The Impact of Severe Weather Events on Public Health and Economy of United States

The storms and other severe weather events have caused both public health and economic problems for communities and municipalities of United States. These severe events have resulted in many fatalities and injuries, and agricultural crop and property damages.

Synopsis

The basic goal of this analysis work is to explore the NOAA Storm Database and to answer questions about the types of severe weather events that have the greatest impact to the following aspects:

  1. Population Health.
  2. Economic consequences.

The analysis shows the top 10 severe weather events that are most harmful to population health are

The analysis shows the top 10 severe weather events that have the greatest economic consequences are

Data Source

Using the data from U.S. National Oceanic and Atmospheric Administration’s (NOAA) storm database from 1950 to end November 2011, the project seeks to gain insights of how severe weather events impact on U.S Public Health and Economic Disruptions. It was noted that the data collected from the earlier years were less complete as there were primarily due to lack of good records. However, data from recent years should be considered more complete.

Runtime Environment Setup

    # function : check if package is installed
    is.installed <- function(mypkg){
        is.element(mypkg, installed.packages()[,1])
    } 

    # install "downloader" package if not installed
    if (!is.installed("downloader")){
        install.packages("downloader")
    }

    # install "dplyr" package if not installed
    if (!is.installed("dplyr")){
        install.packages("dplyr")
    }

    # install "ggplot2" package if not installed
    if (!is.installed("ggplot2")){
       install.packages("ggplot2")
    }

    # install "R.utils" package if not installed
    if (!is.installed("R.utils")){
       install.packages("R.utils")
    }

    # install "R.utils" package if not installed
    if (!is.installed("data.table")){
       install.packages("data.table")
    }

    # load required libraries
    library(downloader)
    library(dplyr)
## 
## Attaching package: 'dplyr'
## 
## The following object is masked from 'package:stats':
## 
##     filter
## 
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
    library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.1.2
    library(R.utils)
## Warning: package 'R.utils' was built under R version 3.1.2
## Loading required package: R.oo
## Warning: package 'R.oo' was built under R version 3.1.2
## Loading required package: R.methodsS3
## Warning: package 'R.methodsS3' was built under R version 3.1.2
## R.methodsS3 v1.6.1 (2014-01-04) successfully loaded. See ?R.methodsS3 for help.
## R.oo v1.18.0 (2014-02-22) successfully loaded. See ?R.oo for help.
## 
## Attaching package: 'R.oo'
## 
## The following objects are masked from 'package:methods':
## 
##     getClasses, getMethods
## 
## The following objects are masked from 'package:base':
## 
##     attach, detach, gc, load, save
## 
## R.utils v1.34.0 (2014-10-07) successfully loaded. See ?R.utils for help.
## 
## Attaching package: 'R.utils'
## 
## The following object is masked from 'package:utils':
## 
##     timestamp
## 
## The following objects are masked from 'package:base':
## 
##     cat, commandArgs, getOption, inherits, isOpen, parse, warnings
    library(data.table)
## 
## Attaching package: 'data.table'
## 
## The following objects are masked from 'package:dplyr':
## 
##     between, last
    library(knitr)
## Warning: package 'knitr' was built under R version 3.1.2

Data Processing

Download Data from Data Source

Storm Data was downloaded from Storm Data from NOAA on 12 December 2014.

    # download data from data source
    download("https://d396qusza40orc.cloudfront.net/repdata%2Fdata%2FStormData.csv.bz2", "stormdata.cs.bz2")

    # unzip downloaded data
    bunzip2("stormdata.csv.bz2", destname=gsub("[.]bz2$", "", "stormdata.csv.bz2"), remove=FALSE, overwrite=TRUE)
    
    # read in data
    raw.data <- read.table("stormdata.csv", header = T, sep=",", as.is=TRUE)

Basic Data Analysis

    str(raw.data)
## 'data.frame':    902297 obs. of  37 variables:
##  $ STATE__   : num  1 1 1 1 1 1 1 1 1 1 ...
##  $ BGN_DATE  : chr  "4/18/1950 0:00:00" "4/18/1950 0:00:00" "2/20/1951 0:00:00" "6/8/1951 0:00:00" ...
##  $ BGN_TIME  : chr  "0130" "0145" "1600" "0900" ...
##  $ TIME_ZONE : chr  "CST" "CST" "CST" "CST" ...
##  $ COUNTY    : num  97 3 57 89 43 77 9 123 125 57 ...
##  $ COUNTYNAME: chr  "MOBILE" "BALDWIN" "FAYETTE" "MADISON" ...
##  $ STATE     : chr  "AL" "AL" "AL" "AL" ...
##  $ EVTYPE    : chr  "TORNADO" "TORNADO" "TORNADO" "TORNADO" ...
##  $ BGN_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ BGN_AZI   : chr  "" "" "" "" ...
##  $ BGN_LOCATI: chr  "" "" "" "" ...
##  $ END_DATE  : chr  "" "" "" "" ...
##  $ END_TIME  : chr  "" "" "" "" ...
##  $ COUNTY_END: num  0 0 0 0 0 0 0 0 0 0 ...
##  $ COUNTYENDN: logi  NA NA NA NA NA NA ...
##  $ END_RANGE : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ END_AZI   : chr  "" "" "" "" ...
##  $ END_LOCATI: chr  "" "" "" "" ...
##  $ LENGTH    : num  14 2 0.1 0 0 1.5 1.5 0 3.3 2.3 ...
##  $ WIDTH     : num  100 150 123 100 150 177 33 33 100 100 ...
##  $ F         : int  3 2 2 2 2 2 2 1 3 3 ...
##  $ MAG       : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ FATALITIES: num  0 0 0 0 0 0 0 0 1 0 ...
##  $ INJURIES  : num  15 0 2 2 2 6 1 0 14 0 ...
##  $ PROPDMG   : num  25 2.5 25 2.5 2.5 2.5 2.5 2.5 25 25 ...
##  $ PROPDMGEXP: chr  "K" "K" "K" "K" ...
##  $ CROPDMG   : num  0 0 0 0 0 0 0 0 0 0 ...
##  $ CROPDMGEXP: chr  "" "" "" "" ...
##  $ WFO       : chr  "" "" "" "" ...
##  $ STATEOFFIC: chr  "" "" "" "" ...
##  $ ZONENAMES : chr  "" "" "" "" ...
##  $ LATITUDE  : num  3040 3042 3340 3458 3412 ...
##  $ LONGITUDE : num  8812 8755 8742 8626 8642 ...
##  $ LATITUDE_E: num  3051 0 0 0 0 ...
##  $ LONGITUDE_: num  8806 0 0 0 0 ...
##  $ REMARKS   : chr  "" "" "" "" ...
##  $ REFNUM    : num  1 2 3 4 5 6 7 8 9 10 ...
    summary(raw.data)
##     STATE__       BGN_DATE           BGN_TIME          TIME_ZONE        
##  Min.   : 1.0   Length:902297      Length:902297      Length:902297     
##  1st Qu.:19.0   Class :character   Class :character   Class :character  
##  Median :30.0   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :31.2                                                           
##  3rd Qu.:45.0                                                           
##  Max.   :95.0                                                           
##                                                                         
##      COUNTY       COUNTYNAME           STATE              EVTYPE         
##  Min.   :  0.0   Length:902297      Length:902297      Length:902297     
##  1st Qu.: 31.0   Class :character   Class :character   Class :character  
##  Median : 75.0   Mode  :character   Mode  :character   Mode  :character  
##  Mean   :100.6                                                           
##  3rd Qu.:131.0                                                           
##  Max.   :873.0                                                           
##                                                                          
##    BGN_RANGE          BGN_AZI           BGN_LOCATI       
##  Min.   :   0.000   Length:902297      Length:902297     
##  1st Qu.:   0.000   Class :character   Class :character  
##  Median :   0.000   Mode  :character   Mode  :character  
##  Mean   :   1.484                                        
##  3rd Qu.:   1.000                                        
##  Max.   :3749.000                                        
##                                                          
##    END_DATE           END_TIME           COUNTY_END COUNTYENDN    
##  Length:902297      Length:902297      Min.   :0    Mode:logical  
##  Class :character   Class :character   1st Qu.:0    NA's:902297   
##  Mode  :character   Mode  :character   Median :0                  
##                                        Mean   :0                  
##                                        3rd Qu.:0                  
##                                        Max.   :0                  
##                                                                   
##    END_RANGE          END_AZI           END_LOCATI       
##  Min.   :  0.0000   Length:902297      Length:902297     
##  1st Qu.:  0.0000   Class :character   Class :character  
##  Median :  0.0000   Mode  :character   Mode  :character  
##  Mean   :  0.9862                                        
##  3rd Qu.:  0.0000                                        
##  Max.   :925.0000                                        
##                                                          
##      LENGTH              WIDTH                F               MAG         
##  Min.   :   0.0000   Min.   :   0.000   Min.   :0.0      Min.   :    0.0  
##  1st Qu.:   0.0000   1st Qu.:   0.000   1st Qu.:0.0      1st Qu.:    0.0  
##  Median :   0.0000   Median :   0.000   Median :1.0      Median :   50.0  
##  Mean   :   0.2301   Mean   :   7.503   Mean   :0.9      Mean   :   46.9  
##  3rd Qu.:   0.0000   3rd Qu.:   0.000   3rd Qu.:1.0      3rd Qu.:   75.0  
##  Max.   :2315.0000   Max.   :4400.000   Max.   :5.0      Max.   :22000.0  
##                                         NA's   :843563                    
##    FATALITIES          INJURIES            PROPDMG       
##  Min.   :  0.0000   Min.   :   0.0000   Min.   :   0.00  
##  1st Qu.:  0.0000   1st Qu.:   0.0000   1st Qu.:   0.00  
##  Median :  0.0000   Median :   0.0000   Median :   0.00  
##  Mean   :  0.0168   Mean   :   0.1557   Mean   :  12.06  
##  3rd Qu.:  0.0000   3rd Qu.:   0.0000   3rd Qu.:   0.50  
##  Max.   :583.0000   Max.   :1700.0000   Max.   :5000.00  
##                                                          
##   PROPDMGEXP           CROPDMG         CROPDMGEXP       
##  Length:902297      Min.   :  0.000   Length:902297     
##  Class :character   1st Qu.:  0.000   Class :character  
##  Mode  :character   Median :  0.000   Mode  :character  
##                     Mean   :  1.527                     
##                     3rd Qu.:  0.000                     
##                     Max.   :990.000                     
##                                                         
##      WFO             STATEOFFIC         ZONENAMES            LATITUDE   
##  Length:902297      Length:902297      Length:902297      Min.   :   0  
##  Class :character   Class :character   Class :character   1st Qu.:2802  
##  Mode  :character   Mode  :character   Mode  :character   Median :3540  
##                                                           Mean   :2875  
##                                                           3rd Qu.:4019  
##                                                           Max.   :9706  
##                                                           NA's   :47    
##    LONGITUDE        LATITUDE_E     LONGITUDE_       REMARKS         
##  Min.   :-14451   Min.   :   0   Min.   :-14455   Length:902297     
##  1st Qu.:  7247   1st Qu.:   0   1st Qu.:     0   Class :character  
##  Median :  8707   Median :   0   Median :     0   Mode  :character  
##  Mean   :  6940   Mean   :1452   Mean   :  3509                     
##  3rd Qu.:  9605   3rd Qu.:3549   3rd Qu.:  8735                     
##  Max.   : 17124   Max.   :9706   Max.   :106220                     
##                   NA's   :40                                        
##      REFNUM      
##  Min.   :     1  
##  1st Qu.:225575  
##  Median :451149  
##  Mean   :451149  
##  3rd Qu.:676723  
##  Max.   :902297  
## 
    nrow <- nrow(raw.data)
    ncol <- ncol(raw.data)
    
    d <- strptime(raw.data$BGN_DATE, format="%m/%d/%Y %H:%M:%S")
    d <- sort (d)
    first.date <- head(d, 1)
    first.date <- strsplit(as.character(first.date), split=" ")[[1]]
    last.date <- tail(d, 1)
    last.date <- strsplit(as.character(last.date), split=" ")[[1]]

A basic analysis of the data was performed and below were the findings:

  1. There are 902297 observations and 37 variables.
  2. The data contains period between 1950-01-03 and 2011-11-30.
  3. There are relatively little missing data. The variables with missing data includes

    • COUNTYENDN
    • F
    • LATITUDE
    • LATITUDE_E

The documentations on the NOAA website were reviewed for the definition of the variables required to perform the analysis. The documents are:

  1. National Weather Service Storm Data Documentation
  2. National Climatic Data Center Storm Events FAQ

Based on the objectives of this project, the variables with the missing data are not used to perform the analysis. Therefore the analysis work is performed on a complete dataset.

The variables required for the detail analysis are

  • EVTYPE. Type of events.
  • FATALITIES. The number of fatalities (both direct and indirect cause).
  • INJURIES. The number of injuries (both direct and indirect cause).
  • PROPDMG. Property damage estimates entered as actual dollar amounts (both immediate and delayed damage).
  • PROPDMGEXP. The exponential expression for ‘Property Damage’ variable.
  • CROPDMG. Crop damage estimates entered as actual dollar amounts (both immediate and delayed damage).
  • CROPDMGEXP. The exponential expression for ‘Crop Damage’ variable.

A subset from the dataset is created and the summary of the subset data is reviewed if cleansing and/or transformation are required.

    sub.data <- data.frame(EVTYPE=raw.data$EVTYPE, FATALITIES=raw.data$FATALITIES, INJURIES=raw.data$INJURIES, 
                           PROPDMG=raw.data$PROPDMG, PROPDMGEXP=raw.data$PROPDMGEXP, CROPDMG=raw.data$CROPDMG, 
                           CROPDMGEXP=raw.data$CROPDMGEXP)

    summary(sub.data)
##                EVTYPE         FATALITIES          INJURIES        
##  HAIL             :288661   Min.   :  0.0000   Min.   :   0.0000  
##  TSTM WIND        :219940   1st Qu.:  0.0000   1st Qu.:   0.0000  
##  THUNDERSTORM WIND: 82563   Median :  0.0000   Median :   0.0000  
##  TORNADO          : 60652   Mean   :  0.0168   Mean   :   0.1557  
##  FLASH FLOOD      : 54277   3rd Qu.:  0.0000   3rd Qu.:   0.0000  
##  FLOOD            : 25326   Max.   :583.0000   Max.   :1700.0000  
##  (Other)          :170878                                         
##     PROPDMG          PROPDMGEXP        CROPDMG          CROPDMGEXP    
##  Min.   :   0.00          :465934   Min.   :  0.000          :618413  
##  1st Qu.:   0.00   K      :424665   1st Qu.:  0.000   K      :281832  
##  Median :   0.00   M      : 11330   Median :  0.000   M      :  1994  
##  Mean   :  12.06   0      :   216   Mean   :  1.527   k      :    21  
##  3rd Qu.:   0.50   B      :    40   3rd Qu.:  0.000   0      :    19  
##  Max.   :5000.00   5      :    28   Max.   :990.000   B      :     9  
##                    (Other):    84                     (Other):     9
    # number of event types
    length(unique(sub.data$EVTYPE))
## [1] 985

It is observed that there are over 170,000 observations classified into 979 event types. The strategy to generalise event types is then performed.

In addition, there is a need to express the actual property and crop damage in dollars for purpose of cost comparison between two event types.

Combine observations into generic event type categories

Event type of similar in nature are combined into a generic event type. They are

  • THUNDERSTORM. It will also include event types with
    • TSTM word
    • ‘STORM’ within a word
    • ‘THU’ within a word
    • SHOWERS word
  • HURRICANE. It will also include event types with
    • HURRICANE word
  • RAIN
    • RAIN word +‘PRECIP’ within a word
    • DEPRESSION word
  • FLOOD
    • FLOOD word
    • ‘SLIDE’ within a word
    • ‘MUD’ within a word
    • EROSION word
    • LANDSLUMP word
    • ‘FLD’ within a word. It is assumed an abbreviation of the word ‘Flood’
  • HEAT
    • HEAT word
    • HOT word
    • ‘HIGH TEMPERATURE’ phrase
  • HAIL
    • HAIL word
  • TORNADO
    • TORNADO word
    • CLOUD word
    • ‘DUST DEVIL’ phrase
    • LANDSPOUT word
    • FUNNEL word
  • SNOW
    • SNOW word
    • CHILL word
    • COLD word
    • BLIZZARD word
    • WINTER word
    • ICE word
    • SLEET word
    • FROST word
    • ‘FREEZ’ within a word
    • ICY word
    • GLAZE word
    • ‘EXPOSURE’ within a word
    • HYPOTHERMIA word
  • WIND
    • WIND word
    • ‘BURST’ within a word
    • GUST word
    • DUST word
  • MARINE
    • TSUNAMI word
    • TIDE word
    • ‘WATER’ within a word
    • SEICHE word
    • MARINE word
    • ‘SEA’ within a word
    • WAVE word
    • SURF word
    • ‘TERSPOUT’ within a word
    • ‘SWELL’ within a word
  • FIRE
    • ‘FIRE’ within a word
  • VOLCANIC
    • VOLCANIC word
  • LIGHTNING
    • LIGHTNING word

In addition, observations with event type ‘Summary’ are summary of statistics. To avoid impacting on the overall data analysis work, they are excluded.

    # function which combine similar events to under a more generic event type.
    Combine.Event.Type <- function (x){
        x <- toupper(x)
    
        for (i in 1:length(x)){
            if (grepl("TSTM", x[i])){
                x[i] <- "THUNDERSTORM"
            } else if (grepl("HURRICANE", x[i])){
                x[i] <- "HURRICANE" 
            } else if (grepl("RAIN|PRECIP?|DEPRESSION", x[i])){
                x[i] <- "RAIN"
            } else if (grepl("FLOOD|?SLIDE?|MUD?|EROSION|LANDSLUMP|FLD?", x[i])){
                x[i] <- "FLOOD"
            } else if (grepl("HEAT|HOT|HIGH TEMPERATURE?", x[i])){
                x[i] <- "HEAT"
            } else if (grepl("HAIL", x[i])){
                x[i] <- "HAIL"
            } else if (grepl("?STORM|^THU|SHOWERS", x[i])){
                x[i] <- "THUNDERSTORM"
            } else if (grepl("TORNADO|CLOUD|DUST DEVIL|LANDSPOUT|FUNNEL", x[i])){
                x[i] <- "TORNADO"
            } else if (grepl("SNOW|CHILL|COLD|BLIZZARD|WINTER|ICE|SLEET|FROST|FREEZ?|ICY|GLAZE|?EXPOSURE|HYPOTHERMIA", x[i])){
                x[i] <- "SNOW"
            } else if (grepl("WIND|?BURST?|GUST|DUST", x[i])){
                x[i] <- "WIND"
            } else if (grepl("TSUNAMI|TIDE|WATER?|SEICHE|MARINE|SEA?|WAVE|SURF|?TERSPOUT|SWELL?", x[i])){
                x[i] <- "MARINE"
            } else if (grepl("FIRE?", x[i])){
                x[i] <- "FIRE"
            } else if (grepl("VOLCANIC", x[i])){
                x[i] <- "VOLCANIC"
            } else if (grepl("LIGHTNING", x[i])){
                x[i] <- "LIGHTNING"
            }
        }
        return (x)
    }

    #cast to character type.
    Event.Type <- as.character(sub.data$EVTYPE)

    #combine event types
    sub.data$EVTYPE <- as.factor(Combine.Event.Type(Event.Type))

    # remove 'Summary' event type
    prep.data <- sub.data[!grepl("^SUMMARY",sub.data$EVTYPE),]

Convert damage costs to dollar value

    # list of exponential expression for Property damage 
    unique(prep.data$PROPDMGEXP)
##  [1] K M   B m + 0 5 6 ? 4 2 3 h 7 H - 1 8
## Levels:  - ? + 0 1 2 3 4 5 6 7 8 B h H K m M
    # list of exponential expression for Property damage 
    unique(prep.data$CROPDMGEXP)
## [1]   M K m B ? 0 k 2
## Levels:  ? 0 2 B k K m M

It is observed that the PROPDMGEXP and CROPDMGEXP variables contain values that are non-standard exponential expressions for money. These are then set to 0.

Following are the standard exponential expressions translation:

  • H (Hundreds) = 100
  • K (Thousands) = 1,000
  • M (Millions) = 1,000,000
  • B (Billions) = 1,000,000,000
    prep.data$FATALITIES <- as.numeric(prep.data$FATALITIES)
    prep.data$INJURIES <- as.numeric(prep.data$INJURIES)
    prep.data$PROPDMG <- as.numeric(prep.data$PROPDMG)
    prep.data$PROPDMGEXP <- as.character(prep.data$PROPDMGEXP)
    prep.data$CROPDMG <- as.numeric(prep.data$CROPDMG)
    prep.data$CROPDMGEXP <- as.character(prep.data$CROPDMGEXP)

    # function to translate exponential expression to its corresponding numeric value 
    Convert.Symbol.Numeric <- function (x){
        x <- toupper(x)
        if (x=="H") return (100)
        else if (x=="K") return (1000)
        else if (x=="M") return (1000000)
        else if (x=="B") return (1000000000) 
        return (0)
    }

    # translate from exponential expression to numeric value
    prep.data$PROPDMGEXP <- sapply (prep.data$PROPDMGEXP, Convert.Symbol.Numeric)
    prep.data$CROPDMGEXP <- sapply (prep.data$CROPDMGEXP, Convert.Symbol.Numeric)
    
    # compute the actual damage in dollars 
    prep.data$PROPDMGVALUE <- as.numeric(prep.data$PROPDMG * prep.data$PROPDMGEXP)
    prep.data$CROPDMGVALUE <- as.numeric(prep.data$CROPDMG * prep.data$CROPDMGEXP)

Prepare cleaned data for plotting

    # summation of variables by event type 
    tmp.dt <- data.table(prep.data)
    clean.data <- as.data.frame(tmp.dt[, list(FATALITIES=sum(FATALITIES), 
                   INJURIES=sum(INJURIES), 
                   PROPDMG=sum(PROPDMGVALUE), 
                   CROPDMG=sum(CROPDMGVALUE)),
                by=c("EVTYPE")])

Results

The impact of Severe Weather Events on Public Health Plot

    # arrange from least to most impact of event types
    impact.population <- arrange(data.frame(EVTYPE=clean.data$EVTYPE, 
                               FATALITIES=clean.data$FATALITIES, 
                               INJURIES=clean.data$INJURIES, 
                               TOTAL=clean.data$FATALITIES+clean.data$INJURIES), desc(TOTAL))

    # plot the top 10 most impact event type
    sub.impact.population <- head(impact.population,10)

    # number of fatalities and injuries to thousands
    sub.impact.population$TOTAL <- sapply (sub.impact.population$TOTAL, function (x) x/1e3)
    
    ggplot(sub.impact.population, aes(x=EVTYPE, y=TOTAL)) + 
        geom_bar(stat="identity") +
        scale_x_discrete(limits=rev(sub.impact.population$EVTYPE)) +
        coord_flip() + 
        xlab("Event Type") + theme_bw()+
        ylab("Number of Fatalities and Injuries (in thousands)") +
        ggtitle("Top 10 Event Types on Fatalities And Injuries")

The plot shows that highest impact is Tornado related events, such as, general tornado, types of clouds, dust devil, landspout, etc.

The impact of Severe Weather Events on Economy Plot

     # arrange from least to most impact of event types
    impact.economy <- arrange(data.frame(EVTYPE=as.factor(clean.data$EVTYPE), 
                               PROPDMG=as.numeric(clean.data$PROPDMG), 
                               CROPDMG=as.numeric(clean.data$CROPDMG), 
                               TOTAL=clean.data$PROPDMG+clean.data$CROPDMG), desc(TOTAL))
    
    # plot the top 10 most impact event type
    sub.impact.economy <- head(impact.economy,10)

    # convert dollar units to billions
    sub.impact.economy$TOTAL <- sapply (sub.impact.economy$TOTAL, function (x) x/1e9)
    
    ggplot(sub.impact.economy, aes(x=EVTYPE, y=TOTAL)) + 
        geom_bar(stat="identity") +
        scale_x_discrete(limits=rev(sub.impact.economy$EVTYPE)) +
        coord_flip() + 
        xlab("Event Type") + theme_bw()+
        ylab("Property and Crop Damage Costs (in billions)") +
        ggtitle("Top 10 Event Types on Crops and Property Damage Costs")

The plot shows that highest impact is Flood related events such as general floods, landslide, mudslide, soil erosion, landslump, etc.