1463] 1 3 1 3 3 1 3 3 1 1 1 2 3 1 1 2 2 1 3 3 3 3 2 3 3 2 2 2 2 3 1 2 1 1
## [1497] 3 3 2 3 1 1 3 2 1 2 1 2 2 3 3 1 2 3 1 1 1 3 3 1 3 2 1 2 1 1 3 3 1 1
## [1531] 1 3 3 1 1 2 2 1 3 1 2 1 1 3 3 3 3 3 2 1 2 3 2 1 1 1 3 2 1 2 3 1 1 1
## [1565] 1 1 3 1 1 2 1 1 3 1 2 3 2 2 3 3 1 2 3 2 1 1 3 3 2 3 3 3 3 3 1 3 3 1
## [1599] 1 3 3 2 1 1 1 3 1 3 3 1 3 2 3 3 2 1 1 2 1 1 3 1 1 2 2 3 2 2 3 2 3 3
## [1633] 3 3 1 2 3 1 1 3 1 3 1 3 1 2 3 1 2 3 1 1 1 1 3 1 2 1 1 3 3 3 1 3 2 1
## [1667] 2 3 3 3 3 1 3 3 3 3 1 3 2 1 1 2 3 3 2 1 3 2 3 3 2 3 1 3 1 3 3 3 1 2
## [1701] 1 1 3 3 3 1 3 3 3 1 2 2 2 3 2 1 1 3 1 1 3 3 1 1 2 1 3 3 2 1 1 3 3 2
## [1735] 3 1 2 3 2 1 2 3 2 1 1 1 2 3 3 2 3 1 3 1 1 3 3 2 3 1 1 2 1 1 3 1 3 1
## [1769] 3 3 2 3 3 3 3 1 3 1 3 1 2 1 2 3 3 3 2 1 2 2 1 2 1 1 3 1 1 2 2 2 1 2
## [1803] 3 3 2 3 3 3 3 1 2 3 3 3 3 2 1 1 3 1 1 3 3 2 2 3 3 3 1 3 2 1 2 3 1 3
## [1837] 1 1 3 2 3 1 2 3 3 3 1 1 3 1 2 1 3 3 3 1 2 1 3 2 3 3 2 1 3 1 2 3 3 2
## [1871] 1 1 1 3 2 1 1 3 3 3 3 1 2 3 3 2 1 1 2 2 3 3 1 1 2 1 2 2 2 2 1 3 3 3
## [1905] 3 3 2 1 1 3 2 3 1 2 2 3 3 3 1 1 2 1 3 1 3 3 3 1 3 2 3 3 2 1 3 1 3 1
## [1939] 3 3 2 1 2 2 1 3 3 3 3 1 1 1 3 1 2 3 3 3 1 3 1 3 3 2 1 3 3 3 1 3 3 3
## [1973] 3 3 1 3 1 3 1 2 3 1 3 2 2 1 1 2 2 3 1 3 2 2 1 1 1 3 2 1 2 3 3 3 1 3
## [2007] 3 3 2 3 3 3 1 1 1 1 3 3 1 3 3 3 1 2 3 3 1 3 3 2 3 1 3 1 1 2 2 1 3 2
## [2041] 2 2 1 3 3 1 1 2 3 1 1 1 1 1 1 3 2 2 3 3 1 2 2 2 1 1 1 3 3 1 1 3 3 3
## [2075] 3 3 3 1 1 2 2 1 1 2 2 3 2 3 3 3 3 2 1 1 3 1 1 1 1 3 3 3 3 2 3 1 2 3
## [2109] 3 1 3 3 3 1 2 3 3 2 3 3 1 3 3 3 1 2 1 1 1 3 2 3 1 2 1 1 2 3 3 1 2 1
## [2143] 3 2 2 1 1 3 1 3 3 3 1 1 3 2 1 2 1 1 2 1 3 3 3 2 2 3 2 1 1 3 3 1 3 2
## [2177] 2 1 3 1 3 3 3 3 1 3 3 1 3 3 1 3 3 1 3 2 2 2 3 3 3 2 3 3 3 3 1 3 1 1
## [2211] 3 2 1 1 3
## 
## Within cluster sum of squares by cluster:
## [1] 34646 29244 38014
##  (between_SS / total_SS =  78.7 %)
## 
## Available components:
## 
## [1] "cluster"      "centers"      "totss"        "withinss"    
## [5] "tot.withinss" "betweenss"    "size"         "iter"        
## [9] "ifault"

We do the plotting as well

library("cluster")
library("fpc")

We will take as 3 clusters and do the plot

clusplot(market5, market5_cluster3$cluster, color = TRUE, shade = TRUE, labels = 2, lines = 0)

plot of chunk unnamed-chunk-12

plotcluster(market5, market5_cluster3$cluster)

plot of chunk unnamed-chunk-12

We add the cluster variable to our table.

supermarket_cluster <- data.frame(market5, market5_cluster3$cluster)
supermarket_cluster <- tbl_df(supermarket_cluster)
supermarket_cluster
## Source: local data frame [2,215 x 6]
## 
##    age family_size Avg_visits_permonth est_income rec_spends
## 1   30           1                   4      8.102     6.6484
## 2   46           3                   3      9.430     4.8592
## 3   38           3                   3      8.006     4.3434
## 4   39           1                   1      7.824     7.8240
## 5   24           1                   5      6.620     6.6201
## 6   68           1                   3      0.000    -0.9973
## 7   38           3                   9      9.473     9.2912
## 8   29           1                   6      7.710     7.7022
## 9   46           3                   2      8.110     3.4830
## 10  27           1                   8      6.639     1.6476
## .. ...         ...                 ...        ...        ...
## Variables not shown: market5_cluster3.cluster (int)

We check the mean values of all variables groupwise.

market5_cluster3$centers
##     age family_size Avg_visits_permonth est_income rec_spends
## 1 36.03       2.080               5.544      8.324      6.845
## 2 71.27       1.259               5.537      8.500      5.842
## 3 53.35       1.945               5.472      8.642      6.740