load("more/evals.RData")
  1. Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.

This is an observational study. It is not possible to establish a causal link between beauty and higher course evaluation scores. Rephrased:

Is there a relationship between beauty and course evaluation scores?

  1. Describe the distribution of score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?
hist(evals$score)

The distribution of score is skewed. Most students rate their professors with higher scores rather than lower scores. This is what I expected to see. Usually grading distributions are also skewed to the left. It is very likely that students rate their professors based on what grades they received in the class.

  1. Excluding score, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).
plot(evals$age,evals$bty_avg)
abline(lm(evals$bty_avg~evals$age), col = "red")

There is a very weak negative linear relationship between professor age and professor average beauty ranking.

  1. Replot the scatterplot, but this time use the function jitter() on the \(y\)- or the \(x\)-coordinate. (Use ?jitter to learn more.) What was misleading about the initial scatterplot?
plot(jitter(evals$score,factor= 2) ~ evals$bty_avg)

The initial scatterplot has overlapping points on the score variable. Many students were rating professors the same score, so their points would overlap. These overlapped points would appear as one point, which makes the scatterplot misleading.

  1. Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty). Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?
m_bty = lm(score~bty_avg, data = evals)

summary(m_bty)
## 
## Call:
## lm(formula = score ~ bty_avg, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9246 -0.3690  0.1420  0.3977  0.9309 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.88034    0.07614   50.96  < 2e-16 ***
## bty_avg      0.06664    0.01629    4.09 5.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared:  0.03502,    Adjusted R-squared:  0.03293 
## F-statistic: 16.73 on 1 and 461 DF,  p-value: 5.083e-05
plot(evals$bty_avg,evals$score)
abline(m_bty,col = "red")

\(Score = AverageBeauty*0.06664 + 3.88034\)

For every increase in one average beauty point, the predicted evaluation score increases by 0.06664.

Average beauty score is a statistically significant predictor because its p-value is almost zero. It does not appear to be a statistically significant predictor because the regression line is almost horizontal, indicating no relationship.

  1. Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).

Data must show a linear trend:

plot(evals$bty_avg,evals$score)
abline(m_bty,col = "red")

The trend of this data is somewhat linear.

Residuals must be normal:

hist(m_bty$residuals)

Residuals are very clearly skewed to the left.

Constant variance:

plot(m_bty$residuals)
abline(h = 0, col = "red")

The variance in the residuals does not appear to change as the data increments.

Independent observations:

It is unlikely that the data is independent. Many students talk to each other and form opinions about professors based on how their friends feel about the professor.

Overall, I would say a linear model is not a good fit for this data because many assumptions are violated.

  1. P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.
m_bty_gen <- lm(score ~ bty_avg + gender, data = evals)
summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07

Residuals are nearly normal:

hist(m_bty_gen$residuals)

Residuals are skewed to the left.

Variability of the residuals are constant:

plot(m_bty_gen$residuals)
abline(h = 0, col = "red")

The variability of the residuals does not change as the index increments.

Residuals are independent:

According to the residual plot, there does not appear to be a particular pattern in the residuals, so it is reasonable to assume that the residuals are independent.

Each variable is linearly related to the outcome:

plot(evals$bty_avg,evals$score)

plot(evals$gender, evals$score)

There appears to be a linear relationship between the predictor variables and the explanatory variable.

The conditions for this model are reasonable.

  1. Is bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?
summary(m_bty_gen)
## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07

Average beauty is still a significant predictor of score. The addition of gender has changed the model parameter estimate for beauty average.

  1. What is the equation of the line corresponding to males? (Hint: For males, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which gender tends to have the higher course evaluation score?
multiLines(m_bty_gen)

\(Score = AverageBeauty*0.07416 + 0.17239 * 1 + 3.74734\)

Males tend to have a higher course evaluation score.

  1. Create a new model called m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.
m_bty_rank = lm(score~bty_avg + rank, data = evals)

summary(m_bty_rank)
## 
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8713 -0.3642  0.1489  0.4103  0.9525 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.98155    0.09078  43.860  < 2e-16 ***
## bty_avg           0.06783    0.01655   4.098 4.92e-05 ***
## ranktenure track -0.16070    0.07395  -2.173   0.0303 *  
## ranktenured      -0.12623    0.06266  -2.014   0.0445 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared:  0.04652,    Adjusted R-squared:  0.04029 
## F-statistic: 7.465 on 3 and 459 DF,  p-value: 6.88e-05

R turns categorical variables with more than two levels into dummy variables for each category.

  1. Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score.

I would expect that the professor outfit would have the highest p-value in this model. Holding all other variables constant, the professor’s outfit in their profile picture is probably completely irrelevant. Especially if the professor’s average beauty is included, the effect of the outfit would probably be close to zero.

  1. Check your suspicions from the previous exercise. Include the model output in your response.
m_full <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_profs + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)
summary(m_full)
## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14

It appears that outfit has a fairly high p-value, however, it is not as high as cls_profs which is the number of professors teaching the class.

  1. Interpret the coefficient associated with the ethnicity variable.

Holding all other variables constant, if a professor is not a minority, then their predicted score is 0.1234929 higher than professors that are a minority.

  1. Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?
m_fullminus1 <- lm(score ~ rank + ethnicity + gender + language + age + cls_perc_eval 
             + cls_students + cls_level + cls_credits + bty_avg 
             + pic_outfit + pic_color, data = evals)

summary(m_fullminus1)
## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7836 -0.3257  0.0859  0.3513  0.9551 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0872523  0.2888562  14.150  < 2e-16 ***
## ranktenure track      -0.1476746  0.0819824  -1.801 0.072327 .  
## ranktenured           -0.0973829  0.0662614  -1.470 0.142349    
## ethnicitynot minority  0.1274458  0.0772887   1.649 0.099856 .  
## gendermale             0.2101231  0.0516873   4.065 5.66e-05 ***
## languagenon-english   -0.2282894  0.1111305  -2.054 0.040530 *  
## age                   -0.0089992  0.0031326  -2.873 0.004262 ** 
## cls_perc_eval          0.0052888  0.0015317   3.453 0.000607 ***
## cls_students           0.0004687  0.0003737   1.254 0.210384    
## cls_levelupper         0.0606374  0.0575010   1.055 0.292200    
## cls_creditsone credit  0.5061196  0.1149163   4.404 1.33e-05 ***
## bty_avg                0.0398629  0.0174780   2.281 0.023032 *  
## pic_outfitnot formal  -0.1083227  0.0721711  -1.501 0.134080    
## pic_colorcolor        -0.2190527  0.0711469  -3.079 0.002205 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared:  0.187,  Adjusted R-squared:  0.1634 
## F-statistic: 7.943 on 13 and 449 DF,  p-value: 2.336e-14

A few of the explanatory variables changed slightly, but no major changes. Since the variables did not change much, that would indicate that there was not much collinearity between that variable and the other variables.

  1. Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.
library(MASS)

backward = stepAIC(m_full,dicretion = "backward")
## Start:  AIC=-630.9
## score ~ rank + ethnicity + gender + language + age + cls_perc_eval + 
##     cls_students + cls_level + cls_profs + cls_credits + bty_avg + 
##     pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - cls_profs      1    0.0197 111.11 -632.82
## - cls_level      1    0.2740 111.36 -631.76
## - cls_students   1    0.3599 111.44 -631.40
## - rank           2    0.8930 111.98 -631.19
## <none>                       111.08 -630.90
## - pic_outfit     1    0.5768 111.66 -630.50
## - ethnicity      1    0.6117 111.70 -630.36
## - language       1    1.0557 112.14 -628.52
## - bty_avg        1    1.2967 112.38 -627.53
## - age            1    2.0456 113.13 -624.45
## - pic_color      1    2.2893 113.37 -623.46
## - cls_perc_eval  1    2.9698 114.06 -620.69
## - gender         1    4.1085 115.19 -616.09
## - cls_credits    1    4.6495 115.73 -613.92
## 
## Step:  AIC=-632.82
## score ~ rank + ethnicity + gender + language + age + cls_perc_eval + 
##     cls_students + cls_level + cls_credits + bty_avg + pic_outfit + 
##     pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - cls_level      1    0.2752 111.38 -633.67
## - cls_students   1    0.3893 111.49 -633.20
## - rank           2    0.8939 112.00 -633.11
## <none>                       111.11 -632.82
## - pic_outfit     1    0.5574 111.66 -632.50
## - ethnicity      1    0.6728 111.78 -632.02
## - language       1    1.0442 112.15 -630.49
## - bty_avg        1    1.2872 112.39 -629.49
## - age            1    2.0422 113.15 -626.39
## - pic_color      1    2.3457 113.45 -625.15
## - cls_perc_eval  1    2.9502 114.06 -622.69
## - gender         1    4.0895 115.19 -618.08
## - cls_credits    1    4.7999 115.90 -615.24
## 
## Step:  AIC=-633.67
## score ~ rank + ethnicity + gender + language + age + cls_perc_eval + 
##     cls_students + cls_credits + bty_avg + pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - cls_students   1    0.2459 111.63 -634.65
## - rank           2    0.8140 112.19 -634.30
## <none>                       111.38 -633.67
## - pic_outfit     1    0.6618 112.04 -632.93
## - ethnicity      1    0.8698 112.25 -632.07
## - language       1    0.9015 112.28 -631.94
## - bty_avg        1    1.3694 112.75 -630.02
## - age            1    1.9342 113.31 -627.70
## - pic_color      1    2.0777 113.46 -627.12
## - cls_perc_eval  1    3.0290 114.41 -623.25
## - gender         1    3.8989 115.28 -619.74
## - cls_credits    1    4.5296 115.91 -617.22
## 
## Step:  AIC=-634.65
## score ~ rank + ethnicity + gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## - rank           2    0.7892 112.42 -635.39
## <none>                       111.63 -634.65
## - ethnicity      1    0.8832 112.51 -633.00
## - pic_outfit     1    0.9700 112.60 -632.65
## - language       1    1.0338 112.66 -632.38
## - bty_avg        1    1.5783 113.20 -630.15
## - pic_color      1    1.9477 113.57 -628.64
## - age            1    2.1163 113.74 -627.96
## - cls_perc_eval  1    2.7922 114.42 -625.21
## - gender         1    4.0945 115.72 -619.97
## - cls_credits    1    4.5163 116.14 -618.29
## 
## Step:  AIC=-635.39
## score ~ ethnicity + gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_outfit + pic_color
## 
##                 Df Sum of Sq    RSS     AIC
## <none>                       112.42 -635.39
## - pic_outfit     1    0.7141 113.13 -634.46
## - ethnicity      1    1.1790 113.59 -632.56
## - language       1    1.3403 113.75 -631.90
## - age            1    1.6847 114.10 -630.50
## - pic_color      1    1.7841 114.20 -630.10
## - bty_avg        1    1.8553 114.27 -629.81
## - cls_perc_eval  1    2.9147 115.33 -625.54
## - gender         1    4.0577 116.47 -620.97
## - cls_credits    1    6.1208 118.54 -612.84
summary(backward)
## 
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8455 -0.3221  0.1013  0.3745  0.9051 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.907030   0.244889  15.954  < 2e-16 ***
## ethnicitynot minority  0.163818   0.075158   2.180 0.029798 *  
## gendermale             0.202597   0.050102   4.044 6.18e-05 ***
## languagenon-english   -0.246683   0.106146  -2.324 0.020567 *  
## age                   -0.006925   0.002658  -2.606 0.009475 ** 
## cls_perc_eval          0.004942   0.001442   3.427 0.000666 ***
## cls_creditsone credit  0.517205   0.104141   4.966 9.68e-07 ***
## bty_avg                0.046732   0.017091   2.734 0.006497 ** 
## pic_outfitnot formal  -0.113939   0.067168  -1.696 0.090510 .  
## pic_colorcolor        -0.180870   0.067456  -2.681 0.007601 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4982 on 453 degrees of freedom
## Multiple R-squared:  0.1774, Adjusted R-squared:  0.161 
## F-statistic: 10.85 on 9 and 453 DF,  p-value: 2.441e-15

\(Score = Ethnicity*0.16 + Gender*0.20 - Language*0.25 - Age*0.007 + ClsPercEval*0.005 + ClsCredit*0.52 + BeautyAverage*0.047 - Outfit*0.11 - PicColor*0.18\)

  1. Verify that the conditions for this model are reasonable using diagnostic plots.
hist(backward$residuals)

plot(backward$residuals)
abline(h=0,col="red")

Residuals look somewhat normal, but skewed to the left.

The residuals do not vary significantly as the index increases.

The residuals do not exibit a pattern, and appear to be independent.

Most variables in the model are linearly related to the outcome.

A linear model is reasonable.

  1. The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?

New information can have an impact on the conditions. If a professor is teaching the same class many years in a row, then they are obviously aging, becoming more/less attractive, becoming tenured, and other variables are changing. Therefore, it may be difficult to assume that the residuals are indpendent because different variables are dependent on each other as time passes.

  1. Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.

Based on my model, a professor and course with a high evaluation score would have the following characteristics:

  1. Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?

I would not be comfortable generalizing my conclusions to apply to other professors at other universities because the sample does not cover students and professors from other universities. It is possible that students at this particular university have different standards for evaluation than other students at other universities. These differences can cause variations in evaluation scores. If this study was done nationally, it would be more reasonable to generalize its conclusions.