VOR <- veg.s.stack %>%
filter(substr(response, 1,1) == "V")
VORndist <- tibble(
response = "VOR",
dist = "normal",
X = seq(0, 10, 0.025),
value = dnorm(X, mean = MASS::fitdistr(VOR$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(VOR$value, "normal")$estimate [[2]]))
VORgdist <- tibble(
response = "VOR",
dist = "gamma",
X = seq(0, 10, 0.025),
value = dgamma(X, shape = MASS::fitdistr(VOR$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(VOR$value, "Gamma")$estimate [[2]]))
VORdist <- rbind(VORndist, VORgdist)
VORdist.gg <-
VOR %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=VORdist,
aes(x = X, y = value, color = dist))
VORdist.gg
#vor is gamma dist
Litter <- veg.s.stack %>%
filter(substr(response, 1,1) == "C")
litndist <- tibble(
response = "Litter",
dist = "normal",
X = seq(0, 40, 0.1),
value = dnorm(X, mean = MASS::fitdistr(Litter$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(Litter$value, "normal")$estimate [[2]]))
litgdist <- tibble(
response = "Litter",
dist = "gamma",
X = seq(0, 40, 0.1),
value = dgamma(X, shape = MASS::fitdistr(Litter$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(Litter$value, "Gamma")$estimate [[2]]))
litdist <-rbind(litndist, litgdist)
Litdist.gg <-
Litter %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=litdist,
aes(x = X, y = value, color = dist))
Litdist.gg
#litter is gamma dist
write.csv(veg.c.stack, file="./veg.c.stack.csv", row.names = FALSE)
veg.c.stack <- read.csv("./veg.c.stack.csv")
POPR <- veg.c.stack %>%
filter(substr(response, 1,1) == "K")
POPRndist <- tibble(
response = "Kentucky bluegrass",
dist = "normal",
X = seq(0, 70, 0.1),
value = dnorm(X, mean = MASS::fitdistr(POPR$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(POPR$value, "normal")$estimate [[2]]))
POPRgdist <- tibble(
response = "Kentucky bluegrass",
dist = "gamma",
X = seq(0, 70, 0.1),
value = dgamma(X, shape = MASS::fitdistr(POPR$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(POPR$value, "Gamma")$estimate [[2]]))
POPRdist <-rbind(POPRndist, POPRgdist)
POPRdist.gg <-
POPR %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=POPRdist,
aes(x = X, y = value, color = dist))
POPRdist.gg
#popr is normal
BRIN <- veg.c.stack %>%
filter(substr(response, 1,2) == "sm")
BRIN$value <- BRIN$value + 0.3
BRINndist <- tibble(
response = "smooth brome",
dist = "normal",
X = seq(0, 70, 0.1),
value = dnorm(X, mean = MASS::fitdistr(BRIN$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(BRIN$value, "normal")$estimate [[2]]))
BRINgdist <- tibble(
response = "smooth brome",
dist = "gamma",
X = seq(0, 70, 0.1),
value = dgamma(X, shape = MASS::fitdistr(BRIN$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(BRIN$value, "Gamma")$estimate [[2]]))
BRINdist <-rbind(BRINndist, BRINgdist)
BRINdist.gg <-
BRIN %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=BRINdist,
aes(x = X, y = value, color = dist))
BRINdist.gg
#BRIN is gamma
NatC3 <- veg.c.stack %>%
filter(response == "native C3")
NatC3$value <- NatC3$value + 0.7
NatC3ndist <- tibble(
response = "native C3",
dist = "normal",
X = seq(0, 70, 0.1),
value = dnorm(X, mean = MASS::fitdistr(NatC3$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(NatC3$value, "normal")$estimate [[2]]))
NatC3gdist <- tibble(
response = "native C3",
dist = "gamma",
X = seq(0, 70, 0.1),
value = dgamma(X, shape = MASS::fitdistr(NatC3$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(NatC3$value, "Gamma")$estimate [[2]]))
NatC3dist <-rbind(NatC3ndist, NatC3gdist)
NatC3dist.gg <-
NatC3 %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=NatC3dist,
aes(x = X, y = value, color = dist))
NatC3dist.gg
# natC3 is gamma
NatC4 <- veg.c.stack %>%
filter(response == "native C4")
NatC4$value <- NatC4$value + 0.7
NatC4ndist <- tibble(
response = "native C4",
dist = "normal",
X = seq(0,28, 0.1),
value = dnorm(X, mean = MASS::fitdistr(NatC4$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(NatC4$value, "normal")$estimate [[2]]))
NatC4gdist <- tibble(
response = "native C4",
dist = "gamma",
X = seq(0, 28, 0.1),
value = dgamma(X, shape = MASS::fitdistr(NatC4$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(NatC4$value, "Gamma")$estimate [[2]]))
NatC4dist <-rbind(NatC4ndist, NatC4gdist)
NatC4dist.gg <-
NatC4 %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=NatC4dist,
aes(x = X, y = value, color = dist))
NatC4dist.gg
#natC4 is gamma
NatLeg <- veg.c.stack %>%
filter(response == "native legume")
NatLeg$value <- NatLeg$value + 0.5
NatLegndist <- tibble(
response = "native legume",
dist = "normal",
X = seq(0,28, 0.1),
value = dnorm(X, mean = MASS::fitdistr(NatLeg$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(NatLeg$value, "normal")$estimate [[2]]))
NatLeggdist <- tibble(
response = "native legume",
dist = "gamma",
X = seq(0, 28, 0.1),
value = dgamma(X, shape = MASS::fitdistr(NatLeg$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(NatLeg$value, "Gamma")$estimate [[2]]))
NatLegdist <-rbind(NatLegndist, NatLeggdist)
NatLegdist.gg <-
NatLeg %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=NatLegdist,
aes(x = X, y = value, color = dist))
NatLegdist.gg
#natleg is gamma
IntLeg <- veg.c.stack %>%
filter(response == "introduced legume")
IntLeg$value <- IntLeg$value + 0.5
IntLegndist <- tibble(
response = "introduced legume",
dist = "normal",
X = seq(0,28, 0.1),
value = dnorm(X, mean = MASS::fitdistr(IntLeg$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(IntLeg$value, "normal")$estimate [[2]]))
IntLeggdist <- tibble(
response = "introduced legume",
dist = "gamma",
X = seq(0, 28, 0.1),
value = dgamma(X, shape = MASS::fitdistr(IntLeg$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(IntLeg$value, "Gamma")$estimate [[2]]))
IntLegdist <-rbind(IntLegndist, IntLeggdist)
IntLegdist.gg <-
IntLeg %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=IntLegdist,
aes(x = X, y = value, color = dist))
IntLegdist.gg
#intleg is gamma
NatFrb <- veg.c.stack %>%
filter(response == "native forb")
NatFrb$value <- NatFrb$value + 0.5
NatFrbndist <- tibble(
response = "native forb",
dist = "normal",
X = seq(0,50, 0.1),
value = dnorm(X, mean = MASS::fitdistr(NatFrb$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(NatFrb$value, "normal")$estimate [[2]]))
NatFrbgdist <- tibble(
response = "native forb",
dist = "gamma",
X = seq(0, 50, 0.1),
value = dgamma(X, shape = MASS::fitdistr(NatFrb$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(NatFrb$value, "Gamma")$estimate [[2]]))
NatFrbdist <-rbind(NatFrbndist, NatFrbgdist)
NatFrbdist.gg <-
NatFrb %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=NatFrbdist,
aes(x = X, y = value, color = dist))
NatFrbdist.gg
#natfrb is normal
IntFrb <- veg.c.stack %>%
filter(response == "introduced forb")
IntFrb$value <- IntFrb$value + 0.5
IntFrbndist <- tibble(
response = "introduced forb",
dist = "normal",
X = seq(0,20, 0.1),
value = dnorm(X, mean = MASS::fitdistr(IntFrb$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(IntFrb$value, "normal")$estimate [[2]]))
IntFrbgdist <- tibble(
response = "introduced forb",
dist = "gamma",
X = seq(0, 20, 0.1),
value = dgamma(X, shape = MASS::fitdistr(IntFrb$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(IntFrb$value, "Gamma")$estimate [[2]]))
IntFrbdist <-rbind(IntFrbndist, IntFrbgdist)
IntFrbdist.gg <-
IntFrb %>%
ggplot(aes(x=value+0.5)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=IntFrbdist,
aes(x = X, y = value, color = dist))
IntFrbdist.gg
NatWdy <- veg.c.stack %>%
filter(response == "native woody")
NatWdy$value <- NatWdy$value + 0.5
NatWdyndist <- tibble(
response = "native woody",
dist = "normal",
X = seq(0,30, 0.1),
value = dnorm(X, mean = MASS::fitdistr(NatWdy$value, "normal")$estimate [[1]],
sd = MASS::fitdistr(NatWdy$value, "normal")$estimate [[2]]))
NatWdygdist <- tibble(
response = "native woody",
dist = "gamma",
X = seq(0, 30, 0.1),
value = dgamma(X, shape = MASS::fitdistr(NatWdy$value, "Gamma")$estimate [[1]],
rate = MASS::fitdistr(NatWdy$value, "Gamma")$estimate [[2]]))
NatWdydist <-rbind(NatWdyndist, NatWdygdist)
NatWdydist.gg <-
NatWdy %>%
ggplot(aes(x=value)) + theme_bw() +
geom_histogram(aes(y=..density..),
binwidth=1.5,
colour="black", fill="lightgreen") +
geom_density(alpha=.2, fill="#FF6666")+
geom_line(data=NatWdydist,
aes(x = X, y = value, color = dist))
NatWdydist.gg
#natwdy is normal