setwd("~/Dropbox/Research/Johannes/")
p<-read.csv ("Surviving automation pilot .csv", header=T, sep=",")

p$exp<-(p$e1+p$e2+p$e3+p$e4)/4
p$ag<-(p$a1+p$a2+p$a3+p$a4)/4

p$inst<-(p$instr1 + p$instr2 + p$instr3)/3

p$lonely<-(p$Q22)
p$like_being_w_people<-p$Q41

p$tech_affinity<-(p$Q38+ p$Q40)/2

p$cond[p$human==1]<-"human"
p$cond[p$robo==1]<-"robot"
p$cond[p$ss==1]<-"self serve"

table(p$cond)
## 
##      human      robot self serve 
##         68         60         54
summary(lm(exp~ cond, p))
## 
## Call:
## lm(formula = exp ~ cond, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.90278 -0.44485  0.05515  0.48333  0.84722 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.19485    0.07877  53.257  < 2e-16 ***
## condrobot       0.32181    0.11505   2.797  0.00572 ** 
## condself serve -0.04208    0.11839  -0.355  0.72272    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6495 on 179 degrees of freedom
## Multiple R-squared:  0.05876,    Adjusted R-squared:  0.04825 
## F-statistic: 5.588 on 2 and 179 DF,  p-value: 0.004426
summary(lm(ag ~ cond, p))
## 
## Call:
## lm(formula = ag ~ cond, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.98897 -0.48897  0.01103  0.56526  1.08333 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.98897    0.08538  46.718   <2e-16 ***
## condrobot       0.25686    0.12471   2.060   0.0409 *  
## condself serve -0.07230    0.12834  -0.563   0.5739    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7041 on 179 degrees of freedom
## Multiple R-squared:  0.03808,    Adjusted R-squared:  0.02734 
## F-statistic: 3.543 on 2 and 179 DF,  p-value: 0.03096
summary(lm(inst ~ cond, p))
## 
## Call:
## lm(formula = inst ~ cond, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.68137 -0.51852  0.03333  0.48148  1.65196 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.34804    0.08479  39.486   <2e-16 ***
## condrobot       0.28529    0.12385   2.304   0.0224 *  
## condself serve  0.17048    0.12745   1.338   0.1827    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6992 on 179 degrees of freedom
## Multiple R-squared:  0.02935,    Adjusted R-squared:  0.0185 
## F-statistic: 2.706 on 2 and 179 DF,  p-value: 0.06955
summary(lm(donate ~ cond, p))
## 
## Call:
## lm(formula = donate ~ cond, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.07407 -0.89706 -0.07407  0.10294  3.10294 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    11.89706    0.12717  93.556   <2e-16 ***
## condrobot       0.05294    0.18574   0.285    0.776    
## condself serve  0.17702    0.19114   0.926    0.356    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.049 on 179 degrees of freedom
## Multiple R-squared:  0.004899,   Adjusted R-squared:  -0.006219 
## F-statistic: 0.4406 on 2 and 179 DF,  p-value: 0.6443
nohuman<-subset(p, cond!="human")


summary(lm(exp~cond, nohuman))
## 
## Call:
## lm(formula = exp ~ cond, data = nohuman)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.90278 -0.40278  0.09722  0.48333  0.84722 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.51667    0.08049  56.115  < 2e-16 ***
## condself serve -0.36389    0.11695  -3.112  0.00236 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6235 on 112 degrees of freedom
## Multiple R-squared:  0.07957,    Adjusted R-squared:  0.07135 
## F-statistic: 9.682 on 1 and 112 DF,  p-value: 0.002362
summary(lm(ag~cond, nohuman))
## 
## Call:
## lm(formula = ag ~ cond, data = nohuman)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.91667 -0.47604  0.08333  0.58333  1.08333 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.24583    0.09315  45.580   <2e-16 ***
## condself serve -0.32917    0.13535  -2.432   0.0166 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7216 on 112 degrees of freedom
## Multiple R-squared:  0.05016,    Adjusted R-squared:  0.04168 
## F-statistic: 5.915 on 1 and 112 DF,  p-value: 0.0166
summary(lm(inst~cond, nohuman))
## 
## Call:
## lm(formula = inst ~ cond, data = nohuman)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.63333 -0.51852  0.03333  0.48148  1.48148 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     3.63333    0.08652  41.994   <2e-16 ***
## condself serve -0.11481    0.12571  -0.913    0.363    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6702 on 112 degrees of freedom
## Multiple R-squared:  0.007393,   Adjusted R-squared:  -0.00147 
## F-statistic: 0.8342 on 1 and 112 DF,  p-value: 0.363
summary(lm(donate ~ cond, nohuman))
## 
## Call:
## lm(formula = donate ~ cond, data = nohuman)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.07407 -0.95000 -0.07407  0.05000  3.05000 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     11.9500     0.1350  88.489   <2e-16 ***
## condself serve   0.1241     0.1962   0.632    0.528    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.046 on 112 degrees of freedom
## Multiple R-squared:  0.003557,   Adjusted R-squared:  -0.005339 
## F-statistic: 0.3998 on 1 and 112 DF,  p-value: 0.5285
norobo<-subset(p, cond!="robot")

summary(lm(exp~cond, norobo))
## 
## Call:
## lm(formula = exp ~ cond, data = norobo)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.90278 -0.44485  0.05515  0.59722  0.84722 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     4.19485    0.08314  50.454   <2e-16 ***
## condself serve -0.04208    0.12497  -0.337    0.737    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6856 on 120 degrees of freedom
## Multiple R-squared:  0.0009437,  Adjusted R-squared:  -0.007382 
## F-statistic: 0.1134 on 1 and 120 DF,  p-value: 0.7369
summary(lm(ag~cond, norobo))
## 
## Call:
## lm(formula = ag ~ cond, data = norobo)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.98897 -0.47089  0.01103  0.51103  1.08333 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.9890     0.0872  45.743   <2e-16 ***
## condself serve  -0.0723     0.1311  -0.552    0.582    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7191 on 120 degrees of freedom
## Multiple R-squared:  0.002529,   Adjusted R-squared:  -0.005783 
## F-statistic: 0.3043 on 1 and 120 DF,  p-value: 0.5822
summary(lm(inst~cond, norobo))
## 
## Call:
## lm(formula = inst ~ cond, data = norobo)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.68137 -0.51852  0.06672  0.48148  1.65196 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)      3.3480     0.0864  38.751   <2e-16 ***
## condself serve   0.1705     0.1299   1.313    0.192    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7125 on 120 degrees of freedom
## Multiple R-squared:  0.01416,    Adjusted R-squared:  0.005942 
## F-statistic: 1.723 on 1 and 120 DF,  p-value: 0.1918
summary(lm(donate ~ cond, norobo))
## 
## Call:
## lm(formula = donate ~ cond, data = norobo)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.07407 -0.89706 -0.07407  0.10294  3.10294 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     11.8971     0.1319  90.192   <2e-16 ***
## condself serve   0.1770     0.1983   0.893    0.374    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.088 on 120 degrees of freedom
## Multiple R-squared:  0.006599,   Adjusted R-squared:  -0.00168 
## F-statistic: 0.7971 on 1 and 120 DF,  p-value: 0.3738
#moderators

summary(lm(exp ~ cond * tech_affinity, p))
## 
## Call:
## lm(formula = exp ~ cond * tech_affinity, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8444 -0.4328  0.0593  0.5485  0.9056 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   4.35222    0.32306  13.472   <2e-16 ***
## condrobot                     0.59701    0.44036   1.356    0.177    
## condself serve                0.08847    0.54096   0.164    0.870    
## tech_affinity                -0.04038    0.08040  -0.502    0.616    
## condrobot:tech_affinity      -0.07296    0.11013  -0.662    0.509    
## condself serve:tech_affinity -0.02887    0.13002  -0.222    0.825    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6496 on 176 degrees of freedom
## Multiple R-squared:  0.07443,    Adjusted R-squared:  0.04814 
## F-statistic: 2.831 on 5 and 176 DF,  p-value: 0.01743
summary(lm(exp ~ cond * lonely, p))
## 
## Call:
## lm(formula = exp ~ cond * lonely, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.0721 -0.4648  0.0441  0.5188  1.0511 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.25064    0.20510  20.724   <2e-16 ***
## condrobot              0.17066    0.33383   0.511    0.610    
## condself serve        -0.39497    0.31423  -1.257    0.210    
## lonely                -0.01789    0.06072  -0.295    0.769    
## condrobot:lonely       0.04785    0.09917   0.483    0.630    
## condself serve:lonely  0.11117    0.09219   1.206    0.229    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6513 on 176 degrees of freedom
## Multiple R-squared:  0.06955,    Adjusted R-squared:  0.04312 
## F-statistic: 2.631 on 5 and 176 DF,  p-value: 0.02538
summary(lm(exp ~ cond * like_being_w_people, p))
## 
## Call:
## lm(formula = exp ~ cond * like_being_w_people, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.90059 -0.44304  0.05696  0.55696  0.96769 
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                         4.31619    0.37840  11.406   <2e-16
## condrobot                           0.66709    0.52130   1.280    0.202
## condself serve                      0.30751    0.56031   0.549    0.584
## like_being_w_people                -0.03079    0.09391  -0.328    0.743
## condrobot:like_being_w_people      -0.08443    0.12740  -0.663    0.508
## condself serve:like_being_w_people -0.08749    0.13820  -0.633    0.528
##                                       
## (Intercept)                        ***
## condrobot                             
## condself serve                        
## like_being_w_people                   
## condrobot:like_being_w_people         
## condself serve:like_being_w_people    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6491 on 176 degrees of freedom
## Multiple R-squared:  0.07588,    Adjusted R-squared:  0.04963 
## F-statistic:  2.89 on 5 and 176 DF,  p-value: 0.01557
summary(lm(ag ~ cond * tech_affinity, p))
## 
## Call:
## lm(formula = ag ~ cond * tech_affinity, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.88629 -0.42238  0.02089  0.56651  1.21148 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   4.351768   0.348290  12.495   <2e-16 ***
## condrobot                     0.242296   0.474755   0.510   0.6104    
## condself serve               -1.163803   0.583212  -1.996   0.0475 *  
## tech_affinity                -0.093095   0.086675  -1.074   0.2843    
## condrobot:tech_affinity       0.001856   0.118730   0.016   0.9875    
## condself serve:tech_affinity  0.268373   0.140171   1.915   0.0572 .  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7003 on 176 degrees of freedom
## Multiple R-squared:  0.0644, Adjusted R-squared:  0.03782 
## F-statistic: 2.423 on 5 and 176 DF,  p-value: 0.03743
summary(lm(ag ~ cond * lonely, p))
## 
## Call:
## lm(formula = ag ~ cond * lonely, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.94286 -0.42497  0.05714  0.54968  1.15357 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.810455   0.222965  17.090   <2e-16 ***
## condrobot              0.525556   0.362902   1.448    0.149    
## condself serve         0.003831   0.341592   0.011    0.991    
## lonely                 0.057260   0.066002   0.868    0.387    
## condrobot:lonely      -0.085588   0.107807  -0.794    0.428    
## condself serve:lonely -0.025117   0.100213  -0.251    0.802    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.708 on 176 degrees of freedom
## Multiple R-squared:  0.04376,    Adjusted R-squared:  0.01659 
## F-statistic: 1.611 on 5 and 176 DF,  p-value: 0.1595
summary(lm(ag ~ cond * like_being_w_people, p))
## 
## Call:
## lm(formula = ag ~ cond * like_being_w_people, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.98707 -0.43748  0.01293  0.51293  1.30897 
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                         4.11638    0.41138  10.006   <2e-16
## condrobot                           0.52038    0.56673   0.918    0.360
## condself serve                     -0.65309    0.60914  -1.072    0.285
## like_being_w_people                -0.03233    0.10210  -0.317    0.752
## condrobot:like_being_w_people      -0.06420    0.13850  -0.464    0.644
## condself serve:like_being_w_people  0.14620    0.15024   0.973    0.332
##                                       
## (Intercept)                        ***
## condrobot                             
## condself serve                        
## like_being_w_people                   
## condrobot:like_being_w_people         
## condself serve:like_being_w_people    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7056 on 176 degrees of freedom
## Multiple R-squared:  0.05013,    Adjusted R-squared:  0.02314 
## F-statistic: 1.858 on 5 and 176 DF,  p-value: 0.1041
summary(lm(inst ~ cond * tech_affinity, p))
## 
## Call:
## lm(formula = inst ~ cond * tech_affinity, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.6676 -0.4586  0.0333  0.3993  1.7995 
## 
## Coefficients:
##                              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                   3.86923    0.34138  11.334  < 2e-16 ***
## condrobot                    -0.23419    0.46533  -0.503  0.61541    
## condself serve               -1.56045    0.57164  -2.730  0.00698 ** 
## tech_affinity                -0.13374    0.08496  -1.574  0.11723    
## condrobot:tech_affinity       0.13329    0.11637   1.145  0.25361    
## condself serve:tech_affinity  0.42472    0.13739   3.091  0.00232 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6864 on 176 degrees of freedom
## Multiple R-squared:  0.08025,    Adjusted R-squared:  0.05412 
## F-statistic: 3.071 on 5 and 176 DF,  p-value: 0.01104
summary(lm(inst ~ cond * lonely, p))
## 
## Call:
## lm(formula = inst ~ cond * lonely, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.72449 -0.40490  0.03257  0.49039  1.66820 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.324131   0.220528  15.073   <2e-16 ***
## condrobot             -0.046125   0.358936  -0.129    0.898    
## condself serve         0.393796   0.337859   1.166    0.245    
## lonely                 0.007669   0.065281   0.117    0.907    
## condrobot:lonely       0.103952   0.106629   0.975    0.331    
## condself serve:lonely -0.070274   0.099118  -0.709    0.479    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.7002 on 176 degrees of freedom
## Multiple R-squared:  0.04279,    Adjusted R-squared:  0.01559 
## F-statistic: 1.573 on 5 and 176 DF,  p-value: 0.1699
summary(lm(inst ~ cond * like_being_w_people, p))
## 
## Call:
## lm(formula = inst ~ cond * like_being_w_people, data = p)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.70484 -0.42539  0.03841  0.44782  1.71716 
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                         3.26067    0.40580   8.035  1.3e-13
## condrobot                          -0.03816    0.55905  -0.068    0.946
## condself serve                     -0.53737    0.60087  -0.894    0.372
## like_being_w_people                 0.02217    0.10071   0.220    0.826
## condrobot:like_being_w_people       0.07927    0.13662   0.580    0.563
## condself serve:like_being_w_people  0.17756    0.14821   1.198    0.232
##                                       
## (Intercept)                        ***
## condrobot                             
## condself serve                        
## like_being_w_people                   
## condrobot:like_being_w_people         
## condself serve:like_being_w_people    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.696 on 176 degrees of freedom
## Multiple R-squared:  0.05423,    Adjusted R-squared:  0.02736 
## F-statistic: 2.018 on 5 and 176 DF,  p-value: 0.07825
summary(lm(donate ~ cond * tech_affinity, p))
## 
## Call:
## lm(formula = donate ~ cond * tech_affinity, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1026 -0.9102 -0.0433  0.1041  3.1375 
## 
## Coefficients:
##                               Estimate Std. Error t value Pr(>|t|)    
## (Intercept)                  11.850529   0.525846  22.536   <2e-16 ***
## condrobot                     0.025170   0.716781   0.035    0.972    
## condself serve                0.082567   0.880530   0.094    0.925    
## tech_affinity                 0.011940   0.130862   0.091    0.927    
## condrobot:tech_affinity       0.007528   0.179258   0.042    0.967    
## condself serve:tech_affinity  0.021970   0.211630   0.104    0.917    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.057 on 176 degrees of freedom
## Multiple R-squared:  0.005324,   Adjusted R-squared:  -0.02293 
## F-statistic: 0.1884 on 5 and 176 DF,  p-value: 0.9667
summary(lm(donate ~ cond * lonely, p))
## 
## Call:
## lm(formula = donate ~ cond * lonely, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.4294 -0.8420 -0.0606  0.3538  3.3390 
## 
## Coefficients:
##                       Estimate Std. Error t value Pr(>|t|)    
## (Intercept)           11.54959    0.32844  35.165   <2e-16 ***
## condrobot              0.69805    0.53458   1.306    0.193    
## condself serve        -0.09917    0.50318  -0.197    0.844    
## lonely                 0.11145    0.09723   1.146    0.253    
## condrobot:lonely      -0.20495    0.15881  -1.291    0.199    
## condself serve:lonely  0.08435    0.14762   0.571    0.568    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.043 on 176 degrees of freedom
## Multiple R-squared:  0.03226,    Adjusted R-squared:  0.004765 
## F-statistic: 1.173 on 5 and 176 DF,  p-value: 0.3241
summary(lm(donate ~ cond * like_being_w_people, p))
## 
## Call:
## lm(formula = donate ~ cond * like_being_w_people, data = p)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.1753 -0.8916 -0.0759  0.1915  3.2007 
## 
## Coefficients:
##                                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)                        12.26108    0.61500  19.937   <2e-16
## condrobot                          -0.53549    0.84725  -0.632    0.528
## condself serve                     -0.58282    0.91064  -0.640    0.523
## like_being_w_people                -0.09236    0.15263  -0.605    0.546
## condrobot:like_being_w_people       0.14777    0.20705   0.714    0.476
## condself serve:like_being_w_people  0.19178    0.22461   0.854    0.394
##                                       
## (Intercept)                        ***
## condrobot                             
## condself serve                        
## like_being_w_people                   
## condrobot:like_being_w_people         
## condself serve:like_being_w_people    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.055 on 176 degrees of freedom
## Multiple R-squared:  0.009889,   Adjusted R-squared:  -0.01824 
## F-statistic: 0.3516 on 5 and 176 DF,  p-value: 0.8807
library(interactions)
## Warning: package 'interactions' was built under R version 3.4.4
#breaking down tech affinity interactions, finding JN points
p$selfserve[p$human==1]<-0
p$selfserve[p$ss==1]<-1
norobo<-subset(p, cond!="robot")

#instrumentality DV 
m1 <- lm(inst ~ selfserve * tech_affinity, data = norobo)
sim_slopes(m1, pred = selfserve, modx = tech_affinity, jnplot = TRUE)
## JOHNSON-NEYMAN INTERVAL 
## 
## When tech_affinity is OUTSIDE the interval [2.52, 4.28], the slope of
## selfserve is p < .05.
## 
## Note: The range of observed values of tech_affinity is [1.00, 5.00]

## SIMPLE SLOPES ANALYSIS 
## 
## Slope of selfserve when tech_affinity = 4.96 (+ 1 SD): 
## 
##  Est.   S.E.   t val.      p
## -----  -----  -------  -----
##  0.54   0.18     3.06   0.00
## 
## Slope of selfserve when tech_affinity = 4.01 (Mean): 
## 
##  Est.   S.E.   t val.      p
## -----  -----  -------  -----
##  0.14   0.13     1.13   0.26
## 
## Slope of selfserve when tech_affinity = 3.07 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------  -----  -------  -----
##  -0.26   0.19    -1.38   0.17
#agency DV - interaction isn't quite significant so no JN apparently 
m2 <- lm(ag ~ selfserve * tech_affinity, data = norobo)
sim_slopes(m2, pred = selfserve, modx = tech_affinity, jnplot = TRUE)
## JOHNSON-NEYMAN INTERVAL 
## 
## The Johnson-Neyman interval could not be found.  Is the p value for
## your interaction term below the specified alpha?

## SIMPLE SLOPES ANALYSIS 
## 
## Slope of selfserve when tech_affinity = 4.96 (+ 1 SD): 
## 
##  Est.   S.E.   t val.      p
## -----  -----  -------  -----
##  0.17   0.18     0.90   0.37
## 
## Slope of selfserve when tech_affinity = 4.01 (Mean): 
## 
##   Est.   S.E.   t val.      p
## ------  -----  -------  -----
##  -0.09   0.13    -0.66   0.51
## 
## Slope of selfserve when tech_affinity = 3.07 (- 1 SD): 
## 
##   Est.   S.E.   t val.      p
## ------  -----  -------  -----
##  -0.34   0.19    -1.76   0.08
#correlations
cor.test(p$exp, p$ag)
## 
##  Pearson's product-moment correlation
## 
## data:  p$exp and p$ag
## t = 13.22, df = 180, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.6196902 0.7688427
## sample estimates:
##       cor 
## 0.7018801
cor.test(p$exp, p$inst)
## 
##  Pearson's product-moment correlation
## 
## data:  p$exp and p$inst
## t = 2.3848, df = 180, p-value = 0.01813
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.03032844 0.31251203
## sample estimates:
##       cor 
## 0.1750119