setwd("~/Dropbox/Spectral_analysis_workshop")
library(bspec)
##
## Attaching package: 'bspec'
## The following object is masked from 'package:stats':
##
## acf
## The following object is masked from 'package:base':
##
## sample
library(lomb)
library(WaveletComp)
library(zoo)
## Warning: package 'zoo' was built under R version 3.5.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
library(quantmod)
## Warning: package 'quantmod' was built under R version 3.5.2
## Loading required package: xts
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:xts':
##
## first, last
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(astrochron)
## Warning: package 'astrochron' was built under R version 3.5.2
## Welcome to astrochron v0.9 (2019-01-08)
##
## Attaching package: 'astrochron'
## The following object is masked from 'package:quantmod':
##
## peak
library(IRISSeismic)
##
## Attaching package: 'IRISSeismic'
## The following object is masked from 'package:astrochron':
##
## hilbert
## The following object is masked from 'package:dplyr':
##
## slice
library(Hmisc)
## Warning: package 'Hmisc' was built under R version 3.5.2
## Loading required package: lattice
## Loading required package: survival
##
## Attaching package: 'survival'
## The following object is masked from 'package:WaveletComp':
##
## ridge
## Loading required package: Formula
## Loading required package: ggplot2
##
## Attaching package: 'ggplot2'
## The following object is masked from 'package:WaveletComp':
##
## arrow
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:dplyr':
##
## src, summarize
## The following object is masked from 'package:quantmod':
##
## Lag
## The following objects are masked from 'package:base':
##
## format.pval, units
graphics.off()
rm(list=ls())
spec1 <- welchPSD(sunspots, seglength=200)
plot(spec1$frequency, spec1$power, log='y',type="l", xlim=c(0,1))
spec1$frequency[findPeaks(spec1$power, thresh=30000.0)]
## [1] 0.095
1/0.095 = 10.52631579
rm(spec1)
read.csv("NAO.csv", header=TRUE)
## X1825 X0.16
## 1 1826 0.27
## 2 1827 -0.45
## 3 1828 -0.88
## 4 1829 -0.09
## 5 1830 0.88
## 6 1831 -0.62
## 7 1832 0.15
## 8 1833 0.15
## 9 1834 -0.01
## 10 1835 0.42
## 11 1836 0.93
## 12 1837 -0.09
## 13 1838 -0.09
## 14 1839 0.35
## 15 1840 -0.25
## 16 1841 0.18
## 17 1842 -0.68
## 18 1843 0.55
## 19 1844 -0.22
## 20 1845 0.34
## 21 1846 0.26
## 22 1847 0.62
## 23 1848 0.07
## 24 1849 -0.08
## 25 1850 0.20
## 26 1851 0.24
## 27 1852 -0.30
## 28 1853 -0.79
## 29 1854 0.76
## 30 1855 -0.78
## 31 1856 -0.18
## 32 1857 0.97
## 33 1858 -0.04
## 34 1859 0.44
## 35 1860 -0.66
## 36 1861 -0.29
## 37 1862 -0.18
## 38 1863 0.98
## 39 1864 -0.44
## 40 1865 0.33
## 41 1866 0.31
## 42 1867 -0.07
## 43 1868 1.58
## 44 1869 0.54
## 45 1870 -0.42
## 46 1871 -0.12
## 47 1872 -0.80
## 48 1873 0.12
## 49 1874 0.47
## 50 1875 -0.11
## 51 1876 -0.22
## 52 1877 0.05
## 53 1878 -0.92
## 54 1879 -0.36
## 55 1880 -0.01
## 56 1881 0.09
## 57 1882 1.09
## 58 1883 0.64
## 59 1884 0.58
## 60 1885 0.19
## 61 1886 -0.32
## 62 1887 -0.64
## 63 1888 0.01
## 64 1889 0.64
## 65 1890 0.60
## 66 1891 0.03
## 67 1892 -0.64
## 68 1893 -0.10
## 69 1894 0.87
## 70 1895 -0.24
## 71 1896 0.35
## 72 1897 0.85
## 73 1898 0.53
## 74 1899 0.04
## 75 1900 0.08
## 76 1901 -0.40
## 77 1902 -0.43
## 78 1903 0.87
## 79 1904 0.62
## 80 1905 0.10
## 81 1906 0.28
## 82 1907 0.56
## 83 1908 0.63
## 84 1909 -0.10
## 85 1910 -0.05
## 86 1911 0.48
## 87 1912 0.21
## 88 1913 0.87
## 89 1914 0.80
## 90 1915 -0.87
## 91 1916 -0.42
## 92 1917 -0.38
## 93 1918 0.51
## 94 1919 0.35
## 95 1920 0.62
## 96 1921 0.16
## 97 1922 0.52
## 98 1923 0.82
## 99 1924 -0.01
## 100 1925 0.29
## 101 1926 0.10
## 102 1927 -0.26
## 103 1928 0.22
## 104 1929 0.17
## 105 1930 0.13
## 106 1931 -0.32
## 107 1932 -0.06
## 108 1933 -0.42
## 109 1934 0.42
## 110 1935 0.25
## 111 1936 -0.13
## 112 1937 0.17
## 113 1938 0.92
## 114 1939 -0.46
## 115 1940 -0.50
## 116 1941 -0.73
## 117 1942 -0.53
## 118 1943 0.97
## 119 1944 -0.10
## 120 1945 0.22
## 121 1946 0.47
## 122 1947 -0.09
## 123 1948 0.80
## 124 1949 0.48
## 125 1950 0.49
## 126 1951 -0.07
## 127 1952 -0.37
## 128 1953 0.40
## 129 1954 0.51
## 130 1955 -0.64
## 131 1956 0.17
## 132 1957 -0.02
## 133 1958 0.12
## 134 1959 0.49
## 135 1960 -0.30
## 136 1961 1.05
## 137 1962 -0.13
## 138 1963 -0.39
## 139 1964 0.24
## 140 1965 -0.23
## 141 1966 -0.22
## 142 1967 0.56
## 143 1968 -0.62
## 144 1969 -0.44
## 145 1970 0.18
## 146 1971 -0.55
## 147 1972 -0.04
## 148 1973 -0.09
## 149 1974 0.59
## 150 1975 0.05
## 151 1976 -0.07
## 152 1977 -0.21
## 153 1978 0.21
## 154 1979 0.19
## 155 1980 -0.37
## 156 1981 -0.09
## 157 1982 0.67
## 158 1983 0.34
## 159 1984 0.26
## 160 1985 -0.47
## 161 1986 0.56
## 162 1987 -0.51
## 163 1988 -0.32
## 164 1989 0.57
## 165 1990 1.23
## 166 1991 0.34
## 167 1992 1.11
## 168 1993 0.12
## 169 1994 0.51
## 170 1995 -0.61
## 171 1996 -1.01
## 172 1997 -0.18
## 173 1998 0.25
## 174 1999 0.04
## 175 2000 -0.04
## 176 2001 -0.45
## 177 2002 -0.04
## 178 2003 -0.30
## 179 2004 0.01
## 180 2005 -0.26
## 181 2006 -0.18
## 182 2007 -0.38
## 183 2008 -0.68
## 184 2009 -0.38
## 185 2010 -2.35
## 186 2011 0.46
## 187 2012 -0.63
## 188 2013 0.59
## 189 2014 0.10
## 190 2015 1.16
## 191 2016 0.39
## 192 2017 0.57
mydata <- read.table("NAO.csv", header=FALSE, sep=",")[,2]
NAO <- ts(mydata,start=1825, end=2017) #turns it into a timeseries record
plot (NAO, type="l",main= "NAO Spectral Cycle")
NAOspec <- welchPSD(NAO, seglength = 100)
plot(NAOspec$frequency, NAOspec$power,type='l', xlim=c(0,0.6))
NAOspec$frequency[findPeaks(NAOspec$power, thresh=1)]
## [1] 0.09 0.14 0.21
1/0.09 = 11.1111111 1/0.14 = 7.14285714 1/0.21 = 4.76190476
write.table(NAO, file = "Winter_NAO_data.csv", col.names=FALSE, sep=",")
rm(NAOspec)
rm(NAO)
rm(mydata)
read.csv("Precipitation_Ireland.csv", header=TRUE)
## Year Month Median.montly.series
## 1 1711 1 16.4
## 2 1711 2 73.1
## 3 1711 3 121.2
## 4 1711 4 85.2
## 5 1711 5 66.6
## 6 1711 6 66.6
## 7 1711 7 46.9
## 8 1711 8 91.7
## 9 1711 9 74.2
## 10 1711 10 128.8
## 11 1711 11 207.4
## 12 1711 12 113.5
## 13 1712 1 42.6
## 14 1712 2 31.3
## 15 1712 3 83.9
## 16 1712 4 102.7
## 17 1712 5 60.1
## 18 1712 6 102.7
## 19 1712 7 200.4
## 20 1712 8 106.5
## 21 1712 9 111.5
## 22 1712 10 180.4
## 23 1712 11 175.4
## 24 1712 12 55.1
## 25 1713 1 97.3
## 26 1713 2 107.1
## 27 1713 3 60.9
## 28 1713 4 30.5
## 29 1713 5 70.7
## 30 1713 6 76.6
## 31 1713 7 160.1
## 32 1713 8 127.7
## 33 1713 9 39.3
## 34 1713 10 41.3
## 35 1713 11 90.4
## 36 1713 12 80.6
## 37 1714 1 42.4
## 38 1714 2 80.5
## 39 1714 3 53.9
## 40 1714 4 56.6
## 41 1714 5 41.6
## 42 1714 6 26.5
## 43 1714 7 150.3
## 44 1714 8 79.6
## 45 1714 9 66.3
## 46 1714 10 114.1
## 47 1714 11 82.2
## 48 1714 12 90.2
## 49 1715 1 125.8
## 50 1715 2 69.2
## 51 1715 3 76.7
## 52 1715 4 135.9
## 53 1715 5 166.1
## 54 1715 6 106.9
## 55 1715 7 123.3
## 56 1715 8 108.2
## 57 1715 9 128.3
## 58 1715 10 104.4
## 59 1715 11 65.4
## 60 1715 12 47.8
## 61 1716 1 17.8
## 62 1716 2 55.5
## 63 1716 3 37.7
## 64 1716 4 73.2
## 65 1716 5 128.7
## 66 1716 6 53.4
## 67 1716 7 75.3
## 68 1716 8 67.0
## 69 1716 9 193.6
## 70 1716 10 144.4
## 71 1716 11 122.4
## 72 1716 12 77.4
## 73 1717 1 99.0
## 74 1717 2 73.3
## 75 1717 3 74.3
## 76 1717 4 94.1
## 77 1717 5 79.2
## 78 1717 6 74.3
## 79 1717 7 65.3
## 80 1717 8 93.1
## 81 1717 9 96.0
## 82 1717 10 65.3
## 83 1717 11 125.7
## 84 1717 12 90.1
## 85 1718 1 62.5
## 86 1718 2 75.7
## 87 1718 3 71.0
## 88 1718 4 89.0
## 89 1718 5 68.2
## 90 1718 6 27.5
## 91 1718 7 60.6
## 92 1718 8 126.9
## 93 1718 9 34.1
## 94 1718 10 95.6
## 95 1718 11 80.5
## 96 1718 12 164.8
## 97 1719 1 71.9
## 98 1719 2 118.9
## 99 1719 3 54.6
## 100 1719 4 70.9
## 101 1719 5 67.1
## 102 1719 6 45.1
## 103 1719 7 68.1
## 104 1719 8 70.0
## 105 1719 9 56.6
## 106 1719 10 95.9
## 107 1719 11 139.0
## 108 1719 12 100.7
## 109 1720 1 144.0
## 110 1720 2 85.4
## 111 1720 3 103.7
## 112 1720 4 63.5
## 113 1720 5 87.9
## 114 1720 6 72.0
## 115 1720 7 101.3
## 116 1720 8 118.4
## 117 1720 9 91.5
## 118 1720 10 119.6
## 119 1720 11 109.8
## 120 1720 12 123.3
## 121 1721 1 97.8
## 122 1721 2 59.1
## 123 1721 3 72.8
## 124 1721 4 131.9
## 125 1721 5 72.8
## 126 1721 6 106.9
## 127 1721 7 102.3
## 128 1721 8 125.1
## 129 1721 9 60.3
## 130 1721 10 97.8
## 131 1721 11 158.1
## 132 1721 12 52.3
## 133 1722 1 71.4
## 134 1722 2 45.4
## 135 1722 3 100.9
## 136 1722 4 47.6
## 137 1722 5 181.4
## 138 1722 6 87.3
## 139 1722 7 145.1
## 140 1722 8 79.4
## 141 1722 9 46.5
## 142 1722 10 65.8
## 143 1722 11 114.5
## 144 1722 12 148.5
## 145 1723 1 91.5
## 146 1723 2 137.3
## 147 1723 3 70.0
## 148 1723 4 67.4
## 149 1723 5 18.1
## 150 1723 6 36.3
## 151 1723 7 89.8
## 152 1723 8 47.5
## 153 1723 9 43.2
## 154 1723 10 63.9
## 155 1723 11 96.7
## 156 1723 12 101.9
## 157 1724 1 134.6
## 158 1724 2 85.6
## 159 1724 3 91.8
## 160 1724 4 69.7
## 161 1724 5 62.4
## 162 1724 6 63.6
## 163 1724 7 105.2
## 164 1724 8 179.9
## 165 1724 9 111.3
## 166 1724 10 51.4
## 167 1724 11 68.5
## 168 1724 12 199.4
## 169 1725 1 111.6
## 170 1725 2 50.4
## 171 1725 3 46.8
## 172 1725 4 108.0
## 173 1725 5 88.8
## 174 1725 6 129.6
## 175 1725 7 103.2
## 176 1725 8 135.6
## 177 1725 9 118.8
## 178 1725 10 90.0
## 179 1725 11 108.0
## 180 1725 12 109.2
## 181 1726 1 119.1
## 182 1726 2 83.8
## 183 1726 3 49.6
## 184 1726 4 61.7
## 185 1726 5 73.9
## 186 1726 6 101.4
## 187 1726 7 88.2
## 188 1726 8 76.1
## 189 1726 9 153.2
## 190 1726 10 92.6
## 191 1726 11 103.6
## 192 1726 12 99.2
## 193 1727 1 98.0
## 194 1727 2 105.0
## 195 1727 3 53.6
## 196 1727 4 105.0
## 197 1727 5 116.6
## 198 1727 6 86.3
## 199 1727 7 93.3
## 200 1727 8 68.8
## 201 1727 9 119.0
## 202 1727 10 123.6
## 203 1727 11 106.1
## 204 1727 12 91.0
## 205 1728 1 122.7
## 206 1728 2 52.4
## 207 1728 3 92.9
## 208 1728 4 94.1
## 209 1728 5 69.1
## 210 1728 6 140.6
## 211 1728 7 82.2
## 212 1728 8 81.0
## 213 1728 9 110.8
## 214 1728 10 94.1
## 215 1728 11 131.0
## 216 1728 12 120.3
## 217 1729 1 110.6
## 218 1729 2 52.0
## 219 1729 3 69.7
## 220 1729 4 26.5
## 221 1729 5 69.7
## 222 1729 6 82.9
## 223 1729 7 68.6
## 224 1729 8 80.7
## 225 1729 9 111.7
## 226 1729 10 94.0
## 227 1729 11 182.4
## 228 1729 12 157.0
## 229 1730 1 73.4
## 230 1730 2 127.5
## 231 1730 3 92.6
## 232 1730 4 61.4
## 233 1730 5 117.9
## 234 1730 6 139.5
## 235 1730 7 99.9
## 236 1730 8 80.6
## 237 1730 9 72.2
## 238 1730 10 129.9
## 239 1730 11 108.3
## 240 1730 12 99.9
## 241 1731 1 94.3
## 242 1731 2 96.1
## 243 1731 3 28.7
## 244 1731 4 26.9
## 245 1731 5 50.3
## 246 1731 6 35.9
## 247 1731 7 49.4
## 248 1731 8 80.8
## 249 1731 9 71.9
## 250 1731 10 113.2
## 251 1731 11 131.1
## 252 1731 12 119.5
## 253 1732 1 122.5
## 254 1732 2 96.7
## 255 1732 3 93.3
## 256 1732 4 61.8
## 257 1732 5 118.0
## 258 1732 6 36.0
## 259 1732 7 98.9
## 260 1732 8 80.9
## 261 1732 9 111.3
## 262 1732 10 130.4
## 263 1732 11 55.1
## 264 1732 12 119.2
## 265 1733 1 149.0
## 266 1733 2 127.2
## 267 1733 3 93.3
## 268 1733 4 61.8
## 269 1733 5 23.0
## 270 1733 6 60.6
## 271 1733 7 49.7
## 272 1733 8 116.3
## 273 1733 9 111.5
## 274 1733 10 94.5
## 275 1733 11 130.9
## 276 1733 12 193.9
## 277 1734 1 94.3
## 278 1734 2 71.9
## 279 1734 3 102.6
## 280 1734 4 44.8
## 281 1734 5 117.9
## 282 1734 6 95.5
## 283 1734 7 127.4
## 284 1734 8 81.4
## 285 1734 9 110.8
## 286 1734 10 93.2
## 287 1734 11 82.5
## 288 1734 12 156.8
## 289 1735 1 122.7
## 290 1735 2 96.0
## 291 1735 3 102.7
## 292 1735 4 93.4
## 293 1735 5 50.7
## 294 1735 6 96.0
## 295 1735 7 128.0
## 296 1735 8 116.0
## 297 1735 9 110.7
## 298 1735 10 130.7
## 299 1735 11 166.7
## 300 1735 12 120.0
## 301 1736 1 149.8
## 302 1736 2 96.4
## 303 1736 3 68.7
## 304 1736 4 93.3
## 305 1736 5 99.5
## 306 1736 6 20.5
## 307 1736 7 49.2
## 308 1736 8 81.0
## 309 1736 9 71.8
## 310 1736 10 94.4
## 311 1736 11 81.0
## 312 1736 12 120.0
## 313 1737 1 149.4
## 314 1737 2 127.3
## 315 1737 3 93.0
## 316 1737 4 94.1
## 317 1737 5 49.8
## 318 1737 6 60.9
## 319 1737 7 49.8
## 320 1737 8 116.2
## 321 1737 9 71.9
## 322 1737 10 94.1
## 323 1737 11 80.8
## 324 1737 12 119.5
## 325 1738 1 149.7
## 326 1738 2 72.9
## 327 1738 3 69.1
## 328 1738 4 94.7
## 329 1738 5 117.7
## 330 1738 6 96.0
## 331 1738 7 48.6
## 332 1738 8 140.8
## 333 1738 9 111.3
## 334 1738 10 152.3
## 335 1738 11 107.5
## 336 1738 12 119.0
## 337 1739 1 122.9
## 338 1739 2 96.1
## 339 1739 3 48.1
## 340 1739 4 61.5
## 341 1739 5 69.3
## 342 1739 6 96.1
## 343 1739 7 127.4
## 344 1739 8 116.2
## 345 1739 9 145.3
## 346 1739 10 70.4
## 347 1739 11 108.4
## 348 1739 12 55.9
## 349 1740 1 35.0
## 350 1740 2 52.8
## 351 1740 3 48.2
## 352 1740 4 26.4
## 353 1740 5 69.9
## 354 1740 6 36.5
## 355 1740 7 68.4
## 356 1740 8 100.3
## 357 1740 9 111.1
## 358 1740 10 70.7
## 359 1740 11 80.8
## 360 1740 12 76.9
## 361 1741 1 109.8
## 362 1741 2 52.9
## 363 1741 3 28.9
## 364 1741 4 26.4
## 365 1741 5 22.3
## 366 1741 6 61.1
## 367 1741 7 68.5
## 368 1741 8 66.1
## 369 1741 9 91.7
## 370 1741 10 113.1
## 371 1741 11 108.2
## 372 1741 12 76.8
## 373 1742 1 123.3
## 374 1742 2 72.5
## 375 1742 3 29.2
## 376 1742 4 26.4
## 377 1742 5 49.9
## 378 1742 6 61.2
## 379 1742 7 81.9
## 380 1742 8 65.9
## 381 1742 9 71.5
## 382 1742 10 151.6
## 383 1742 11 108.3
## 384 1742 12 99.8
## 385 1743 1 149.9
## 386 1743 2 96.2
## 387 1743 3 68.9
## 388 1743 4 94.2
## 389 1743 5 69.9
## 390 1743 6 36.5
## 391 1743 7 99.3
## 392 1743 8 49.6
## 393 1743 9 71.9
## 394 1743 10 113.4
## 395 1743 11 107.4
## 396 1743 12 55.7
## 397 1744 1 73.8
## 398 1744 2 96.5
## 399 1744 3 102.1
## 400 1744 4 62.4
## 401 1744 5 49.9
## 402 1744 6 61.3
## 403 1744 7 82.8
## 404 1744 8 140.7
## 405 1744 9 145.3
## 406 1744 10 152.1
## 407 1744 11 131.7
## 408 1744 12 36.3
## 409 1745 1 122.7
## 410 1745 2 52.1
## 411 1745 3 47.8
## 412 1745 4 61.9
## 413 1745 5 139.0
## 414 1745 6 95.6
## 415 1745 7 68.4
## 416 1745 8 141.2
## 417 1745 9 25.0
## 418 1745 10 152.1
## 419 1745 11 81.5
## 420 1745 12 98.9
## 421 1746 1 110.1
## 422 1746 2 38.0
## 423 1746 3 93.1
## 424 1746 4 45.0
## 425 1746 5 22.0
## 426 1746 6 96.1
## 427 1746 7 156.1
## 428 1746 8 50.0
## 429 1746 9 92.1
## 430 1746 10 70.1
## 431 1746 11 108.1
## 432 1746 12 120.1
## 433 1747 1 149.5
## 434 1747 2 72.7
## 435 1747 3 48.2
## 436 1747 4 44.9
## 437 1747 5 69.5
## 438 1747 6 61.3
## 439 1747 7 49.0
## 440 1747 8 49.8
## 441 1747 9 111.1
## 442 1747 10 70.3
## 443 1747 11 54.7
## 444 1747 12 36.0
## 445 1748 1 74.0
## 446 1748 2 52.6
## 447 1748 3 92.7
## 448 1748 4 62.4
## 449 1748 5 99.0
## 450 1748 6 36.6
## 451 1748 7 99.0
## 452 1748 8 81.1
## 453 1748 9 71.3
## 454 1748 10 113.2
## 455 1748 11 54.4
## 456 1748 12 55.3
## 457 1749 1 149.6
## 458 1749 2 51.7
## 459 1749 3 69.8
## 460 1749 4 94.3
## 461 1749 5 49.9
## 462 1749 6 36.3
## 463 1749 7 82.5
## 464 1749 8 100.7
## 465 1749 9 91.6
## 466 1749 10 70.7
## 467 1749 11 54.4
## 468 1749 12 55.3
## 469 1750 1 73.9
## 470 1750 2 96.2
## 471 1750 3 69.9
## 472 1750 4 44.6
## 473 1750 5 22.3
## 474 1750 6 96.2
## 475 1750 7 99.3
## 476 1750 8 140.8
## 477 1750 9 71.9
## 478 1750 10 113.4
## 479 1750 11 107.4
## 480 1750 12 77.0
## 481 1751 1 110.0
## 482 1751 2 72.6
## 483 1751 3 102.0
## 484 1751 4 62.4
## 485 1751 5 69.2
## 486 1751 6 20.4
## 487 1751 7 156.5
## 488 1751 8 116.8
## 489 1751 9 145.1
## 490 1751 10 94.1
## 491 1751 11 107.7
## 492 1751 12 77.1
## 493 1752 1 123.0
## 494 1752 2 51.8
## 495 1752 3 48.5
## 496 1752 4 27.0
## 497 1752 5 117.6
## 498 1752 6 96.0
## 499 1752 7 156.4
## 500 1752 8 141.3
## 501 1752 9 111.1
## 502 1752 10 70.1
## 503 1752 11 80.9
## 504 1752 12 55.0
## 505 1753 1 109.9
## 506 1753 2 126.4
## 507 1753 3 102.2
## 508 1753 4 62.7
## 509 1753 5 98.9
## 510 1753 6 83.5
## 511 1753 7 98.9
## 512 1753 8 116.5
## 513 1753 9 55.0
## 514 1753 10 70.4
## 515 1753 11 55.0
## 516 1753 12 119.8
## 517 1754 1 149.2
## 518 1754 2 73.0
## 519 1754 3 69.9
## 520 1754 4 61.5
## 521 1754 5 69.9
## 522 1754 6 160.6
## 523 1754 7 99.1
## 524 1754 8 81.4
## 525 1754 9 54.2
## 526 1754 10 70.9
## 527 1754 11 54.2
## 528 1754 12 99.1
## 529 1755 1 34.8
## 530 1755 2 38.4
## 531 1755 3 108.0
## 532 1755 4 128.4
## 533 1755 5 99.6
## 534 1755 6 96.0
## 535 1755 7 127.2
## 536 1755 8 100.8
## 537 1755 9 145.2
## 538 1755 10 70.8
## 539 1755 11 130.8
## 540 1755 12 120.0
## 541 1756 1 149.0
## 542 1756 2 72.6
## 543 1756 3 68.7
## 544 1756 4 152.9
## 545 1756 5 117.9
## 546 1756 6 140.0
## 547 1756 7 99.8
## 548 1756 8 141.3
## 549 1756 9 92.0
## 550 1756 10 151.6
## 551 1756 11 54.4
## 552 1756 12 55.7
## 553 1757 1 73.4
## 554 1757 2 39.3
## 555 1757 3 98.2
## 556 1757 4 113.7
## 557 1757 5 77.5
## 558 1757 6 46.5
## 559 1757 7 107.5
## 560 1757 8 173.6
## 561 1757 9 39.3
## 562 1757 10 74.4
## 563 1757 11 114.7
## 564 1757 12 75.4
## 565 1758 1 69.4
## 566 1758 2 103.5
## 567 1758 3 81.5
## 568 1758 4 59.5
## 569 1758 5 52.9
## 570 1758 6 54.0
## 571 1758 7 186.1
## 572 1758 8 110.1
## 573 1758 9 69.4
## 574 1758 10 85.9
## 575 1758 11 99.1
## 576 1758 12 130.0
## 577 1759 1 75.9
## 578 1759 2 28.6
## 579 1759 3 110.7
## 580 1759 4 65.2
## 581 1759 5 52.7
## 582 1759 6 102.7
## 583 1759 7 45.5
## 584 1759 8 80.4
## 585 1759 9 75.0
## 586 1759 10 124.1
## 587 1759 11 71.4
## 588 1759 12 60.7
## 589 1760 1 101.4
## 590 1760 2 97.9
## 591 1760 3 25.3
## 592 1760 4 33.4
## 593 1760 5 56.5
## 594 1760 6 109.5
## 595 1760 7 41.5
## 596 1760 8 112.9
## 597 1760 9 121.0
## 598 1760 10 169.4
## 599 1760 11 148.6
## 600 1760 12 134.8
## 601 1761 1 26.0
## 602 1761 2 83.9
## 603 1761 3 72.9
## 604 1761 4 66.9
## 605 1761 5 69.9
## 606 1761 6 81.9
## 607 1761 7 49.9
## 608 1761 8 88.9
## 609 1761 9 80.9
## 610 1761 10 163.8
## 611 1761 11 124.8
## 612 1761 12 88.9
## 613 1762 1 82.1
## 614 1762 2 46.8
## 615 1762 3 87.4
## 616 1762 4 52.1
## 617 1762 5 30.0
## 618 1762 6 26.5
## 619 1762 7 54.8
## 620 1762 8 103.3
## 621 1762 9 89.2
## 622 1762 10 200.5
## 623 1762 11 75.9
## 624 1762 12 34.4
## 625 1763 1 49.1
## 626 1763 2 99.4
## 627 1763 3 47.8
## 628 1763 4 96.9
## 629 1763 5 56.4
## 630 1763 6 110.4
## 631 1763 7 168.1
## 632 1763 8 128.8
## 633 1763 9 89.6
## 634 1763 10 110.4
## 635 1763 11 68.7
## 636 1763 12 201.2
## 637 1764 1 188.4
## 638 1764 2 106.9
## 639 1764 3 51.7
## 640 1764 4 49.4
## 641 1764 5 56.3
## 642 1764 6 77.0
## 643 1764 7 137.9
## 644 1764 8 104.6
## 645 1764 9 88.5
## 646 1764 10 103.4
## 647 1764 11 105.7
## 648 1764 12 79.3
## 649 1765 1 125.3
## 650 1765 2 58.8
## 651 1765 3 107.0
## 652 1765 4 118.6
## 653 1765 5 23.1
## 654 1765 6 44.4
## 655 1765 7 27.0
## 656 1765 8 97.4
## 657 1765 9 75.2
## 658 1765 10 168.7
## 659 1765 11 64.6
## 660 1765 12 54.0
## 661 1766 1 7.2
## 662 1766 2 75.0
## 663 1766 3 25.3
## 664 1766 4 79.5
## 665 1766 5 132.8
## 666 1766 6 127.4
## 667 1766 7 85.8
## 668 1766 8 56.0
## 669 1766 9 90.4
## 670 1766 10 101.2
## 671 1766 11 62.3
## 672 1766 12 60.5
## 673 1767 1 29.8
## 674 1767 2 116.0
## 675 1767 3 96.9
## 676 1767 4 22.4
## 677 1767 5 140.5
## 678 1767 6 17.0
## 679 1767 7 191.6
## 680 1767 8 102.2
## 681 1767 9 91.6
## 682 1767 10 63.9
## 683 1767 11 136.3
## 684 1767 12 56.4
## 685 1768 1 67.6
## 686 1768 2 192.8
## 687 1768 3 39.4
## 688 1768 4 83.0
## 689 1768 5 53.5
## 690 1768 6 187.2
## 691 1768 7 161.8
## 692 1768 8 81.6
## 693 1768 9 159.0
## 694 1768 10 105.5
## 695 1768 11 164.7
## 696 1768 12 111.2
## 697 1769 1 55.6
## 698 1769 2 71.8
## 699 1769 3 36.4
## 700 1769 4 46.5
## 701 1769 5 53.6
## 702 1769 6 145.7
## 703 1769 7 76.9
## 704 1769 8 137.6
## 705 1769 9 181.1
## 706 1769 10 53.6
## 707 1769 11 72.8
## 708 1769 12 79.9
## 709 1770 1 43.2
## 710 1770 2 50.2
## 711 1770 3 74.8
## 712 1770 4 70.1
## 713 1770 5 61.9
## 714 1770 6 149.6
## 715 1770 7 81.8
## 716 1770 8 65.4
## 717 1770 9 113.3
## 718 1770 10 93.5
## 719 1770 11 224.3
## 720 1770 12 140.2
## 721 1771 1 65.6
## 722 1771 2 32.3
## 723 1771 3 35.0
## 724 1771 4 39.5
## 725 1771 5 53.0
## 726 1771 6 53.0
## 727 1771 7 83.5
## 728 1771 8 122.2
## 729 1771 9 62.0
## 730 1771 10 185.0
## 731 1771 11 74.6
## 732 1771 12 92.5
## 733 1772 1 82.4
## 734 1772 2 85.9
## 735 1772 3 80.1
## 736 1772 4 44.1
## 737 1772 5 73.1
## 738 1772 6 116.1
## 739 1772 7 74.3
## 740 1772 8 104.5
## 741 1772 9 171.8
## 742 1772 10 114.9
## 743 1772 11 159.0
## 744 1772 12 54.6
## 745 1773 1 96.7
## 746 1773 2 63.2
## 747 1773 3 27.4
## 748 1773 4 69.2
## 749 1773 5 149.2
## 750 1773 6 50.1
## 751 1773 7 46.5
## 752 1773 8 83.5
## 753 1773 9 196.9
## 754 1773 10 149.2
## 755 1773 11 142.0
## 756 1773 12 119.3
## 757 1774 1 110.3
## 758 1774 2 85.7
## 759 1774 3 43.3
## 760 1774 4 65.0
## 761 1774 5 74.8
## 762 1774 6 90.6
## 763 1774 7 104.4
## 764 1774 8 88.6
## 765 1774 9 151.6
## 766 1774 10 40.4
## 767 1774 11 61.0
## 768 1774 12 68.9
## 769 1775 1 94.9
## 770 1775 2 123.6
## 771 1775 3 74.9
## 772 1775 4 35.0
## 773 1775 5 33.7
## 774 1775 6 48.7
## 775 1775 7 171.0
## 776 1775 8 159.8
## 777 1775 9 147.3
## 778 1775 10 177.3
## 779 1775 11 114.9
## 780 1775 12 68.7
## 781 1776 1 47.7
## 782 1776 2 116.1
## 783 1776 3 48.7
## 784 1776 4 31.1
## 785 1776 5 41.5
## 786 1776 6 96.4
## 787 1776 7 129.6
## 788 1776 8 152.4
## 789 1776 9 143.0
## 790 1776 10 69.4
## 791 1776 11 94.3
## 792 1776 12 66.3
## 793 1777 1 46.4
## 794 1777 2 61.9
## 795 1777 3 67.0
## 796 1777 4 76.3
## 797 1777 5 68.1
## 798 1777 6 112.4
## 799 1777 7 111.4
## 800 1777 8 106.2
## 801 1777 9 51.6
## 802 1777 10 175.3
## 803 1777 11 104.1
## 804 1777 12 50.5
## 805 1778 1 80.4
## 806 1778 2 40.8
## 807 1778 3 73.2
## 808 1778 4 39.6
## 809 1778 5 97.2
## 810 1778 6 97.2
## 811 1778 7 175.2
## 812 1778 8 50.4
## 813 1778 9 79.2
## 814 1778 10 181.2
## 815 1778 11 132.0
## 816 1778 12 153.6
## 817 1779 1 19.9
## 818 1779 2 34.6
## 819 1779 3 25.2
## 820 1779 4 71.3
## 821 1779 5 82.8
## 822 1779 6 83.9
## 823 1779 7 161.5
## 824 1779 8 36.7
## 825 1779 9 151.0
## 826 1779 10 145.7
## 827 1779 11 88.1
## 828 1779 12 147.8
## 829 1780 1 34.5
## 830 1780 2 79.6
## 831 1780 3 61.9
## 832 1780 4 97.3
## 833 1780 5 68.1
## 834 1780 6 53.0
## 835 1780 7 68.1
## 836 1780 8 30.9
## 837 1780 9 157.4
## 838 1780 10 139.7
## 839 1780 11 85.8
## 840 1780 12 16.8
## 841 1781 1 58.5
## 842 1781 2 106.3
## 843 1781 3 16.6
## 844 1781 4 67.3
## 845 1781 5 58.5
## 846 1781 6 105.3
## 847 1781 7 70.2
## 848 1781 8 131.6
## 849 1781 9 99.4
## 850 1781 10 23.4
## 851 1781 11 163.8
## 852 1781 12 74.1
## 853 1782 1 115.7
## 854 1782 2 29.2
## 855 1782 3 78.0
## 856 1782 4 136.4
## 857 1782 5 142.5
## 858 1782 6 59.7
## 859 1782 7 86.5
## 860 1782 8 193.7
## 861 1782 9 148.6
## 862 1782 10 113.3
## 863 1782 11 57.3
## 864 1782 12 57.3
## 865 1783 1 105.4
## 866 1783 2 86.9
## 867 1783 3 57.6
## 868 1783 4 16.3
## 869 1783 5 113.0
## 870 1783 6 106.5
## 871 1783 7 94.5
## 872 1783 8 141.2
## 873 1783 9 148.8
## 874 1783 10 89.1
## 875 1783 11 89.1
## 876 1783 12 38.0
## 877 1784 1 80.7
## 878 1784 2 48.8
## 879 1784 3 54.4
## 880 1784 4 87.3
## 881 1784 5 74.1
## 882 1784 6 144.5
## 883 1784 7 109.8
## 884 1784 8 111.6
## 885 1784 9 59.1
## 886 1784 10 17.8
## 887 1784 11 89.1
## 888 1784 12 61.0
## 889 1785 1 64.9
## 890 1785 2 21.6
## 891 1785 3 17.1
## 892 1785 4 23.4
## 893 1785 5 36.1
## 894 1785 6 43.3
## 895 1785 7 77.5
## 896 1785 8 196.5
## 897 1785 9 126.2
## 898 1785 10 123.5
## 899 1785 11 102.8
## 900 1785 12 68.5
## 901 1786 1 90.1
## 902 1786 2 32.0
## 903 1786 3 35.8
## 904 1786 4 25.2
## 905 1786 5 83.3
## 906 1786 6 70.7
## 907 1786 7 63.9
## 908 1786 8 130.7
## 909 1786 9 176.3
## 910 1786 10 73.6
## 911 1786 11 83.3
## 912 1786 12 103.6
## 913 1787 1 25.8
## 914 1787 2 73.9
## 915 1787 3 82.9
## 916 1787 4 43.7
## 917 1787 5 51.5
## 918 1787 6 69.4
## 919 1787 7 171.3
## 920 1787 8 105.3
## 921 1787 9 52.6
## 922 1787 10 211.6
## 923 1787 11 108.6
## 924 1787 12 123.2
## 925 1788 1 67.6
## 926 1788 2 64.1
## 927 1788 3 57.2
## 928 1788 4 51.6
## 929 1788 5 36.9
## 930 1788 6 44.6
## 931 1788 7 115.7
## 932 1788 8 68.3
## 933 1788 9 77.4
## 934 1788 10 53.0
## 935 1788 11 42.5
## 936 1788 12 18.1
## 937 1789 1 87.6
## 938 1789 2 114.4
## 939 1789 3 29.2
## 940 1789 4 71.8
## 941 1789 5 96.1
## 942 1789 6 137.5
## 943 1789 7 144.8
## 944 1789 8 28.0
## 945 1789 9 110.8
## 946 1789 10 154.6
## 947 1789 11 97.4
## 948 1789 12 144.8
## 949 1790 1 98.2
## 950 1790 2 33.8
## 951 1790 3 22.2
## 952 1790 4 37.0
## 953 1790 5 78.1
## 954 1790 6 98.2
## 955 1790 7 133.1
## 956 1790 8 99.3
## 957 1790 9 106.7
## 958 1790 10 72.9
## 959 1790 11 105.6
## 960 1790 12 171.1
## 961 1791 1 150.1
## 962 1791 2 91.2
## 963 1791 3 45.6
## 964 1791 4 89.0
## 965 1791 5 60.1
## 966 1791 6 32.3
## 967 1791 7 107.9
## 968 1791 8 121.2
## 969 1791 9 46.7
## 970 1791 10 106.8
## 971 1791 11 140.1
## 972 1791 12 121.2
## 973 1792 1 87.6
## 974 1792 2 86.3
## 975 1792 3 102.0
## 976 1792 4 119.0
## 977 1792 5 104.6
## 978 1792 6 60.2
## 979 1792 7 109.9
## 980 1792 8 167.4
## 981 1792 9 155.6
## 982 1792 10 117.7
## 983 1792 11 51.0
## 984 1792 12 146.5
## 985 1793 1 75.4
## 986 1793 2 121.2
## 987 1793 3 94.5
## 988 1793 4 59.2
## 989 1793 5 40.1
## 990 1793 6 68.7
## 991 1793 7 57.3
## 992 1793 8 112.6
## 993 1793 9 74.4
## 994 1793 10 68.7
## 995 1793 11 88.8
## 996 1793 12 93.5
## 997 1794 1 48.2
## 998 1794 2 127.4
## 999 1794 3 64.3
## 1000 1794 4 108.8
## 1001 1794 5 59.4
## 1002 1794 6 32.1
## 1003 1794 7 101.4
## 1004 1794 8 102.6
## 1005 1794 9 111.3
## 1006 1794 10 132.3
## 1007 1794 11 226.3
## 1008 1794 12 122.4
## 1009 1795 1 71.2
## 1010 1795 2 103.0
## 1011 1795 3 85.5
## 1012 1795 4 91.0
## 1013 1795 5 28.5
## 1014 1795 6 101.9
## 1015 1795 7 57.0
## 1016 1795 8 64.7
## 1017 1795 9 16.4
## 1018 1795 10 222.5
## 1019 1795 11 137.0
## 1020 1795 12 117.3
## 1021 1796 1 123.4
## 1022 1796 2 72.0
## 1023 1796 3 29.7
## 1024 1796 4 40.5
## 1025 1796 5 130.6
## 1026 1796 6 59.4
## 1027 1796 7 127.0
## 1028 1796 8 20.7
## 1029 1796 9 101.7
## 1030 1796 10 54.9
## 1031 1796 11 56.7
## 1032 1796 12 83.7
## 1033 1797 1 62.8
## 1034 1797 2 21.3
## 1035 1797 3 68.1
## 1036 1797 4 57.4
## 1037 1797 5 97.8
## 1038 1797 6 52.1
## 1039 1797 7 95.7
## 1040 1797 8 153.2
## 1041 1797 9 125.5
## 1042 1797 10 100.0
## 1043 1797 11 98.9
## 1044 1797 12 130.8
## 1045 1798 1 114.7
## 1046 1798 2 49.4
## 1047 1798 3 35.6
## 1048 1798 4 69.2
## 1049 1798 5 37.6
## 1050 1798 6 50.4
## 1051 1798 7 163.2
## 1052 1798 8 73.2
## 1053 1798 9 125.6
## 1054 1798 10 86.0
## 1055 1798 11 127.6
## 1056 1798 12 56.4
## 1057 1799 1 67.8
## 1058 1799 2 111.8
## 1059 1799 3 55.9
## 1060 1799 4 119.4
## 1061 1799 5 59.2
## 1062 1799 6 46.2
## 1063 1799 7 74.2
## 1064 1799 8 142.0
## 1065 1799 9 109.7
## 1066 1799 10 129.1
## 1067 1799 11 101.1
## 1068 1799 12 59.2
## 1069 1800 1 134.8
## 1070 1800 2 47.6
## 1071 1800 3 44.6
## 1072 1800 4 128.9
## 1073 1800 5 77.3
## 1074 1800 6 25.8
## 1075 1800 7 27.8
## 1076 1800 8 28.7
## 1077 1800 9 127.9
## 1078 1800 10 127.9
## 1079 1800 11 115.0
## 1080 1800 12 105.1
## 1081 1801 1 112.8
## 1082 1801 2 77.2
## 1083 1801 3 86.4
## 1084 1801 4 26.4
## 1085 1801 5 66.0
## 1086 1801 6 28.4
## 1087 1801 7 148.3
## 1088 1801 8 22.4
## 1089 1801 9 110.7
## 1090 1801 10 132.1
## 1091 1801 11 107.7
## 1092 1801 12 97.5
## 1093 1802 1 66.8
## 1094 1802 2 90.5
## 1095 1802 3 46.3
## 1096 1802 4 71.1
## 1097 1802 5 26.9
## 1098 1802 6 76.5
## 1099 1802 7 172.4
## 1100 1802 8 99.1
## 1101 1802 9 62.5
## 1102 1802 10 147.6
## 1103 1802 11 72.2
## 1104 1802 12 145.5
## 1105 1803 1 59.1
## 1106 1803 2 74.8
## 1107 1803 3 52.6
## 1108 1803 4 57.5
## 1109 1803 5 78.0
## 1110 1803 6 64.1
## 1111 1803 7 31.2
## 1112 1803 8 77.2
## 1113 1803 9 55.0
## 1114 1803 10 29.6
## 1115 1803 11 101.9
## 1116 1803 12 140.5
## 1117 1804 1 158.4
## 1118 1804 2 34.4
## 1119 1804 3 126.3
## 1120 1804 4 58.5
## 1121 1804 5 101.0
## 1122 1804 6 63.1
## 1123 1804 7 82.6
## 1124 1804 8 134.3
## 1125 1804 9 36.7
## 1126 1804 10 160.7
## 1127 1804 11 102.2
## 1128 1804 12 89.5
## 1129 1805 1 110.1
## 1130 1805 2 73.7
## 1131 1805 3 73.7
## 1132 1805 4 34.6
## 1133 1805 5 60.1
## 1134 1805 6 52.8
## 1135 1805 7 132.0
## 1136 1805 8 100.1
## 1137 1805 9 91.9
## 1138 1805 10 39.1
## 1139 1805 11 25.5
## 1140 1805 12 116.5
## 1141 1806 1 132.1
## 1142 1806 2 84.6
## 1143 1806 3 45.2
## 1144 1806 4 37.1
## 1145 1806 5 92.7
## 1146 1806 6 39.4
## 1147 1806 7 104.3
## 1148 1806 8 112.4
## 1149 1806 9 88.1
## 1150 1806 10 76.5
## 1151 1806 11 179.6
## 1152 1806 12 166.9
## 1153 1807 1 67.3
## 1154 1807 2 76.0
## 1155 1807 3 25.0
## 1156 1807 4 50.0
## 1157 1807 5 111.9
## 1158 1807 6 55.4
## 1159 1807 7 104.3
## 1160 1807 8 127.1
## 1161 1807 9 168.4
## 1162 1807 10 136.9
## 1163 1807 11 91.2
## 1164 1807 12 72.8
## 1165 1808 1 71.9
## 1166 1808 2 55.4
## 1167 1808 3 17.5
## 1168 1808 4 66.7
## 1169 1808 5 86.3
## 1170 1808 6 63.7
## 1171 1808 7 135.5
## 1172 1808 8 150.9
## 1173 1808 9 58.5
## 1174 1808 10 140.7
## 1175 1808 11 105.8
## 1176 1808 12 73.9
## 1177 1809 1 126.9
## 1178 1809 2 98.9
## 1179 1809 3 40.7
## 1180 1809 4 66.4
## 1181 1809 5 83.8
## 1182 1809 6 86.1
## 1183 1809 7 59.4
## 1184 1809 8 202.6
## 1185 1809 9 132.7
## 1186 1809 10 55.9
## 1187 1809 11 69.8
## 1188 1809 12 140.9
## 1189 1810 1 71.3
## 1190 1810 2 56.2
## 1191 1810 3 88.4
## 1192 1810 4 44.2
## 1193 1810 5 26.1
## 1194 1810 6 42.2
## 1195 1810 7 122.5
## 1196 1810 8 107.4
## 1197 1810 9 73.3
## 1198 1810 10 91.4
## 1199 1810 11 139.6
## 1200 1810 12 141.6
## 1201 1811 1 74.4
## 1202 1811 2 124.4
## 1203 1811 3 76.8
## 1204 1811 4 95.4
## 1205 1811 5 129.1
## 1206 1811 6 57.0
## 1207 1811 7 64.0
## 1208 1811 8 121.0
## 1209 1811 9 48.8
## 1210 1811 10 134.9
## 1211 1811 11 121.0
## 1212 1811 12 116.3
## 1213 1812 1 59.3
## 1214 1812 2 132.7
## 1215 1812 3 88.5
## 1216 1812 4 41.0
## 1217 1812 5 97.1
## 1218 1812 6 83.1
## 1219 1812 7 82.0
## 1220 1812 8 84.1
## 1221 1812 9 80.9
## 1222 1812 10 170.4
## 1223 1812 11 116.5
## 1224 1812 12 43.1
## 1225 1813 1 82.8
## 1226 1813 2 138.0
## 1227 1813 3 44.0
## 1228 1813 4 58.3
## 1229 1813 5 114.5
## 1230 1813 6 49.1
## 1231 1813 7 84.9
## 1232 1813 8 38.9
## 1233 1813 9 103.3
## 1234 1813 10 150.3
## 1235 1813 11 106.3
## 1236 1813 12 52.1
## 1237 1814 1 29.7
## 1238 1814 2 57.2
## 1239 1814 3 44.5
## 1240 1814 4 101.7
## 1241 1814 5 50.8
## 1242 1814 6 58.3
## 1243 1814 7 77.3
## 1244 1814 8 81.6
## 1245 1814 9 39.2
## 1246 1814 10 137.7
## 1247 1814 11 191.7
## 1248 1814 12 188.5
## 1249 1815 1 48.8
## 1250 1815 2 90.3
## 1251 1815 3 111.0
## 1252 1815 4 39.4
## 1253 1815 5 95.5
## 1254 1815 6 82.0
## 1255 1815 7 52.9
## 1256 1815 8 100.7
## 1257 1815 9 121.4
## 1258 1815 10 133.9
## 1259 1815 11 83.0
## 1260 1815 12 78.9
## 1261 1816 1 73.4
## 1262 1816 2 43.1
## 1263 1816 3 68.7
## 1264 1816 4 61.8
## 1265 1816 5 103.7
## 1266 1816 6 76.9
## 1267 1816 7 163.1
## 1268 1816 8 90.9
## 1269 1816 9 136.3
## 1270 1816 10 146.8
## 1271 1816 11 64.1
## 1272 1816 12 136.3
## 1273 1817 1 86.1
## 1274 1817 2 111.8
## 1275 1817 3 86.1
## 1276 1817 4 8.9
## 1277 1817 5 59.2
## 1278 1817 6 106.2
## 1279 1817 7 158.7
## 1280 1817 8 157.6
## 1281 1817 9 35.8
## 1282 1817 10 43.6
## 1283 1817 11 140.8
## 1284 1817 12 122.9
## 1285 1818 1 151.3
## 1286 1818 2 84.1
## 1287 1818 3 153.7
## 1288 1818 4 135.7
## 1289 1818 5 50.4
## 1290 1818 6 68.4
## 1291 1818 7 79.3
## 1292 1818 8 37.2
## 1293 1818 9 121.3
## 1294 1818 10 129.7
## 1295 1818 11 110.5
## 1296 1818 12 79.3
## 1297 1819 1 158.8
## 1298 1819 2 121.1
## 1299 1819 3 51.4
## 1300 1819 4 68.5
## 1301 1819 5 94.8
## 1302 1819 6 102.8
## 1303 1819 7 76.5
## 1304 1819 8 65.1
## 1305 1819 9 82.3
## 1306 1819 10 110.8
## 1307 1819 11 88.0
## 1308 1819 12 122.2
## 1309 1820 1 73.7
## 1310 1820 2 39.8
## 1311 1820 3 77.6
## 1312 1820 4 39.8
## 1313 1820 5 140.6
## 1314 1820 6 66.9
## 1315 1820 7 50.4
## 1316 1820 8 125.1
## 1317 1820 9 86.3
## 1318 1820 10 95.0
## 1319 1820 11 69.8
## 1320 1820 12 104.7
## 1321 1821 1 57.7
## 1322 1821 2 17.4
## 1323 1821 3 117.7
## 1324 1821 4 109.0
## 1325 1821 5 59.9
## 1326 1821 6 12.0
## 1327 1821 7 55.6
## 1328 1821 8 100.2
## 1329 1821 9 124.2
## 1330 1821 10 102.4
## 1331 1821 11 156.9
## 1332 1821 12 176.5
## 1333 1822 1 50.9
## 1334 1822 2 107.7
## 1335 1822 3 122.7
## 1336 1822 4 69.5
## 1337 1822 5 54.4
## 1338 1822 6 34.7
## 1339 1822 7 191.0
## 1340 1822 8 104.2
## 1341 1822 9 53.3
## 1342 1822 10 150.5
## 1343 1822 11 163.2
## 1344 1822 12 55.6
## 1345 1823 1 81.9
## 1346 1823 2 94.7
## 1347 1823 3 85.4
## 1348 1823 4 86.5
## 1349 1823 5 126.3
## 1350 1823 6 44.4
## 1351 1823 7 164.9
## 1352 1823 8 115.8
## 1353 1823 9 90.1
## 1354 1823 10 87.7
## 1355 1823 11 52.6
## 1356 1823 12 139.2
## 1357 1824 1 72.1
## 1358 1824 2 52.8
## 1359 1824 3 74.1
## 1360 1824 4 55.8
## 1361 1824 5 20.3
## 1362 1824 6 54.8
## 1363 1824 7 35.5
## 1364 1824 8 58.9
## 1365 1824 9 90.3
## 1366 1824 10 191.8
## 1367 1824 11 155.3
## 1368 1824 12 153.3
## 1369 1825 1 86.2
## 1370 1825 2 48.2
## 1371 1825 3 65.6
## 1372 1825 4 52.3
## 1373 1825 5 88.2
## 1374 1825 6 72.8
## 1375 1825 7 20.5
## 1376 1825 8 88.2
## 1377 1825 9 104.6
## 1378 1825 10 145.7
## 1379 1825 11 130.3
## 1380 1825 12 123.1
## 1381 1826 1 77.2
## 1382 1826 2 160.6
## 1383 1826 3 60.3
## 1384 1826 4 50.6
## 1385 1826 5 17.7
## 1386 1826 6 8.9
## 1387 1826 7 68.3
## 1388 1826 8 100.3
## 1389 1826 9 72.8
## 1390 1826 10 109.1
## 1391 1826 11 76.3
## 1392 1826 12 83.4
## 1393 1827 1 78.9
## 1394 1827 2 42.1
## 1395 1827 3 155.7
## 1396 1827 4 55.7
## 1397 1827 5 90.4
## 1398 1827 6 91.5
## 1399 1827 7 66.3
## 1400 1827 8 92.5
## 1401 1827 9 70.5
## 1402 1827 10 92.5
## 1403 1827 11 65.2
## 1404 1827 12 150.4
## 1405 1828 1 125.7
## 1406 1828 2 101.3
## 1407 1828 3 62.2
## 1408 1828 4 113.5
## 1409 1828 5 62.2
## 1410 1828 6 67.1
## 1411 1828 7 153.8
## 1412 1828 8 119.6
## 1413 1828 9 64.7
## 1414 1828 10 70.8
## 1415 1828 11 119.6
## 1416 1828 12 159.9
## 1417 1829 1 41.1
## 1418 1829 2 59.7
## 1419 1829 3 42.1
## 1420 1829 4 111.6
## 1421 1829 5 40.2
## 1422 1829 6 72.5
## 1423 1829 7 109.7
## 1424 1829 8 183.1
## 1425 1829 9 83.2
## 1426 1829 10 116.5
## 1427 1829 11 62.7
## 1428 1829 12 56.8
## 1429 1830 1 40.1
## 1430 1830 2 72.1
## 1431 1830 3 68.1
## 1432 1830 4 79.2
## 1433 1830 5 80.2
## 1434 1830 6 61.1
## 1435 1830 7 105.2
## 1436 1830 8 81.2
## 1437 1830 9 130.3
## 1438 1830 10 63.1
## 1439 1830 11 120.2
## 1440 1830 12 101.2
## 1441 1831 1 45.1
## 1442 1831 2 91.2
## 1443 1831 3 109.2
## 1444 1831 4 42.8
## 1445 1831 5 21.4
## 1446 1831 6 71.0
## 1447 1831 7 84.5
## 1448 1831 8 74.3
## 1449 1831 9 84.5
## 1450 1831 10 146.4
## 1451 1831 11 194.8
## 1452 1831 12 161.1
## 1453 1832 1 46.8
## 1454 1832 2 56.3
## 1455 1832 3 80.2
## 1456 1832 4 57.3
## 1457 1832 5 42.0
## 1458 1832 6 94.5
## 1459 1832 7 42.0
## 1460 1832 8 108.8
## 1461 1832 9 40.1
## 1462 1832 10 113.6
## 1463 1832 11 127.9
## 1464 1832 12 145.1
## 1465 1833 1 24.4
## 1466 1833 2 137.0
## 1467 1833 3 34.8
## 1468 1833 4 69.7
## 1469 1833 5 47.6
## 1470 1833 6 126.5
## 1471 1833 7 70.8
## 1472 1833 8 51.1
## 1473 1833 9 117.2
## 1474 1833 10 118.4
## 1475 1833 11 159.0
## 1476 1833 12 204.3
## 1477 1834 1 184.3
## 1478 1834 2 98.2
## 1479 1834 3 65.8
## 1480 1834 4 14.2
## 1481 1834 5 45.6
## 1482 1834 6 101.3
## 1483 1834 7 113.4
## 1484 1834 8 82.0
## 1485 1834 9 79.0
## 1486 1834 10 88.1
## 1487 1834 11 78.0
## 1488 1834 12 62.8
## 1489 1835 1 82.7
## 1490 1835 2 145.5
## 1491 1835 3 88.2
## 1492 1835 4 29.8
## 1493 1835 5 105.8
## 1494 1835 6 38.6
## 1495 1835 7 83.8
## 1496 1835 8 76.1
## 1497 1835 9 137.8
## 1498 1835 10 114.7
## 1499 1835 11 137.8
## 1500 1835 12 61.7
## 1501 1836 1 98.2
## 1502 1836 2 47.5
## 1503 1836 3 115.9
## 1504 1836 4 56.3
## 1505 1836 5 8.8
## 1506 1836 6 83.9
## 1507 1836 7 143.5
## 1508 1836 8 59.6
## 1509 1836 9 128.0
## 1510 1836 10 125.8
## 1511 1836 11 140.2
## 1512 1836 12 96.0
## 1513 1837 1 62.8
## 1514 1837 2 118.6
## 1515 1837 3 35.9
## 1516 1837 4 63.8
## 1517 1837 5 53.8
## 1518 1837 6 61.8
## 1519 1837 7 116.6
## 1520 1837 8 71.8
## 1521 1837 9 79.7
## 1522 1837 10 100.7
## 1523 1837 11 109.6
## 1524 1837 12 121.6
## 1525 1838 1 53.8
## 1526 1838 2 83.8
## 1527 1838 3 85.9
## 1528 1838 4 75.5
## 1529 1838 5 47.6
## 1530 1838 6 97.2
## 1531 1838 7 106.5
## 1532 1838 8 114.8
## 1533 1838 9 59.0
## 1534 1838 10 84.8
## 1535 1838 11 143.8
## 1536 1838 12 81.7
## 1537 1839 1 76.0
## 1538 1839 2 78.3
## 1539 1839 3 92.1
## 1540 1839 4 51.8
## 1541 1839 5 23.0
## 1542 1839 6 89.8
## 1543 1839 7 127.8
## 1544 1839 8 110.5
## 1545 1839 9 163.5
## 1546 1839 10 117.4
## 1547 1839 11 108.2
## 1548 1839 12 112.8
## 1549 1840 1 133.8
## 1550 1840 2 72.4
## 1551 1840 3 11.9
## 1552 1840 4 28.4
## 1553 1840 5 83.4
## 1554 1840 6 68.7
## 1555 1840 7 86.2
## 1556 1840 8 100.8
## 1557 1840 9 77.9
## 1558 1840 10 48.6
## 1559 1840 11 121.0
## 1560 1840 12 83.4
## 1561 1841 1 66.5
## 1562 1841 2 69.7
## 1563 1841 3 90.5
## 1564 1841 4 52.0
## 1565 1841 5 64.5
## 1566 1841 6 67.6
## 1567 1841 7 81.1
## 1568 1841 8 108.1
## 1569 1841 9 93.6
## 1570 1841 10 138.3
## 1571 1841 11 104.0
## 1572 1841 12 104.0
## 1573 1842 1 89.2
## 1574 1842 2 95.2
## 1575 1842 3 93.2
## 1576 1842 4 16.8
## 1577 1842 5 98.1
## 1578 1842 6 60.5
## 1579 1842 7 105.1
## 1580 1842 8 50.5
## 1581 1842 9 93.2
## 1582 1842 10 57.5
## 1583 1842 11 157.6
## 1584 1842 12 74.3
## 1585 1843 1 81.8
## 1586 1843 2 53.2
## 1587 1843 3 61.1
## 1588 1843 4 102.5
## 1589 1843 5 116.3
## 1590 1843 6 76.9
## 1591 1843 7 77.9
## 1592 1843 8 97.6
## 1593 1843 9 46.3
## 1594 1843 10 125.2
## 1595 1843 11 104.5
## 1596 1843 12 42.4
## 1597 1844 1 70.9
## 1598 1844 2 104.0
## 1599 1844 3 79.4
## 1600 1844 4 38.8
## 1601 1844 5 7.6
## 1602 1844 6 73.8
## 1603 1844 7 75.7
## 1604 1844 8 106.9
## 1605 1844 9 68.1
## 1606 1844 10 142.8
## 1607 1844 11 115.4
## 1608 1844 12 62.4
## 1609 1845 1 140.5
## 1610 1845 2 46.5
## 1611 1845 3 50.8
## 1612 1845 4 65.9
## 1613 1845 5 46.5
## 1614 1845 6 105.9
## 1615 1845 7 117.8
## 1616 1845 8 78.9
## 1617 1845 9 65.9
## 1618 1845 10 123.2
## 1619 1845 11 135.1
## 1620 1845 12 103.8
## 1621 1846 1 125.5
## 1622 1846 2 61.5
## 1623 1846 3 111.3
## 1624 1846 4 134.9
## 1625 1846 5 61.5
## 1626 1846 6 54.4
## 1627 1846 7 98.2
## 1628 1846 8 136.1
## 1629 1846 9 79.3
## 1630 1846 10 156.2
## 1631 1846 11 120.7
## 1632 1846 12 43.8
## 1633 1847 1 113.2
## 1634 1847 2 67.9
## 1635 1847 3 54.5
## 1636 1847 4 88.5
## 1637 1847 5 111.1
## 1638 1847 6 47.3
## 1639 1847 7 39.1
## 1640 1847 8 48.4
## 1641 1847 9 66.9
## 1642 1847 10 86.4
## 1643 1847 11 113.2
## 1644 1847 12 192.4
## 1645 1848 1 79.4
## 1646 1848 2 144.7
## 1647 1848 3 93.7
## 1648 1848 4 97.2
## 1649 1848 5 37.9
## 1650 1848 6 98.4
## 1651 1848 7 88.9
## 1652 1848 8 170.7
## 1653 1848 9 77.1
## 1654 1848 10 119.8
## 1655 1848 11 64.0
## 1656 1848 12 113.8
## 1657 1849 1 114.5
## 1658 1849 2 45.4
## 1659 1849 3 37.8
## 1660 1849 4 103.7
## 1661 1849 5 82.1
## 1662 1849 6 19.4
## 1663 1849 7 86.4
## 1664 1849 8 103.7
## 1665 1849 9 142.5
## 1666 1849 10 130.7
## 1667 1849 11 93.9
## 1668 1849 12 119.9
## 1669 1850 1 113.5
## 1670 1850 2 86.4
## 1671 1850 3 38.6
## 1672 1850 4 138.3
## 1673 1850 5 59.7
## 1674 1850 6 54.5
## 1675 1850 7 103.4
## 1676 1850 8 76.3
## 1677 1850 9 70.5
## 1678 1850 10 62.7
## 1679 1850 11 113.1
## 1680 1850 12 104.0
## 1681 1851 1 195.0
## 1682 1851 2 55.2
## 1683 1851 3 79.9
## 1684 1851 4 54.7
## 1685 1851 5 45.0
## 1686 1851 6 101.5
## 1687 1851 7 90.3
## 1688 1851 8 96.6
## 1689 1851 9 49.4
## 1690 1851 10 113.4
## 1691 1851 11 45.4
## 1692 1851 12 68.8
## 1693 1852 1 161.4
## 1694 1852 2 92.4
## 1695 1852 3 44.6
## 1696 1852 4 44.4
## 1697 1852 5 70.2
## 1698 1852 6 179.4
## 1699 1852 7 68.6
## 1700 1852 8 110.1
## 1701 1852 9 57.3
## 1702 1852 10 88.7
## 1703 1852 11 223.2
## 1704 1852 12 208.2
## 1705 1853 1 144.7
## 1706 1853 2 43.0
## 1707 1853 3 83.5
## 1708 1853 4 75.3
## 1709 1853 5 33.2
## 1710 1853 6 77.5
## 1711 1853 7 100.5
## 1712 1853 8 82.9
## 1713 1853 9 60.2
## 1714 1853 10 185.1
## 1715 1853 11 106.0
## 1716 1853 12 48.4
## 1717 1854 1 138.6
## 1718 1854 2 36.0
## 1719 1854 3 37.3
## 1720 1854 4 18.8
## 1721 1854 5 100.0
## 1722 1854 6 110.4
## 1723 1854 7 102.6
## 1724 1854 8 60.5
## 1725 1854 9 47.8
## 1726 1854 10 77.8
## 1727 1854 11 74.6
## 1728 1854 12 94.9
## 1729 1855 1 16.5
## 1730 1855 2 59.1
## 1731 1855 3 86.0
## 1732 1855 4 36.7
## 1733 1855 5 79.8
## 1734 1855 6 68.2
## 1735 1855 7 84.1
## 1736 1855 8 105.0
## 1737 1855 9 50.7
## 1738 1855 10 103.2
## 1739 1855 11 49.2
## 1740 1855 12 87.4
## 1741 1856 1 111.6
## 1742 1856 2 82.0
## 1743 1856 3 35.9
## 1744 1856 4 76.2
## 1745 1856 5 124.1
## 1746 1856 6 59.6
## 1747 1856 7 44.7
## 1748 1856 8 87.7
## 1749 1856 9 91.7
## 1750 1856 10 82.4
## 1751 1856 11 39.3
## 1752 1856 12 115.3
## 1753 1857 1 97.2
## 1754 1857 2 56.7
## 1755 1857 3 98.3
## 1756 1857 4 118.7
## 1757 1857 5 53.8
## 1758 1857 6 81.7
## 1759 1857 7 59.4
## 1760 1857 8 66.4
## 1761 1857 9 90.6
## 1762 1857 10 80.4
## 1763 1857 11 95.7
## 1764 1857 12 64.4
## 1765 1858 1 61.4
## 1766 1858 2 69.7
## 1767 1858 3 51.7
## 1768 1858 4 143.5
## 1769 1858 5 86.4
## 1770 1858 6 43.0
## 1771 1858 7 83.0
## 1772 1858 8 69.5
## 1773 1858 9 85.3
## 1774 1858 10 83.2
## 1775 1858 11 68.6
## 1776 1858 12 141.1
## 1777 1859 1 89.8
## 1778 1859 2 51.0
## 1779 1859 3 90.1
## 1780 1859 4 106.9
## 1781 1859 5 16.3
## 1782 1859 6 36.5
## 1783 1859 7 63.1
## 1784 1859 8 90.3
## 1785 1859 9 132.4
## 1786 1859 10 76.9
## 1787 1859 11 120.0
## 1788 1859 12 115.9
## 1789 1860 1 164.6
## 1790 1860 2 52.1
## 1791 1860 3 86.2
## 1792 1860 4 56.4
## 1793 1860 5 101.4
## 1794 1860 6 154.4
## 1795 1860 7 68.3
## 1796 1860 8 152.2
## 1797 1860 9 52.3
## 1798 1860 10 76.7
## 1799 1860 11 90.9
## 1800 1860 12 88.4
## 1801 1861 1 88.9
## 1802 1861 2 90.3
## 1803 1861 3 120.5
## 1804 1861 4 36.0
## 1805 1861 5 18.2
## 1806 1861 6 99.4
## 1807 1861 7 164.4
## 1808 1861 8 165.0
## 1809 1861 9 174.7
## 1810 1861 10 99.2
## 1811 1861 11 114.5
## 1812 1861 12 78.5
## 1813 1862 1 158.9
## 1814 1862 2 41.5
## 1815 1862 3 104.2
## 1816 1862 4 100.0
## 1817 1862 5 100.5
## 1818 1862 6 91.4
## 1819 1862 7 100.2
## 1820 1862 8 76.7
## 1821 1862 9 63.8
## 1822 1862 10 152.4
## 1823 1862 11 87.8
## 1824 1862 12 126.7
## 1825 1863 1 104.0
## 1826 1863 2 47.3
## 1827 1863 3 100.7
## 1828 1863 4 55.5
## 1829 1863 5 59.5
## 1830 1863 6 83.9
## 1831 1863 7 26.7
## 1832 1863 8 124.9
## 1833 1863 9 114.5
## 1834 1863 10 172.7
## 1835 1863 11 124.0
## 1836 1863 12 94.7
## 1837 1864 1 79.9
## 1838 1864 2 51.2
## 1839 1864 3 88.2
## 1840 1864 4 45.8
## 1841 1864 5 52.6
## 1842 1864 6 80.0
## 1843 1864 7 39.7
## 1844 1864 8 54.8
## 1845 1864 9 96.8
## 1846 1864 10 97.4
## 1847 1864 11 156.6
## 1848 1864 12 81.8
## 1849 1865 1 120.4
## 1850 1865 2 92.1
## 1851 1865 3 78.6
## 1852 1865 4 36.2
## 1853 1865 5 111.1
## 1854 1865 6 26.0
## 1855 1865 7 85.2
## 1856 1865 8 126.5
## 1857 1865 9 29.6
## 1858 1865 10 144.7
## 1859 1865 11 161.3
## 1860 1865 12 127.2
## 1861 1866 1 146.9
## 1862 1866 2 84.6
## 1863 1866 3 100.3
## 1864 1866 4 68.4
## 1865 1866 5 46.5
## 1866 1866 6 89.2
## 1867 1866 7 47.7
## 1868 1866 8 112.0
## 1869 1866 9 129.2
## 1870 1866 10 69.2
## 1871 1866 11 89.2
## 1872 1866 12 118.4
## 1873 1867 1 104.6
## 1874 1867 2 89.6
## 1875 1867 3 83.3
## 1876 1867 4 97.1
## 1877 1867 5 106.9
## 1878 1867 6 33.8
## 1879 1867 7 99.6
## 1880 1867 8 85.8
## 1881 1867 9 71.9
## 1882 1867 10 144.9
## 1883 1867 11 32.5
## 1884 1867 12 62.7
## 1885 1868 1 132.1
## 1886 1868 2 80.2
## 1887 1868 3 104.7
## 1888 1868 4 69.1
## 1889 1868 5 69.7
## 1890 1868 6 35.0
## 1891 1868 7 40.8
## 1892 1868 8 130.1
## 1893 1868 9 91.5
## 1894 1868 10 92.1
## 1895 1868 11 109.3
## 1896 1868 12 192.8
## 1897 1869 1 149.5
## 1898 1869 2 101.3
## 1899 1869 3 76.2
## 1900 1869 4 73.3
## 1901 1869 5 95.5
## 1902 1869 6 28.1
## 1903 1869 7 62.4
## 1904 1869 8 42.6
## 1905 1869 9 159.3
## 1906 1869 10 41.8
## 1907 1869 11 103.0
## 1908 1869 12 142.2
## 1909 1870 1 106.6
## 1910 1870 2 79.0
## 1911 1870 3 60.0
## 1912 1870 4 41.0
## 1913 1870 5 74.5
## 1914 1870 6 31.6
## 1915 1870 7 41.5
## 1916 1870 8 60.4
## 1917 1870 9 81.8
## 1918 1870 10 207.1
## 1919 1870 11 69.3
## 1920 1870 12 76.1
## 1921 1871 1 125.9
## 1922 1871 2 93.7
## 1923 1871 3 69.3
## 1924 1871 4 106.2
## 1925 1871 5 26.3
## 1926 1871 6 81.6
## 1927 1871 7 148.2
## 1928 1871 8 74.8
## 1929 1871 9 83.3
## 1930 1871 10 111.0
## 1931 1871 11 80.0
## 1932 1871 12 76.1
## 1933 1872 1 152.9
## 1934 1872 2 117.6
## 1935 1872 3 89.5
## 1936 1872 4 69.3
## 1937 1872 5 56.7
## 1938 1872 6 110.5
## 1939 1872 7 88.2
## 1940 1872 8 115.7
## 1941 1872 9 124.6
## 1942 1872 10 140.0
## 1943 1872 11 145.2
## 1944 1872 12 194.7
## 1945 1873 1 160.0
## 1946 1873 2 43.9
## 1947 1873 3 91.7
## 1948 1873 4 38.8
## 1949 1873 5 57.6
## 1950 1873 6 50.0
## 1951 1873 7 134.0
## 1952 1873 8 151.7
## 1953 1873 9 94.5
## 1954 1873 10 112.7
## 1955 1873 11 75.2
## 1956 1873 12 35.4
## 1957 1874 1 81.2
## 1958 1874 2 80.6
## 1959 1874 3 54.1
## 1960 1874 4 62.0
## 1961 1874 5 38.9
## 1962 1874 6 43.0
## 1963 1874 7 82.0
## 1964 1874 8 120.5
## 1965 1874 9 107.6
## 1966 1874 10 137.9
## 1967 1874 11 118.7
## 1968 1874 12 122.4
## 1969 1875 1 166.6
## 1970 1875 2 53.1
## 1971 1875 3 40.6
## 1972 1875 4 35.4
## 1973 1875 5 67.9
## 1974 1875 6 94.8
## 1975 1875 7 79.0
## 1976 1875 8 81.6
## 1977 1875 9 149.1
## 1978 1875 10 173.1
## 1979 1875 11 118.5
## 1980 1875 12 66.1
## 1981 1876 1 56.0
## 1982 1876 2 134.4
## 1983 1876 3 111.2
## 1984 1876 4 81.4
## 1985 1876 5 20.1
## 1986 1876 6 51.8
## 1987 1876 7 51.9
## 1988 1876 8 103.3
## 1989 1876 9 125.7
## 1990 1876 10 134.8
## 1991 1876 11 131.2
## 1992 1876 12 205.0
## 1993 1877 1 170.9
## 1994 1877 2 74.2
## 1995 1877 3 86.2
## 1996 1877 4 118.2
## 1997 1877 5 76.3
## 1998 1877 6 83.4
## 1999 1877 7 82.8
## 2000 1877 8 141.5
## 2001 1877 9 79.3
## 2002 1877 10 136.3
## 2003 1877 11 162.4
## 2004 1877 12 118.4
## 2005 1878 1 94.8
## 2006 1878 2 62.4
## 2007 1878 3 46.3
## 2008 1878 4 75.4
## 2009 1878 5 122.0
## 2010 1878 6 133.9
## 2011 1878 7 40.5
## 2012 1878 8 114.8
## 2013 1878 9 92.7
## 2014 1878 10 107.7
## 2015 1878 11 66.1
## 2016 1878 12 67.4
## 2017 1879 1 101.7
## 2018 1879 2 120.4
## 2019 1879 3 55.1
## 2020 1879 4 70.5
## 2021 1879 5 71.0
## 2022 1879 6 155.0
## 2023 1879 7 119.9
## 2024 1879 8 122.6
## 2025 1879 9 121.6
## 2026 1879 10 47.4
## 2027 1879 11 28.6
## 2028 1879 12 56.5
## 2029 1880 1 47.7
## 2030 1880 2 107.4
## 2031 1880 3 91.9
## 2032 1880 4 100.7
## 2033 1880 5 37.4
## 2034 1880 6 88.5
## 2035 1880 7 146.3
## 2036 1880 8 52.0
## 2037 1880 9 84.8
## 2038 1880 10 85.8
## 2039 1880 11 133.4
## 2040 1880 12 99.2
## 2041 1881 1 36.5
## 2042 1881 2 118.1
## 2043 1881 3 103.5
## 2044 1881 4 45.2
## 2045 1881 5 66.8
## 2046 1881 6 128.1
## 2047 1881 7 69.6
## 2048 1881 8 130.3
## 2049 1881 9 74.4
## 2050 1881 10 103.8
## 2051 1881 11 146.7
## 2052 1881 12 125.4
## 2053 1882 1 80.2
## 2054 1882 2 94.5
## 2055 1882 3 84.2
## 2056 1882 4 117.6
## 2057 1882 5 77.3
## 2058 1882 6 97.3
## 2059 1882 7 138.7
## 2060 1882 8 90.8
## 2061 1882 9 91.8
## 2062 1882 10 115.7
## 2063 1882 11 148.3
## 2064 1882 12 116.2
## 2065 1883 1 167.2
## 2066 1883 2 174.4
## 2067 1883 3 49.1
## 2068 1883 4 66.7
## 2069 1883 5 62.3
## 2070 1883 6 59.8
## 2071 1883 7 108.0
## 2072 1883 8 109.7
## 2073 1883 9 134.1
## 2074 1883 10 99.4
## 2075 1883 11 127.0
## 2076 1883 12 57.0
## 2077 1884 1 145.0
## 2078 1884 2 156.7
## 2079 1884 3 117.9
## 2080 1884 4 45.2
## 2081 1884 5 71.9
## 2082 1884 6 26.3
## 2083 1884 7 94.4
## 2084 1884 8 49.6
## 2085 1884 9 72.2
## 2086 1884 10 73.1
## 2087 1884 11 97.3
## 2088 1884 12 116.6
## 2089 1885 1 98.2
## 2090 1885 2 127.0
## 2091 1885 3 75.9
## 2092 1885 4 90.2
## 2093 1885 5 72.4
## 2094 1885 6 30.3
## 2095 1885 7 56.9
## 2096 1885 8 84.0
## 2097 1885 9 144.0
## 2098 1885 10 115.2
## 2099 1885 11 74.4
## 2100 1885 12 46.7
## 2101 1886 1 112.6
## 2102 1886 2 82.6
## 2103 1886 3 100.7
## 2104 1886 4 62.8
## 2105 1886 5 111.8
## 2106 1886 6 44.0
## 2107 1886 7 103.1
## 2108 1886 8 75.6
## 2109 1886 9 109.2
## 2110 1886 10 150.9
## 2111 1886 11 91.3
## 2112 1886 12 146.1
## 2113 1887 1 102.2
## 2114 1887 2 47.4
## 2115 1887 3 45.3
## 2116 1887 4 49.8
## 2117 1887 5 38.8
## 2118 1887 6 14.9
## 2119 1887 7 71.6
## 2120 1887 8 84.4
## 2121 1887 9 85.5
## 2122 1887 10 69.9
## 2123 1887 11 94.4
## 2124 1887 12 84.8
## 2125 1888 1 89.7
## 2126 1888 2 25.7
## 2127 1888 3 98.3
## 2128 1888 4 55.9
## 2129 1888 5 76.7
## 2130 1888 6 121.9
## 2131 1888 7 139.8
## 2132 1888 8 88.4
## 2133 1888 9 33.2
## 2134 1888 10 65.0
## 2135 1888 11 129.3
## 2136 1888 12 142.0
## 2137 1889 1 90.3
## 2138 1889 2 81.1
## 2139 1889 3 50.5
## 2140 1889 4 74.6
## 2141 1889 5 102.7
## 2142 1889 6 28.0
## 2143 1889 7 63.7
## 2144 1889 8 160.4
## 2145 1889 9 55.1
## 2146 1889 10 135.2
## 2147 1889 11 57.5
## 2148 1889 12 109.1
## 2149 1890 1 143.3
## 2150 1890 2 45.7
## 2151 1890 3 97.9
## 2152 1890 4 45.9
## 2153 1890 5 75.9
## 2154 1890 6 88.2
## 2155 1890 7 73.1
## 2156 1890 8 84.7
## 2157 1890 9 85.3
## 2158 1890 10 65.0
## 2159 1890 11 171.8
## 2160 1890 12 70.3
## 2161 1891 1 58.7
## 2162 1891 2 10.1
## 2163 1891 3 48.5
## 2164 1891 4 61.4
## 2165 1891 5 87.7
## 2166 1891 6 74.2
## 2167 1891 7 53.6
## 2168 1891 8 161.3
## 2169 1891 9 82.9
## 2170 1891 10 141.8
## 2171 1891 11 103.1
## 2172 1891 12 158.8
## 2173 1892 1 70.9
## 2174 1892 2 81.0
## 2175 1892 3 27.9
## 2176 1892 4 32.6
## 2177 1892 5 112.3
## 2178 1892 6 70.7
## 2179 1892 7 90.1
## 2180 1892 8 164.6
## 2181 1892 9 101.3
## 2182 1892 10 89.7
## 2183 1892 11 134.3
## 2184 1892 12 74.8
## 2185 1893 1 88.3
## 2186 1893 2 102.2
## 2187 1893 3 23.6
## 2188 1893 4 29.8
## 2189 1893 5 50.0
## 2190 1893 6 53.2
## 2191 1893 7 74.2
## 2192 1893 8 113.7
## 2193 1893 9 58.2
## 2194 1893 10 81.4
## 2195 1893 11 65.3
## 2196 1893 12 116.7
## 2197 1894 1 131.9
## 2198 1894 2 94.9
## 2199 1894 3 62.2
## 2200 1894 4 107.6
## 2201 1894 5 72.3
## 2202 1894 6 62.8
## 2203 1894 7 114.1
## 2204 1894 8 88.7
## 2205 1894 9 16.3
## 2206 1894 10 123.3
## 2207 1894 11 116.4
## 2208 1894 12 97.2
## 2209 1895 1 103.4
## 2210 1895 2 29.8
## 2211 1895 3 99.5
## 2212 1895 4 57.7
## 2213 1895 5 18.3
## 2214 1895 6 59.2
## 2215 1895 7 124.4
## 2216 1895 8 139.0
## 2217 1895 9 28.5
## 2218 1895 10 104.3
## 2219 1895 11 141.8
## 2220 1895 12 155.0
## 2221 1896 1 48.8
## 2222 1896 2 56.5
## 2223 1896 3 119.7
## 2224 1896 4 35.5
## 2225 1896 5 11.2
## 2226 1896 6 70.7
## 2227 1896 7 148.5
## 2228 1896 8 59.9
## 2229 1896 9 159.2
## 2230 1896 10 101.0
## 2231 1896 11 34.8
## 2232 1896 12 165.6
## 2233 1897 1 73.1
## 2234 1897 2 72.5
## 2235 1897 3 147.3
## 2236 1897 4 112.0
## 2237 1897 5 47.8
## 2238 1897 6 119.6
## 2239 1897 7 60.6
## 2240 1897 8 149.4
## 2241 1897 9 77.3
## 2242 1897 10 90.1
## 2243 1897 11 127.6
## 2244 1897 12 139.9
## 2245 1898 1 78.5
## 2246 1898 2 79.1
## 2247 1898 3 34.1
## 2248 1898 4 109.8
## 2249 1898 5 89.4
## 2250 1898 6 77.7
## 2251 1898 7 31.9
## 2252 1898 8 132.8
## 2253 1898 9 88.4
## 2254 1898 10 123.5
## 2255 1898 11 122.7
## 2256 1898 12 95.1
## 2257 1899 1 133.4
## 2258 1899 2 100.1
## 2259 1899 3 52.7
## 2260 1899 4 98.6
## 2261 1899 5 87.8
## 2262 1899 6 60.3
## 2263 1899 7 77.0
## 2264 1899 8 67.9
## 2265 1899 9 82.4
## 2266 1899 10 57.9
## 2267 1899 11 92.9
## 2268 1899 12 184.8
## 2269 1900 1 114.4
## 2270 1900 2 108.9
## 2271 1900 3 26.1
## 2272 1900 4 67.5
## 2273 1900 5 79.9
## 2274 1900 6 118.2
## 2275 1900 7 75.7
## 2276 1900 8 135.3
## 2277 1900 9 46.7
## 2278 1900 10 133.9
## 2279 1900 11 166.8
## 2280 1900 12 144.3
## 2281 1901 1 108.7
## 2282 1901 2 42.9
## 2283 1901 3 80.6
## 2284 1901 4 81.1
## 2285 1901 5 49.1
## 2286 1901 6 75.6
## 2287 1901 7 33.3
## 2288 1901 8 98.6
## 2289 1901 9 133.6
## 2290 1901 10 107.6
## 2291 1901 11 96.4
## 2292 1901 12 118.5
## 2293 1902 1 70.9
## 2294 1902 2 83.5
## 2295 1902 3 67.2
## 2296 1902 4 73.1
## 2297 1902 5 69.5
## 2298 1902 6 74.0
## 2299 1902 7 80.7
## 2300 1902 8 76.2
## 2301 1902 9 86.8
## 2302 1902 10 69.9
## 2303 1902 11 144.8
## 2304 1902 12 96.4
## 2305 1903 1 161.1
## 2306 1903 2 97.8
## 2307 1903 3 168.6
## 2308 1903 4 49.1
## 2309 1903 5 70.7
## 2310 1903 6 68.1
## 2311 1903 7 129.9
## 2312 1903 8 150.5
## 2313 1903 9 106.0
## 2314 1903 10 156.0
## 2315 1903 11 73.2
## 2316 1903 12 104.2
## 2317 1904 1 120.1
## 2318 1904 2 133.1
## 2319 1904 3 77.1
## 2320 1904 4 60.5
## 2321 1904 5 65.3
## 2322 1904 6 54.8
## 2323 1904 7 99.8
## 2324 1904 8 114.2
## 2325 1904 9 96.1
## 2326 1904 10 64.9
## 2327 1904 11 75.2
## 2328 1904 12 83.1
## 2329 1905 1 75.3
## 2330 1905 2 54.1
## 2331 1905 3 135.1
## 2332 1905 4 77.9
## 2333 1905 5 37.3
## 2334 1905 6 55.5
## 2335 1905 7 49.2
## 2336 1905 8 157.4
## 2337 1905 9 52.7
## 2338 1905 10 47.7
## 2339 1905 11 113.9
## 2340 1905 12 75.8
## 2341 1906 1 135.2
## 2342 1906 2 84.4
## 2343 1906 3 67.6
## 2344 1906 4 52.4
## 2345 1906 5 99.0
## 2346 1906 6 49.0
## 2347 1906 7 64.8
## 2348 1906 8 87.1
## 2349 1906 9 34.5
## 2350 1906 10 131.7
## 2351 1906 11 72.5
## 2352 1906 12 90.0
## 2353 1907 1 47.0
## 2354 1907 2 63.6
## 2355 1907 3 75.6
## 2356 1907 4 75.9
## 2357 1907 5 104.7
## 2358 1907 6 111.4
## 2359 1907 7 69.7
## 2360 1907 8 95.8
## 2361 1907 9 40.0
## 2362 1907 10 140.7
## 2363 1907 11 92.7
## 2364 1907 12 130.3
## 2365 1908 1 84.4
## 2366 1908 2 67.2
## 2367 1908 3 106.3
## 2368 1908 4 67.0
## 2369 1908 5 74.4
## 2370 1908 6 51.0
## 2371 1908 7 81.3
## 2372 1908 8 97.7
## 2373 1908 9 151.4
## 2374 1908 10 60.5
## 2375 1908 11 73.7
## 2376 1908 12 116.4
## 2377 1909 1 72.8
## 2378 1909 2 53.1
## 2379 1909 3 91.9
## 2380 1909 4 128.0
## 2381 1909 5 52.0
## 2382 1909 6 53.6
## 2383 1909 7 75.7
## 2384 1909 8 40.4
## 2385 1909 9 63.1
## 2386 1909 10 158.4
## 2387 1909 11 49.7
## 2388 1909 12 120.8
## 2389 1910 1 101.1
## 2390 1910 2 145.4
## 2391 1910 3 67.5
## 2392 1910 4 67.6
## 2393 1910 5 65.0
## 2394 1910 6 108.8
## 2395 1910 7 88.8
## 2396 1910 8 155.0
## 2397 1910 9 28.7
## 2398 1910 10 69.9
## 2399 1910 11 114.7
## 2400 1910 12 115.7
## 2401 1911 1 46.7
## 2402 1911 2 81.8
## 2403 1911 3 56.6
## 2404 1911 4 67.2
## 2405 1911 5 56.2
## 2406 1911 6 55.1
## 2407 1911 7 80.3
## 2408 1911 8 65.2
## 2409 1911 9 73.4
## 2410 1911 10 110.6
## 2411 1911 11 130.9
## 2412 1911 12 195.3
## 2413 1912 1 114.2
## 2414 1912 2 105.3
## 2415 1912 3 122.6
## 2416 1912 4 34.5
## 2417 1912 5 38.5
## 2418 1912 6 144.5
## 2419 1912 7 117.3
## 2420 1912 8 133.5
## 2421 1912 9 25.2
## 2422 1912 10 84.2
## 2423 1912 11 75.4
## 2424 1912 12 128.7
## 2425 1913 1 173.0
## 2426 1913 2 53.2
## 2427 1913 3 106.6
## 2428 1913 4 104.9
## 2429 1913 5 114.2
## 2430 1913 6 71.8
## 2431 1913 7 24.3
## 2432 1913 8 37.1
## 2433 1913 9 107.1
## 2434 1913 10 124.3
## 2435 1913 11 120.4
## 2436 1913 12 80.7
## 2437 1914 1 59.6
## 2438 1914 2 149.9
## 2439 1914 3 125.5
## 2440 1914 4 45.8
## 2441 1914 5 52.1
## 2442 1914 6 31.5
## 2443 1914 7 85.4
## 2444 1914 8 125.8
## 2445 1914 9 62.7
## 2446 1914 10 56.3
## 2447 1914 11 117.7
## 2448 1914 12 211.0
## 2449 1915 1 102.7
## 2450 1915 2 140.3
## 2451 1915 3 31.1
## 2452 1915 4 55.7
## 2453 1915 5 47.3
## 2454 1915 6 48.9
## 2455 1915 7 134.2
## 2456 1915 8 83.2
## 2457 1915 9 49.4
## 2458 1915 10 118.4
## 2459 1915 11 89.2
## 2460 1915 12 170.3
## 2461 1916 1 75.5
## 2462 1916 2 122.5
## 2463 1916 3 58.6
## 2464 1916 4 94.8
## 2465 1916 5 113.8
## 2466 1916 6 66.3
## 2467 1916 7 59.6
## 2468 1916 8 84.5
## 2469 1916 9 55.2
## 2470 1916 10 206.2
## 2471 1916 11 162.9
## 2472 1916 12 93.6
## 2473 1917 1 62.1
## 2474 1917 2 48.4
## 2475 1917 3 83.2
## 2476 1917 4 48.5
## 2477 1917 5 87.6
## 2478 1917 6 60.3
## 2479 1917 7 67.9
## 2480 1917 8 195.7
## 2481 1917 9 56.7
## 2482 1917 10 139.6
## 2483 1917 11 99.3
## 2484 1917 12 71.2
## 2485 1918 1 102.0
## 2486 1918 2 124.1
## 2487 1918 3 53.0
## 2488 1918 4 38.9
## 2489 1918 5 64.3
## 2490 1918 6 45.5
## 2491 1918 7 100.4
## 2492 1918 8 76.3
## 2493 1918 9 174.0
## 2494 1918 10 120.7
## 2495 1918 11 97.4
## 2496 1918 12 145.2
## 2497 1919 1 116.6
## 2498 1919 2 64.3
## 2499 1919 3 80.7
## 2500 1919 4 48.8
## 2501 1919 5 78.7
## 2502 1919 6 66.3
## 2503 1919 7 34.3
## 2504 1919 8 82.0
## 2505 1919 9 73.6
## 2506 1919 10 38.0
## 2507 1919 11 73.2
## 2508 1919 12 160.9
## 2509 1920 1 144.3
## 2510 1920 2 66.9
## 2511 1920 3 102.0
## 2512 1920 4 102.6
## 2513 1920 5 103.5
## 2514 1920 6 53.7
## 2515 1920 7 125.4
## 2516 1920 8 70.3
## 2517 1920 9 66.5
## 2518 1920 10 130.4
## 2519 1920 11 105.1
## 2520 1920 12 104.1
## 2521 1921 1 110.5
## 2522 1921 2 47.2
## 2523 1921 3 94.7
## 2524 1921 4 26.1
## 2525 1921 5 60.5
## 2526 1921 6 8.4
## 2527 1921 7 106.6
## 2528 1921 8 112.5
## 2529 1921 9 41.6
## 2530 1921 10 86.3
## 2531 1921 11 110.8
## 2532 1921 12 91.8
## 2533 1922 1 120.5
## 2534 1922 2 108.7
## 2535 1922 3 58.8
## 2536 1922 4 82.1
## 2537 1922 5 49.6
## 2538 1922 6 46.9
## 2539 1922 7 93.6
## 2540 1922 8 111.6
## 2541 1922 9 88.5
## 2542 1922 10 39.1
## 2543 1922 11 50.6
## 2544 1922 12 111.0
## 2545 1923 1 82.9
## 2546 1923 2 174.1
## 2547 1923 3 70.5
## 2548 1923 4 97.2
## 2549 1923 5 46.2
## 2550 1923 6 29.1
## 2551 1923 7 79.3
## 2552 1923 8 156.8
## 2553 1923 9 108.4
## 2554 1923 10 123.1
## 2555 1923 11 97.6
## 2556 1923 12 98.9
## 2557 1924 1 152.6
## 2558 1924 2 48.3
## 2559 1924 3 36.1
## 2560 1924 4 86.5
## 2561 1924 5 104.3
## 2562 1924 6 98.3
## 2563 1924 7 107.8
## 2564 1924 8 118.7
## 2565 1924 9 164.0
## 2566 1924 10 100.4
## 2567 1924 11 111.1
## 2568 1924 12 165.7
## 2569 1925 1 118.0
## 2570 1925 2 123.0
## 2571 1925 3 27.0
## 2572 1925 4 106.5
## 2573 1925 5 132.2
## 2574 1925 6 15.6
## 2575 1925 7 89.3
## 2576 1925 8 72.8
## 2577 1925 9 76.4
## 2578 1925 10 105.5
## 2579 1925 11 73.1
## 2580 1925 12 85.7
## 2581 1926 1 183.1
## 2582 1926 2 90.9
## 2583 1926 3 42.4
## 2584 1926 4 63.3
## 2585 1926 5 84.9
## 2586 1926 6 76.3
## 2587 1926 7 79.8
## 2588 1926 8 88.3
## 2589 1926 9 59.1
## 2590 1926 10 92.0
## 2591 1926 11 145.4
## 2592 1926 12 31.1
## 2593 1927 1 127.3
## 2594 1927 2 72.7
## 2595 1927 3 109.5
## 2596 1927 4 48.6
## 2597 1927 5 47.7
## 2598 1927 6 93.3
## 2599 1927 7 97.4
## 2600 1927 8 138.8
## 2601 1927 9 115.0
## 2602 1927 10 87.5
## 2603 1927 11 101.7
## 2604 1927 12 105.1
## 2605 1928 1 155.0
## 2606 1928 2 101.2
## 2607 1928 3 131.9
## 2608 1928 4 68.1
## 2609 1928 5 45.5
## 2610 1928 6 144.8
## 2611 1928 7 50.6
## 2612 1928 8 138.9
## 2613 1928 9 67.5
## 2614 1928 10 172.5
## 2615 1928 11 146.1
## 2616 1928 12 115.0
## 2617 1929 1 56.4
## 2618 1929 2 135.2
## 2619 1929 3 20.0
## 2620 1929 4 34.2
## 2621 1929 5 76.3
## 2622 1929 6 57.5
## 2623 1929 7 100.1
## 2624 1929 8 117.3
## 2625 1929 9 32.1
## 2626 1929 10 125.9
## 2627 1929 11 160.9
## 2628 1929 12 219.1
## 2629 1930 1 155.5
## 2630 1930 2 28.8
## 2631 1930 3 125.3
## 2632 1930 4 53.1
## 2633 1930 5 53.3
## 2634 1930 6 59.4
## 2635 1930 7 89.4
## 2636 1930 8 158.7
## 2637 1930 9 115.6
## 2638 1930 10 160.5
## 2639 1930 11 121.2
## 2640 1930 12 117.1
## 2641 1931 1 83.4
## 2642 1931 2 82.9
## 2643 1931 3 95.2
## 2644 1931 4 78.3
## 2645 1931 5 117.7
## 2646 1931 6 116.8
## 2647 1931 7 103.6
## 2648 1931 8 86.2
## 2649 1931 9 77.7
## 2650 1931 10 55.6
## 2651 1931 11 197.5
## 2652 1931 12 77.1
## 2653 1932 1 122.0
## 2654 1932 2 7.3
## 2655 1932 3 62.1
## 2656 1932 4 86.3
## 2657 1932 5 89.7
## 2658 1932 6 40.8
## 2659 1932 7 119.5
## 2660 1932 8 62.2
## 2661 1932 9 84.1
## 2662 1932 10 111.4
## 2663 1932 11 61.7
## 2664 1932 12 167.0
## 2665 1933 1 93.3
## 2666 1933 2 87.8
## 2667 1933 3 84.5
## 2668 1933 4 44.7
## 2669 1933 5 84.3
## 2670 1933 6 66.2
## 2671 1933 7 76.3
## 2672 1933 8 52.1
## 2673 1933 9 33.9
## 2674 1933 10 87.9
## 2675 1933 11 50.5
## 2676 1933 12 59.6
## 2677 1934 1 108.1
## 2678 1934 2 8.3
## 2679 1934 3 94.9
## 2680 1934 4 80.6
## 2681 1934 5 69.1
## 2682 1934 6 51.3
## 2683 1934 7 54.4
## 2684 1934 8 125.9
## 2685 1934 9 160.9
## 2686 1934 10 118.3
## 2687 1934 11 43.8
## 2688 1934 12 188.4
## 2689 1935 1 41.4
## 2690 1935 2 103.1
## 2691 1935 3 45.5
## 2692 1935 4 84.1
## 2693 1935 5 33.2
## 2694 1935 6 133.9
## 2695 1935 7 27.4
## 2696 1935 8 71.5
## 2697 1935 9 155.6
## 2698 1935 10 114.4
## 2699 1935 11 128.1
## 2700 1935 12 86.5
## 2701 1936 1 144.0
## 2702 1936 2 83.2
## 2703 1936 3 73.8
## 2704 1936 4 49.0
## 2705 1936 5 38.6
## 2706 1936 6 89.2
## 2707 1936 7 169.5
## 2708 1936 8 44.5
## 2709 1936 9 106.4
## 2710 1936 10 73.3
## 2711 1936 11 110.2
## 2712 1936 12 127.3
## 2713 1937 1 174.9
## 2714 1937 2 137.3
## 2715 1937 3 94.3
## 2716 1937 4 82.4
## 2717 1937 5 55.5
## 2718 1937 6 47.6
## 2719 1937 7 117.1
## 2720 1937 8 70.8
## 2721 1937 9 102.9
## 2722 1937 10 68.6
## 2723 1937 11 69.2
## 2724 1937 12 77.2
## 2725 1938 1 131.4
## 2726 1938 2 58.7
## 2727 1938 3 47.5
## 2728 1938 4 5.3
## 2729 1938 5 99.6
## 2730 1938 6 102.2
## 2731 1938 7 134.1
## 2732 1938 8 89.4
## 2733 1938 9 75.9
## 2734 1938 10 176.0
## 2735 1938 11 159.3
## 2736 1938 12 124.0
## 2737 1939 1 130.0
## 2738 1939 2 96.9
## 2739 1939 3 79.7
## 2740 1939 4 48.2
## 2741 1939 5 30.4
## 2742 1939 6 59.8
## 2743 1939 7 119.1
## 2744 1939 8 50.4
## 2745 1939 9 59.1
## 2746 1939 10 86.0
## 2747 1939 11 193.5
## 2748 1939 12 84.0
## 2749 1940 1 106.2
## 2750 1940 2 127.5
## 2751 1940 3 95.0
## 2752 1940 4 97.9
## 2753 1940 5 47.8
## 2754 1940 6 35.5
## 2755 1940 7 95.2
## 2756 1940 8 18.2
## 2757 1940 9 65.3
## 2758 1940 10 177.0
## 2759 1940 11 139.4
## 2760 1940 12 114.6
## 2761 1941 1 106.3
## 2762 1941 2 107.6
## 2763 1941 3 86.8
## 2764 1941 4 45.4
## 2765 1941 5 68.9
## 2766 1941 6 25.2
## 2767 1941 7 75.4
## 2768 1941 8 93.6
## 2769 1941 9 32.0
## 2770 1941 10 92.3
## 2771 1941 11 167.5
## 2772 1941 12 62.4
## 2773 1942 1 150.3
## 2774 1942 2 39.2
## 2775 1942 3 97.6
## 2776 1942 4 62.5
## 2777 1942 5 112.8
## 2778 1942 6 13.1
## 2779 1942 7 93.3
## 2780 1942 8 124.7
## 2781 1942 9 116.0
## 2782 1942 10 66.1
## 2783 1942 11 24.2
## 2784 1942 12 140.1
## 2785 1943 1 175.8
## 2786 1943 2 55.2
## 2787 1943 3 33.5
## 2788 1943 4 54.9
## 2789 1943 5 103.5
## 2790 1943 6 80.3
## 2791 1943 7 61.8
## 2792 1943 8 119.4
## 2793 1943 9 96.4
## 2794 1943 10 125.7
## 2795 1943 11 80.6
## 2796 1943 12 72.3
## 2797 1944 1 108.9
## 2798 1944 2 36.9
## 2799 1944 3 16.9
## 2800 1944 4 68.4
## 2801 1944 5 45.6
## 2802 1944 6 58.2
## 2803 1944 7 97.1
## 2804 1944 8 77.5
## 2805 1944 9 132.9
## 2806 1944 10 139.1
## 2807 1944 11 160.3
## 2808 1944 12 120.9
## 2809 1945 1 88.2
## 2810 1945 2 102.8
## 2811 1945 3 42.3
## 2812 1945 4 43.0
## 2813 1945 5 98.5
## 2814 1945 6 108.8
## 2815 1945 7 114.4
## 2816 1945 8 59.1
## 2817 1945 9 92.1
## 2818 1945 10 105.4
## 2819 1945 11 34.2
## 2820 1945 12 137.4
## 2821 1946 1 125.4
## 2822 1946 2 88.0
## 2823 1946 3 59.2
## 2824 1946 4 34.1
## 2825 1946 5 64.7
## 2826 1946 6 99.3
## 2827 1946 7 88.1
## 2828 1946 8 150.8
## 2829 1946 9 162.9
## 2830 1946 10 68.7
## 2831 1946 11 136.6
## 2832 1946 12 136.3
## 2833 1947 1 135.9
## 2834 1947 2 71.9
## 2835 1947 3 184.8
## 2836 1947 4 104.9
## 2837 1947 5 115.2
## 2838 1947 6 122.9
## 2839 1947 7 92.0
## 2840 1947 8 27.8
## 2841 1947 9 79.7
## 2842 1947 10 71.7
## 2843 1947 11 134.6
## 2844 1947 12 106.0
## 2845 1948 1 200.5
## 2846 1948 2 67.6
## 2847 1948 3 74.8
## 2848 1948 4 65.5
## 2849 1948 5 59.9
## 2850 1948 6 91.0
## 2851 1948 7 70.8
## 2852 1948 8 98.2
## 2853 1948 9 93.6
## 2854 1948 10 106.8
## 2855 1948 11 94.0
## 2856 1948 12 199.0
## 2857 1949 1 71.6
## 2858 1949 2 71.5
## 2859 1949 3 57.5
## 2860 1949 4 75.9
## 2861 1949 5 60.9
## 2862 1949 6 30.8
## 2863 1949 7 62.3
## 2864 1949 8 104.1
## 2865 1949 9 63.4
## 2866 1949 10 157.2
## 2867 1949 11 102.5
## 2868 1949 12 115.2
## 2869 1950 1 68.8
## 2870 1950 2 138.7
## 2871 1950 3 57.6
## 2872 1950 4 89.0
## 2873 1950 5 31.8
## 2874 1950 6 61.2
## 2875 1950 7 126.1
## 2876 1950 8 152.1
## 2877 1950 9 164.1
## 2878 1950 10 88.3
## 2879 1950 11 93.5
## 2880 1950 12 99.2
## 2881 1951 1 125.4
## 2882 1951 2 98.6
## 2883 1951 3 85.8
## 2884 1951 4 49.7
## 2885 1951 5 56.6
## 2886 1951 6 53.6
## 2887 1951 7 68.9
## 2888 1951 8 134.6
## 2889 1951 9 128.7
## 2890 1951 10 53.3
## 2891 1951 11 153.6
## 2892 1951 12 162.3
## 2893 1952 1 127.0
## 2894 1952 2 24.9
## 2895 1952 3 67.6
## 2896 1952 4 64.3
## 2897 1952 5 65.2
## 2898 1952 6 63.5
## 2899 1952 7 33.0
## 2900 1952 8 100.0
## 2901 1952 9 53.6
## 2902 1952 10 145.7
## 2903 1952 11 79.7
## 2904 1952 12 104.7
## 2905 1953 1 40.3
## 2906 1953 2 47.5
## 2907 1953 3 19.9
## 2908 1953 4 72.9
## 2909 1953 5 59.8
## 2910 1953 6 43.6
## 2911 1953 7 129.0
## 2912 1953 8 96.0
## 2913 1953 9 107.8
## 2914 1953 10 88.0
## 2915 1953 11 104.3
## 2916 1953 12 87.8
## 2917 1954 1 79.4
## 2918 1954 2 117.0
## 2919 1954 3 101.5
## 2920 1954 4 28.7
## 2921 1954 5 104.3
## 2922 1954 6 65.9
## 2923 1954 7 89.4
## 2924 1954 8 79.1
## 2925 1954 9 129.3
## 2926 1954 10 173.9
## 2927 1954 11 145.0
## 2928 1954 12 128.0
## 2929 1955 1 111.9
## 2930 1955 2 100.7
## 2931 1955 3 39.6
## 2932 1955 4 71.5
## 2933 1955 5 91.7
## 2934 1955 6 129.2
## 2935 1955 7 18.9
## 2936 1955 8 47.1
## 2937 1955 9 83.0
## 2938 1955 10 58.9
## 2939 1955 11 87.7
## 2940 1955 12 138.8
## 2941 1956 1 106.8
## 2942 1956 2 35.2
## 2943 1956 3 86.4
## 2944 1956 4 29.2
## 2945 1956 5 44.7
## 2946 1956 6 78.1
## 2947 1956 7 119.8
## 2948 1956 8 141.2
## 2949 1956 9 122.6
## 2950 1956 10 73.9
## 2951 1956 11 66.7
## 2952 1956 12 161.5
## 2953 1957 1 127.1
## 2954 1957 2 92.4
## 2955 1957 3 128.7
## 2956 1957 4 33.1
## 2957 1957 5 59.5
## 2958 1957 6 47.1
## 2959 1957 7 100.2
## 2960 1957 8 87.9
## 2961 1957 9 166.0
## 2962 1957 10 110.1
## 2963 1957 11 44.0
## 2964 1957 12 112.7
## 2965 1958 1 131.4
## 2966 1958 2 121.0
## 2967 1958 3 81.3
## 2968 1958 4 34.5
## 2969 1958 5 110.0
## 2970 1958 6 127.9
## 2971 1958 7 121.2
## 2972 1958 8 141.8
## 2973 1958 9 139.9
## 2974 1958 10 71.9
## 2975 1958 11 69.1
## 2976 1958 12 130.9
## 2977 1959 1 84.7
## 2978 1959 2 30.3
## 2979 1959 3 95.7
## 2980 1959 4 83.5
## 2981 1959 5 54.9
## 2982 1959 6 62.9
## 2983 1959 7 63.1
## 2984 1959 8 32.2
## 2985 1959 9 38.2
## 2986 1959 10 146.0
## 2987 1959 11 121.9
## 2988 1959 12 201.8
## 2989 1960 1 116.1
## 2990 1960 2 95.6
## 2991 1960 3 83.4
## 2992 1960 4 74.5
## 2993 1960 5 69.8
## 2994 1960 6 71.5
## 2995 1960 7 144.9
## 2996 1960 8 119.4
## 2997 1960 9 119.5
## 2998 1960 10 140.2
## 2999 1960 11 167.1
## 3000 1960 12 126.1
## 3001 1961 1 156.4
## 3002 1961 2 93.5
## 3003 1961 3 21.9
## 3004 1961 4 135.6
## 3005 1961 5 52.1
## 3006 1961 6 48.1
## 3007 1961 7 81.3
## 3008 1961 8 71.7
## 3009 1961 9 123.4
## 3010 1961 10 118.3
## 3011 1961 11 76.3
## 3012 1961 12 89.5
## 3013 1962 1 127.4
## 3014 1962 2 47.0
## 3015 1962 3 89.7
## 3016 1962 4 64.5
## 3017 1962 5 77.2
## 3018 1962 6 46.1
## 3019 1962 7 70.6
## 3020 1962 8 112.1
## 3021 1962 9 145.9
## 3022 1962 10 52.7
## 3023 1962 11 80.7
## 3024 1962 12 102.9
## 3025 1963 1 29.2
## 3026 1963 2 67.0
## 3027 1963 3 142.0
## 3028 1963 4 77.4
## 3029 1963 5 69.9
## 3030 1963 6 70.3
## 3031 1963 7 70.8
## 3032 1963 8 103.8
## 3033 1963 9 66.1
## 3034 1963 10 129.9
## 3035 1963 11 170.6
## 3036 1963 12 52.3
## 3037 1964 1 43.1
## 3038 1964 2 64.5
## 3039 1964 3 130.6
## 3040 1964 4 72.7
## 3041 1964 5 79.7
## 3042 1964 6 82.1
## 3043 1964 7 72.1
## 3044 1964 8 110.8
## 3045 1964 9 75.4
## 3046 1964 10 109.3
## 3047 1964 11 71.5
## 3048 1964 12 142.5
## 3049 1965 1 139.4
## 3050 1965 2 9.8
## 3051 1965 3 95.8
## 3052 1965 4 81.1
## 3053 1965 5 82.3
## 3054 1965 6 104.3
## 3055 1965 7 86.4
## 3056 1965 8 93.8
## 3057 1965 9 96.1
## 3058 1965 10 68.7
## 3059 1965 11 161.1
## 3060 1965 12 159.7
## 3061 1966 1 116.5
## 3062 1966 2 173.8
## 3063 1966 3 57.8
## 3064 1966 4 143.2
## 3065 1966 5 87.5
## 3066 1966 6 104.0
## 3067 1966 7 51.7
## 3068 1966 8 80.6
## 3069 1966 9 83.9
## 3070 1966 10 146.4
## 3071 1966 11 72.4
## 3072 1966 12 121.4
## 3073 1967 1 84.6
## 3074 1967 2 109.3
## 3075 1967 3 64.7
## 3076 1967 4 37.3
## 3077 1967 5 132.5
## 3078 1967 6 29.8
## 3079 1967 7 83.2
## 3080 1967 8 97.8
## 3081 1967 9 134.9
## 3082 1967 10 171.3
## 3083 1967 11 80.7
## 3084 1967 12 74.9
## 3085 1968 1 121.4
## 3086 1968 2 38.7
## 3087 1968 3 76.0
## 3088 1968 4 73.8
## 3089 1968 5 64.4
## 3090 1968 6 66.1
## 3091 1968 7 37.0
## 3092 1968 8 77.1
## 3093 1968 9 144.2
## 3094 1968 10 129.5
## 3095 1968 11 125.5
## 3096 1968 12 150.3
## 3097 1969 1 174.2
## 3098 1969 2 59.4
## 3099 1969 3 52.9
## 3100 1969 4 65.9
## 3101 1969 5 94.2
## 3102 1969 6 68.7
## 3103 1969 7 45.5
## 3104 1969 8 54.4
## 3105 1969 9 45.4
## 3106 1969 10 51.9
## 3107 1969 11 110.6
## 3108 1969 12 116.9
## 3109 1970 1 127.8
## 3110 1970 2 114.6
## 3111 1970 3 57.6
## 3112 1970 4 89.1
## 3113 1970 5 32.0
## 3114 1970 6 50.1
## 3115 1970 7 91.6
## 3116 1970 8 76.6
## 3117 1970 9 110.6
## 3118 1970 10 81.2
## 3119 1970 11 165.8
## 3120 1970 12 56.1
## 3121 1971 1 102.1
## 3122 1971 2 59.2
## 3123 1971 3 58.5
## 3124 1971 4 55.6
## 3125 1971 5 53.7
## 3126 1971 6 79.1
## 3127 1971 7 66.3
## 3128 1971 8 90.2
## 3129 1971 9 41.9
## 3130 1971 10 85.6
## 3131 1971 11 96.7
## 3132 1971 12 55.3
## 3133 1972 1 144.7
## 3134 1972 2 100.5
## 3135 1972 3 90.9
## 3136 1972 4 75.6
## 3137 1972 5 113.2
## 3138 1972 6 71.7
## 3139 1972 7 59.4
## 3140 1972 8 54.7
## 3141 1972 9 16.9
## 3142 1972 10 66.4
## 3143 1972 11 134.8
## 3144 1972 12 128.5
## 3145 1973 1 100.7
## 3146 1973 2 77.4
## 3147 1973 3 33.9
## 3148 1973 4 48.1
## 3149 1973 5 99.5
## 3150 1973 6 37.4
## 3151 1973 7 68.2
## 3152 1973 8 104.9
## 3153 1973 9 109.8
## 3154 1973 10 68.2
## 3155 1973 11 122.3
## 3156 1973 12 108.4
## 3157 1974 1 205.1
## 3158 1974 2 108.1
## 3159 1974 3 51.9
## 3160 1974 4 37.4
## 3161 1974 5 95.7
## 3162 1974 6 40.5
## 3163 1974 7 88.5
## 3164 1974 8 98.1
## 3165 1974 9 166.2
## 3166 1974 10 55.1
## 3167 1974 11 98.8
## 3168 1974 12 91.6
## 3169 1975 1 162.5
## 3170 1975 2 49.3
## 3171 1975 3 49.4
## 3172 1975 4 61.3
## 3173 1975 5 26.4
## 3174 1975 6 20.6
## 3175 1975 7 70.5
## 3176 1975 8 48.1
## 3177 1975 9 134.2
## 3178 1975 10 118.4
## 3179 1975 11 89.9
## 3180 1975 12 41.0
## 3181 1976 1 109.3
## 3182 1976 2 56.2
## 3183 1976 3 95.5
## 3184 1976 4 28.9
## 3185 1976 5 96.7
## 3186 1976 6 50.2
## 3187 1976 7 74.7
## 3188 1976 8 12.0
## 3189 1976 9 116.9
## 3190 1976 10 178.8
## 3191 1976 11 89.5
## 3192 1976 12 102.0
## 3193 1977 1 104.6
## 3194 1977 2 174.0
## 3195 1977 3 108.4
## 3196 1977 4 72.6
## 3197 1977 5 28.5
## 3198 1977 6 58.3
## 3199 1977 7 45.0
## 3200 1977 8 94.8
## 3201 1977 9 68.5
## 3202 1977 10 165.8
## 3203 1977 11 120.4
## 3204 1977 12 123.0
## 3205 1978 1 112.6
## 3206 1978 2 108.5
## 3207 1978 3 111.6
## 3208 1978 4 54.4
## 3209 1978 5 24.2
## 3210 1978 6 58.5
## 3211 1978 7 72.5
## 3212 1978 8 97.6
## 3213 1978 9 68.3
## 3214 1978 10 50.1
## 3215 1978 11 115.1
## 3216 1978 12 226.4
## 3217 1979 1 94.9
## 3218 1979 2 73.9
## 3219 1979 3 100.4
## 3220 1979 4 74.2
## 3221 1979 5 108.9
## 3222 1979 6 57.8
## 3223 1979 7 33.1
## 3224 1979 8 119.0
## 3225 1979 9 59.9
## 3226 1979 10 140.3
## 3227 1979 11 128.9
## 3228 1979 12 165.3
## 3229 1980 1 117.0
## 3230 1980 2 118.9
## 3231 1980 3 105.1
## 3232 1980 4 25.0
## 3233 1980 5 35.3
## 3234 1980 6 84.1
## 3235 1980 7 95.4
## 3236 1980 8 106.6
## 3237 1980 9 136.6
## 3238 1980 10 144.7
## 3239 1980 11 108.2
## 3240 1980 12 117.5
## 3241 1981 1 63.0
## 3242 1981 2 88.9
## 3243 1981 3 150.5
## 3244 1981 4 34.4
## 3245 1981 5 155.3
## 3246 1981 6 85.2
## 3247 1981 7 51.9
## 3248 1981 8 31.5
## 3249 1981 9 165.7
## 3250 1981 10 106.2
## 3251 1981 11 88.6
## 3252 1981 12 127.4
## 3253 1982 1 105.0
## 3254 1982 2 112.1
## 3255 1982 3 113.2
## 3256 1982 4 31.7
## 3257 1982 5 71.9
## 3258 1982 6 131.4
## 3259 1982 7 20.3
## 3260 1982 8 94.3
## 3261 1982 9 114.0
## 3262 1982 10 156.6
## 3263 1982 11 162.7
## 3264 1982 12 137.6
## 3265 1983 1 127.0
## 3266 1983 2 59.4
## 3267 1983 3 101.3
## 3268 1983 4 77.6
## 3269 1983 5 110.0
## 3270 1983 6 55.6
## 3271 1983 7 25.5
## 3272 1983 8 66.8
## 3273 1983 9 126.1
## 3274 1983 10 123.0
## 3275 1983 11 45.0
## 3276 1983 12 151.7
## 3277 1984 1 180.2
## 3278 1984 2 84.9
## 3279 1984 3 64.7
## 3280 1984 4 45.5
## 3281 1984 5 31.9
## 3282 1984 6 45.1
## 3283 1984 7 41.9
## 3284 1984 8 81.7
## 3285 1984 9 99.4
## 3286 1984 10 122.3
## 3287 1984 11 146.1
## 3288 1984 12 118.1
## 3289 1985 1 78.6
## 3290 1985 2 73.7
## 3291 1985 3 107.0
## 3292 1985 4 69.0
## 3293 1985 5 87.4
## 3294 1985 6 79.7
## 3295 1985 7 87.0
## 3296 1985 8 191.5
## 3297 1985 9 97.5
## 3298 1985 10 59.9
## 3299 1985 11 92.2
## 3300 1985 12 124.1
## 3301 1986 1 136.2
## 3302 1986 2 6.5
## 3303 1986 3 121.1
## 3304 1986 4 74.1
## 3305 1986 5 124.0
## 3306 1986 6 95.4
## 3307 1986 7 68.1
## 3308 1986 8 174.7
## 3309 1986 9 7.5
## 3310 1986 10 99.9
## 3311 1986 11 138.4
## 3312 1986 12 179.3
## 3313 1987 1 56.0
## 3314 1987 2 79.7
## 3315 1987 3 101.6
## 3316 1987 4 73.6
## 3317 1987 5 32.2
## 3318 1987 6 107.6
## 3319 1987 7 47.5
## 3320 1987 8 83.7
## 3321 1987 9 111.0
## 3322 1987 10 144.5
## 3323 1987 11 79.1
## 3324 1987 12 100.7
## 3325 1988 1 194.6
## 3326 1988 2 79.9
## 3327 1988 3 114.7
## 3328 1988 4 42.2
## 3329 1988 5 83.0
## 3330 1988 6 49.4
## 3331 1988 7 131.1
## 3332 1988 8 120.5
## 3333 1988 9 80.2
## 3334 1988 10 150.3
## 3335 1988 11 55.5
## 3336 1988 12 72.8
## 3337 1989 1 89.2
## 3338 1989 2 102.2
## 3339 1989 3 134.3
## 3340 1989 4 83.6
## 3341 1989 5 20.9
## 3342 1989 6 65.4
## 3343 1989 7 23.8
## 3344 1989 8 105.8
## 3345 1989 9 59.9
## 3346 1989 10 147.0
## 3347 1989 11 60.0
## 3348 1989 12 119.1
## 3349 1990 1 135.3
## 3350 1990 2 192.5
## 3351 1990 3 38.2
## 3352 1990 4 52.0
## 3353 1990 5 37.3
## 3354 1990 6 101.6
## 3355 1990 7 58.4
## 3356 1990 8 71.5
## 3357 1990 9 39.7
## 3358 1990 10 178.6
## 3359 1990 11 74.8
## 3360 1990 12 121.0
## 3361 1991 1 103.4
## 3362 1991 2 89.0
## 3363 1991 3 109.3
## 3364 1991 4 121.3
## 3365 1991 5 7.7
## 3366 1991 6 91.9
## 3367 1991 7 65.2
## 3368 1991 8 39.7
## 3369 1991 9 79.0
## 3370 1991 10 125.3
## 3371 1991 11 120.7
## 3372 1991 12 63.2
## 3373 1992 1 66.7
## 3374 1992 2 71.6
## 3375 1992 3 107.9
## 3376 1992 4 103.1
## 3377 1992 5 55.8
## 3378 1992 6 39.4
## 3379 1992 7 101.0
## 3380 1992 8 142.3
## 3381 1992 9 97.8
## 3382 1992 10 56.3
## 3383 1992 11 131.6
## 3384 1992 12 86.8
## 3385 1993 1 133.2
## 3386 1993 2 27.7
## 3387 1993 3 67.1
## 3388 1993 4 104.3
## 3389 1993 5 135.0
## 3390 1993 6 95.7
## 3391 1993 7 87.8
## 3392 1993 8 46.1
## 3393 1993 9 135.0
## 3394 1993 10 62.5
## 3395 1993 11 84.8
## 3396 1993 12 187.1
## 3397 1994 1 148.3
## 3398 1994 2 154.0
## 3399 1994 3 119.6
## 3400 1994 4 97.9
## 3401 1994 5 67.9
## 3402 1994 6 55.4
## 3403 1994 7 91.9
## 3404 1994 8 83.3
## 3405 1994 9 87.3
## 3406 1994 10 69.7
## 3407 1994 11 102.3
## 3408 1994 12 159.0
## 3409 1995 1 172.6
## 3410 1995 2 140.1
## 3411 1995 3 97.9
## 3412 1995 4 33.0
## 3413 1995 5 68.3
## 3414 1995 6 31.7
## 3415 1995 7 86.3
## 3416 1995 8 13.0
## 3417 1995 9 66.5
## 3418 1995 10 164.1
## 3419 1995 11 136.2
## 3420 1995 12 94.1
## 3421 1996 1 146.3
## 3422 1996 2 109.6
## 3423 1996 3 106.2
## 3424 1996 4 93.9
## 3425 1996 5 70.1
## 3426 1996 6 40.8
## 3427 1996 7 64.5
## 3428 1996 8 110.8
## 3429 1996 9 37.9
## 3430 1996 10 169.3
## 3431 1996 11 126.5
## 3432 1996 12 52.0
## 3433 1997 1 35.2
## 3434 1997 2 134.6
## 3435 1997 3 36.4
## 3436 1997 4 41.5
## 3437 1997 5 82.5
## 3438 1997 6 119.1
## 3439 1997 7 77.0
## 3440 1997 8 157.2
## 3441 1997 9 61.6
## 3442 1997 10 90.1
## 3443 1997 11 162.4
## 3444 1997 12 128.8
## 3445 1998 1 144.4
## 3446 1998 2 40.4
## 3447 1998 3 90.9
## 3448 1998 4 124.0
## 3449 1998 5 39.7
## 3450 1998 6 132.4
## 3451 1998 7 83.7
## 3452 1998 8 82.7
## 3453 1998 9 96.0
## 3454 1998 10 157.4
## 3455 1998 11 130.3
## 3456 1998 12 135.6
## 3457 1999 1 135.5
## 3458 1999 2 61.6
## 3459 1999 3 59.7
## 3460 1999 4 92.1
## 3461 1999 5 60.5
## 3462 1999 6 56.2
## 3463 1999 7 44.1
## 3464 1999 8 109.5
## 3465 1999 9 173.6
## 3466 1999 10 65.1
## 3467 1999 11 102.6
## 3468 1999 12 192.8
## 3469 2000 1 66.3
## 3470 2000 2 111.7
## 3471 2000 3 35.7
## 3472 2000 4 79.9
## 3473 2000 5 66.7
## 3474 2000 6 55.3
## 3475 2000 7 58.5
## 3476 2000 8 81.8
## 3477 2000 9 120.8
## 3478 2000 10 180.0
## 3479 2000 11 180.4
## 3480 2000 12 158.6
## 3481 2001 1 73.6
## 3482 2001 2 80.5
## 3483 2001 3 89.2
## 3484 2001 4 83.0
## 3485 2001 5 40.2
## 3486 2001 6 60.8
## 3487 2001 7 74.8
## 3488 2001 8 106.0
## 3489 2001 9 66.2
## 3490 2001 10 130.6
## 3491 2001 11 59.5
## 3492 2001 12 60.3
## 3493 2002 1 151.6
## 3494 2002 2 160.2
## 3495 2002 3 63.3
## 3496 2002 4 102.1
## 3497 2002 5 139.5
## 3498 2002 6 105.7
## 3499 2002 7 70.4
## 3500 2002 8 61.9
## 3501 2002 9 39.3
## 3502 2002 10 199.1
## 3503 2002 11 187.3
## 3504 2002 12 112.9
## 3505 2003 1 81.8
## 3506 2003 2 65.2
## 3507 2003 3 56.6
## 3508 2003 4 79.3
## 3509 2003 5 112.0
## 3510 2003 6 95.8
## 3511 2003 7 93.5
## 3512 2003 8 17.2
## 3513 2003 9 57.2
## 3514 2003 10 61.8
## 3515 2003 11 125.1
## 3516 2003 12 89.3
## 3517 2004 1 123.4
## 3518 2004 2 52.3
## 3519 2004 3 85.9
## 3520 2004 4 67.4
## 3521 2004 5 47.5
## 3522 2004 6 82.4
## 3523 2004 7 59.3
## 3524 2004 8 122.8
## 3525 2004 9 101.9
## 3526 2004 10 166.7
## 3527 2004 11 54.2
## 3528 2004 12 89.5
## 3529 2005 1 128.1
## 3530 2005 2 51.4
## 3531 2005 3 73.6
## 3532 2005 4 105.1
## 3533 2005 5 86.3
## 3534 2005 6 51.9
## 3535 2005 7 73.9
## 3536 2005 8 65.0
## 3537 2005 9 86.6
## 3538 2005 10 146.1
## 3539 2005 11 99.1
## 3540 2005 12 82.7
## 3541 2006 1 57.6
## 3542 2006 2 54.6
## 3543 2006 3 120.3
## 3544 2006 4 47.3
## 3545 2006 5 126.2
## 3546 2006 6 29.8
## 3547 2006 7 53.9
## 3548 2006 8 70.8
## 3549 2006 9 162.6
## 3550 2006 10 145.6
## 3551 2006 11 142.3
## 3552 2006 12 170.5
## 3553 2007 1 107.9
## 3554 2007 2 107.8
## 3555 2007 3 80.3
## 3556 2007 4 26.9
## 3557 2007 5 65.9
## 3558 2007 6 141.3
## 3559 2007 7 133.0
## 3560 2007 8 100.4
## 3561 2007 9 52.8
## 3562 2007 10 52.2
## 3563 2007 11 75.0
## 3564 2007 12 123.1
## 3565 2008 1 174.3
## 3566 2008 2 58.0
## 3567 2008 3 113.5
## 3568 2008 4 45.1
## 3569 2008 5 42.3
## 3570 2008 6 101.9
## 3571 2008 7 123.8
## 3572 2008 8 175.9
## 3573 2008 9 108.2
## 3574 2008 10 152.4
## 3575 2008 11 80.4
## 3576 2008 12 73.7
## 3577 2009 1 152.9
## 3578 2009 2 36.5
## 3579 2009 3 48.7
## 3580 2009 4 120.9
## 3581 2009 5 90.7
## 3582 2009 6 73.2
## 3583 2009 7 174.7
## 3584 2009 8 148.4
## 3585 2009 9 49.4
## 3586 2009 10 129.9
## 3587 2009 11 244.9
## 3588 2009 12 105.4
## 3589 2010 1 93.4
## 3590 2010 2 52.6
## 3591 2010 3 85.6
## 3592 2010 4 56.7
## 3593 2010 5 47.0
## 3594 2010 6 53.8
## 3595 2010 7 140.8
## 3596 2010 8 43.7
## 3597 2010 9 136.1
## 3598 2010 10 80.0
## 3599 2010 11 135.7
## 3600 2010 12 62.3
## 3601 2011 1 78.3
## 3602 2011 2 120.9
## 3603 2011 3 40.7
## 3604 2011 4 41.0
## 3605 2011 5 96.4
## 3606 2011 6 95.8
## 3607 2011 7 57.4
## 3608 2011 8 64.4
## 3609 2011 9 113.6
## 3610 2011 10 154.0
## 3611 2011 11 141.4
## 3612 2011 12 122.6
## 3613 2012 1 99.9
## 3614 2012 2 49.1
## 3615 2012 3 28.6
## 3616 2012 4 79.5
## 3617 2012 5 55.5
## 3618 2012 6 197.1
## 3619 2012 7 111.8
## 3620 2012 8 143.9
## 3621 2012 9 64.9
## 3622 2012 10 107.5
## 3623 2012 11 120.3
## 3624 2012 12 125.6
## 3625 2013 1 142.2
## 3626 2013 2 61.1
## 3627 2013 3 78.7
## 3628 2013 4 79.2
## 3629 2013 5 81.5
## 3630 2013 6 75.6
## 3631 2013 7 65.5
## 3632 2013 8 65.3
## 3633 2013 9 55.0
## 3634 2013 10 165.0
## 3635 2013 11 73.6
## 3636 2013 12 173.8
## 3637 2014 1 173.9
## 3638 2014 2 199.3
## 3639 2014 3 89.8
## 3640 2014 4 60.4
## 3641 2014 5 85.8
## 3642 2014 6 55.8
## 3643 2014 7 54.1
## 3644 2014 8 123.3
## 3645 2014 9 18.7
## 3646 2014 10 140.3
## 3647 2014 11 166.9
## 3648 2014 12 94.4
## 3649 2015 1 125.5
## 3650 2015 2 68.0
## 3651 2015 3 95.0
## 3652 2015 4 49.7
## 3653 2015 5 133.8
## 3654 2015 6 47.2
## 3655 2015 7 113.1
## 3656 2015 8 105.3
## 3657 2015 9 65.7
## 3658 2015 10 71.2
## 3659 2015 11 170.2
## 3660 2015 12 301.3
## 3661 2016 1 172.5
## 3662 2016 2 130.9
## 3663 2016 3 67.8
## 3664 2016 4 80.5
## 3665 2016 5 64.2
## 3666 2016 6 90.2
## 3667 2016 7 65.5
## 3668 2016 8 79.1
## 3669 2016 9 108.1
## 3670 2016 10 51.8
## 3671 2016 11 58.0
## 3672 2016 12 92.1
mydata <- read.table("Precipitation_Ireland.csv", header=TRUE, sep=",")
precipire <- ts(mydata,start=1825, end=2017) #turns it into a timeseries record
plot (precipire, type="l",main= "Pecip Ireland Spectral Cycle")
data2 <- (mydata %>% filter(mydata$Month == c(1, 2)))
data_winter <- aggregate(data2[,3],list(data2$Year), mean)
detrended <- detrend(data_winter)
##
## ----- SUBTRACTING LINEAR TREND FROM STRATIGRAPHIC SERIES -----
## * Slope= 0.07684393
## * y-intercept= -51.38379
dev.off()
## null device
## 1
detrended_ts <- ts(detrended$x,start=1711, end=2016)
plot(detrended_ts, type = 'l', main= 'Detrended Winter Data')
detrended_tsspec <- welchPSD(detrended_ts, seglength = 50)
plot(detrended_tsspec$frequency, detrended_tsspec$power,type='l', xlim=c(0,0.6))
detrended_tsspec$frequency[findPeaks(detrended_tsspec$power, thresh=600)]
## [1] 0.04 0.14 0.20 0.30
1/0.04 = 25 1/0.14 = 7.142857 1/0.20 = 5 1/0.30 = 3.333333
write.table(detrended_ts, file = "Winter_precipitation_data.csv", row.names=FALSE, col.names=FALSE, sep=",")
rm(mydata)
rm(precipire)
rm(data2)
rm(data_winter)
rm(detrended)
rm(detrended_ts)
rm(detrended_tsspec)
read.csv("Winter_precipitation_data.csv", header=FALSE)
## V1
## 1 -35.346169977
## 2 -43.223013907
## 3 21.950142163
## 4 -18.876701767
## 5 17.096454303
## 6 -43.830389627
## 7 5.592766444
## 8 -11.534077486
## 9 14.689078584
## 10 33.912234654
## 11 -2.414609276
## 12 -22.541453206
## 13 33.381702864
## 14 29.004858935
## 15 -0.171984995
## 16 20.201171075
## 17 20.174327145
## 18 6.147483215
## 19 -0.179360715
## 20 18.893795355
## 21 13.566951426
## 22 27.890107496
## 23 56.313263566
## 24 1.236419636
## 25 27.409575706
## 26 41.082731776
## 27 56.255887846
## 28 29.129043917
## 29 27.252199987
## 30 -38.424643943
## 31 -1.051487873
## 32 15.421668197
## 33 40.494824267
## 34 2.517980337
## 35 4.691136408
## 36 -8.735707522
## 37 28.237448548
## 38 -19.639395382
## 39 17.633760688
## 40 1.956916758
## 41 8.130072828
## 42 4.153228898
## 43 34.826384969
## 44 27.699541039
## 45 -46.877302891
## 46 27.245853179
## 47 -27.280990751
## 48 2.742165319
## 49 -31.534678611
## 50 15.788477460
## 51 -28.988366470
## 52 -19.565210400
## 53 -9.842054330
## 54 63.481101740
## 55 7.804257810
## 56 -43.222586120
## 57 -11.499430049
## 58 45.723726021
## 59 -20.853117909
## 60 -37.929961839
## 61 -35.756805769
## 62 -0.633649699
## 63 -4.910493629
## 64 13.062662442
## 65 24.235818512
## 66 -3.191025418
## 67 -31.017869348
## 68 -24.644713278
## 69 -58.071557208
## 70 -28.348401138
## 71 -3.075245068
## 72 -13.102088997
## 73 10.521067073
## 74 -20.955776857
## 75 -42.532620787
## 76 -24.809464717
## 77 -36.086308647
## 78 -20.163152577
## 79 14.910003494
## 80 -20.166840436
## 81 34.406315634
## 82 0.629471704
## 83 11.902627774
## 84 1.325783844
## 85 0.548939914
## 86 11.072095985
## 87 -44.654747945
## 88 -4.731591875
## 89 2.941564195
## 90 4.264720265
## 91 7.987876335
## 92 -8.438967595
## 93 -20.215811524
## 94 9.157344546
## 95 4.580500616
## 96 20.953656686
## 97 -15.823187244
## 98 -23.900031174
## 99 25.273124896
## 100 -23.953719033
## 101 11.619437037
## 102 8.142593107
## 103 22.465749177
## 104 -44.561094753
## 105 -18.537938683
## 106 -29.914782613
## 107 10.708373457
## 108 29.381529528
## 109 51.554685598
## 110 -31.722158332
## 111 -50.999002262
## 112 -9.325846192
## 113 -0.402690122
## 114 -26.329534052
## 115 -21.656377981
## 116 29.966778089
## 117 -28.510065841
## 118 24.413090229
## 119 -38.763753701
## 120 -33.140597631
## 121 -21.167441561
## 122 -37.844285490
## 123 -8.771129420
## 124 51.702026650
## 125 24.475182720
## 126 -16.851661210
## 127 0.921494860
## 128 -21.055349070
## 129 -12.782192999
## 130 13.090963071
## 131 -21.985880859
## 132 2.037275211
## 133 -22.739568719
## 134 -2.866412649
## 135 3.106743421
## 136 3.029899492
## 137 0.003055562
## 138 21.426211632
## 139 -10.750632298
## 140 9.172523772
## 141 34.245679842
## 142 35.968835912
## 143 2.841991982
## 144 -3.784851947
## 145 -53.361695877
## 146 5.561460193
## 147 -14.365383737
## 148 -25.842227667
## 149 -21.069071597
## 150 16.804084473
## 151 -2.022759456
## 152 8.500396614
## 153 -16.126447316
## 154 -26.303291246
## 155 14.319864824
## 156 23.743020894
## 157 5.016176964
## 158 13.989333035
## 159 33.162489105
## 160 0.485645175
## 161 17.408801245
## 162 42.781957315
## 163 9.405113385
## 164 -11.721730545
## 165 17.151425526
## 166 2.424581596
## 167 29.697737666
## 168 -14.329106264
## 169 18.044049806
## 170 -15.532794124
## 171 -15.859638054
## 172 -5.886481983
## 173 77.486674087
## 174 57.459830157
## 175 19.132986227
## 176 4.056142297
## 177 -18.820701633
## 178 -35.997545563
## 179 -8.074389493
## 180 0.648766578
## 181 -59.528077352
## 182 -18.054921282
## 183 1.168234788
## 184 19.241390858
## 185 -27.635453072
## 186 -41.662297002
## 187 -21.589140931
## 188 -15.665984861
## 189 22.207171209
## 190 17.030327279
## 191 -18.896516651
## 192 -17.573360581
## 193 34.599795489
## 194 31.672951560
## 195 -30.303892370
## 196 14.719263700
## 197 -39.857580230
## 198 -19.434424160
## 199 -32.361268090
## 200 27.861887980
## 201 -31.214955949
## 202 14.208200121
## 203 17.481356191
## 204 9.054512261
## 205 25.727668331
## 206 3.150824401
## 207 -40.676019529
## 208 17.047136542
## 209 -5.629707388
## 210 9.443448682
## 211 -17.383395248
## 212 18.289760822
## 213 32.112916892
## 214 3.986072962
## 215 23.959229032
## 216 40.382385103
## 217 3.305541173
## 218 31.328697243
## 219 -1.048146687
## 220 -4.774990617
## 221 -13.851834547
## 222 -32.428678477
## 223 -6.605522406
## 224 -39.032366336
## 225 -25.059210266
## 226 16.213945804
## 227 58.637101874
## 228 -2.489742056
## 229 15.833414014
## 230 19.156570085
## 231 9.179726155
## 232 -3.097117775
## 233 17.576038295
## 234 -25.100805635
## 235 -2.577649565
## 236 8.545506505
## 237 5.668662576
## 238 35.741818646
## 239 -26.835025284
## 240 5.288130786
## 241 13.461286856
## 242 -22.665557074
## 243 -54.792401004
## 244 -0.569244933
## 245 7.453911137
## 246 -27.922932793
## 247 10.750223277
## 248 27.123379347
## 249 -41.653464583
## 250 6.619691487
## 251 25.642847557
## 252 -12.183996372
## 253 -51.360840302
## 254 -45.737684232
## 255 -25.014528162
## 256 45.458627908
## 257 -2.818216022
## 258 -19.795059952
## 259 16.878096119
## 260 21.201252189
## 261 -19.425591741
## 262 22.447564329
## 263 -11.179279601
## 264 56.293876469
## 265 5.517032539
## 266 -17.709811390
## 267 38.763344680
## 268 9.936500750
## 269 -16.290343180
## 270 17.182812890
## 271 -24.894031040
## 272 7.629125030
## 273 -7.797718899
## 274 31.475437171
## 275 -25.001406759
## 276 -29.878250689
## 277 -33.455094619
## 278 35.868061451
## 279 -5.758782479
## 280 62.364373592
## 281 -5.412470338
## 282 -32.539314268
## 283 -21.316158198
## 284 49.306997872
## 285 54.430153942
## 286 25.953310012
## 287 -17.173533918
## 288 -9.750377847
## 289 -3.677221777
## 290 -13.304065707
## 291 -25.330909637
## 292 53.442246433
## 293 -29.034597497
## 294 -14.761441427
## 295 -12.938285356
## 296 -46.665129286
## 297 5.008026784
## 298 13.231182854
## 299 -8.295661076
## 300 -30.072505006
## 301 -3.549348936
## 302 -28.726192865
## 303 -1.653036795
## 304 83.220119275
## 305 -6.706724655
## 306 48.166431415
precipitation_winter <- read.table("Winter_precipitation_data.csv", sep=",")
read.csv("Winter_NAO_data.csv", header=FALSE)
## V1 V2
## 1 1 0.16
## 2 2 0.27
## 3 3 -0.45
## 4 4 -0.88
## 5 5 -0.09
## 6 6 0.88
## 7 7 -0.62
## 8 8 0.15
## 9 9 0.15
## 10 10 -0.01
## 11 11 0.42
## 12 12 0.93
## 13 13 -0.09
## 14 14 -0.09
## 15 15 0.35
## 16 16 -0.25
## 17 17 0.18
## 18 18 -0.68
## 19 19 0.55
## 20 20 -0.22
## 21 21 0.34
## 22 22 0.26
## 23 23 0.62
## 24 24 0.07
## 25 25 -0.08
## 26 26 0.20
## 27 27 0.24
## 28 28 -0.30
## 29 29 -0.79
## 30 30 0.76
## 31 31 -0.78
## 32 32 -0.18
## 33 33 0.97
## 34 34 -0.04
## 35 35 0.44
## 36 36 -0.66
## 37 37 -0.29
## 38 38 -0.18
## 39 39 0.98
## 40 40 -0.44
## 41 41 0.33
## 42 42 0.31
## 43 43 -0.07
## 44 44 1.58
## 45 45 0.54
## 46 46 -0.42
## 47 47 -0.12
## 48 48 -0.80
## 49 49 0.12
## 50 50 0.47
## 51 51 -0.11
## 52 52 -0.22
## 53 53 0.05
## 54 54 -0.92
## 55 55 -0.36
## 56 56 -0.01
## 57 57 0.09
## 58 58 1.09
## 59 59 0.64
## 60 60 0.58
## 61 61 0.19
## 62 62 -0.32
## 63 63 -0.64
## 64 64 0.01
## 65 65 0.64
## 66 66 0.60
## 67 67 0.03
## 68 68 -0.64
## 69 69 -0.10
## 70 70 0.87
## 71 71 -0.24
## 72 72 0.35
## 73 73 0.85
## 74 74 0.53
## 75 75 0.04
## 76 76 0.08
## 77 77 -0.40
## 78 78 -0.43
## 79 79 0.87
## 80 80 0.62
## 81 81 0.10
## 82 82 0.28
## 83 83 0.56
## 84 84 0.63
## 85 85 -0.10
## 86 86 -0.05
## 87 87 0.48
## 88 88 0.21
## 89 89 0.87
## 90 90 0.80
## 91 91 -0.87
## 92 92 -0.42
## 93 93 -0.38
## 94 94 0.51
## 95 95 0.35
## 96 96 0.62
## 97 97 0.16
## 98 98 0.52
## 99 99 0.82
## 100 100 -0.01
## 101 101 0.29
## 102 102 0.10
## 103 103 -0.26
## 104 104 0.22
## 105 105 0.17
## 106 106 0.13
## 107 107 -0.32
## 108 108 -0.06
## 109 109 -0.42
## 110 110 0.42
## 111 111 0.25
## 112 112 -0.13
## 113 113 0.17
## 114 114 0.92
## 115 115 -0.46
## 116 116 -0.50
## 117 117 -0.73
## 118 118 -0.53
## 119 119 0.97
## 120 120 -0.10
## 121 121 0.22
## 122 122 0.47
## 123 123 -0.09
## 124 124 0.80
## 125 125 0.48
## 126 126 0.49
## 127 127 -0.07
## 128 128 -0.37
## 129 129 0.40
## 130 130 0.51
## 131 131 -0.64
## 132 132 0.17
## 133 133 -0.02
## 134 134 0.12
## 135 135 0.49
## 136 136 -0.30
## 137 137 1.05
## 138 138 -0.13
## 139 139 -0.39
## 140 140 0.24
## 141 141 -0.23
## 142 142 -0.22
## 143 143 0.56
## 144 144 -0.62
## 145 145 -0.44
## 146 146 0.18
## 147 147 -0.55
## 148 148 -0.04
## 149 149 -0.09
## 150 150 0.59
## 151 151 0.05
## 152 152 -0.07
## 153 153 -0.21
## 154 154 0.21
## 155 155 0.19
## 156 156 -0.37
## 157 157 -0.09
## 158 158 0.67
## 159 159 0.34
## 160 160 0.26
## 161 161 -0.47
## 162 162 0.56
## 163 163 -0.51
## 164 164 -0.32
## 165 165 0.57
## 166 166 1.23
## 167 167 0.34
## 168 168 1.11
## 169 169 0.12
## 170 170 0.51
## 171 171 -0.61
## 172 172 -1.01
## 173 173 -0.18
## 174 174 0.25
## 175 175 0.04
## 176 176 -0.04
## 177 177 -0.45
## 178 178 -0.04
## 179 179 -0.30
## 180 180 0.01
## 181 181 -0.26
## 182 182 -0.18
## 183 183 -0.38
## 184 184 -0.68
## 185 185 -0.38
## 186 186 -2.35
## 187 187 0.46
## 188 188 -0.63
## 189 189 0.59
## 190 190 0.10
## 191 191 1.16
## 192 192 0.39
## 193 193 0.57
NAO_winter <- read.table("winter_NAO_data.csv", sep=",")
ts1 <- ts(precipitation_winter$V1,start=1711, end=2016)
ts2 <- ts(NAO_winter$V2,start=1825, end=2017)
t <- ts.intersect(ts1,ts2,dframe=TRUE)
correlation = rcorr(t$ts1,t$ts2, type="pearson")
insignificantas it is below 95%.
DF <- crossSpectrum(t)
transferFunction <- DF$Pxy / DF$Pxx
transferAmp <- Mod(transferFunction)
plot(DF$freq,transferAmp,type='l',log='x',
xlab="Frequency",
main="Transfer Function Amplitude")
There us a high frequency cycle between 0 and 0.2 transfer Amps that feature in both data sets.
write.table(t, file = "NAO_and_precipitation_data.csv", col.names=FALSE, sep=",")
read.csv("pedrido.csv", header=TRUE)
## Depth Age Sand
## 1 1.5 -12 7.549689
## 2 2.5 -3 7.817732
## 3 3.5 6 9.104545
## 4 4.5 17 8.774335
## 5 5.5 29 9.446494
## 6 6.5 43 10.806638
## 7 7.5 58 8.236792
## 8 8.5 85 8.862186
## 9 9.5 124 7.690465
## 10 10.5 169 7.619161
## 11 11.5 222 7.895360
## 12 12.5 273 7.084274
## 13 13.5 318 7.599403
## 14 14.5 348 5.607341
## 15 15.5 371 5.640203
## 16 16.5 396 4.847526
## 17 17.5 423 4.644432
## 18 18.5 446 4.662172
## 19 19.5 461 4.017355
## 20 20.5 477 4.054054
## 21 21.5 494 3.993984
## 22 22.5 511 4.495084
## 23 23.5 526 4.398827
## 24 24.5 538 4.318301
## 25 25.5 548 4.238311
## 26 26.5 558 3.743676
## 27 27.5 571 4.065301
## 28 28.5 584 3.950532
## 29 29.5 599 3.985507
## 30 30.5 619 3.985626
## 31 31.5 639 4.162664
## 32 32.5 648 4.077606
## 33 33.5 657 4.832411
## 34 34.5 667 4.530577
## 35 35.5 677 4.151482
## 36 36.5 688 4.020668
## 37 37.5 698 4.599130
## 38 38.5 709 5.296419
## 39 39.5 720 4.148901
## 40 40.5 730 4.190920
## 41 41.5 741 3.819161
## 42 42.5 752 3.580434
## 43 43.5 764 3.647364
## 44 44.5 775 3.061055
## 45 45.5 786 2.740392
## 46 46.5 798 2.743659
## 47 47.5 808 2.896204
## 48 48.5 820 3.028790
## 49 49.5 831 2.831595
## 50 50.5 842 2.666425
## 51 51.5 853 11.779018
## 52 52.5 864 9.078870
## 53 53.5 875 8.794425
## 54 54.5 888 7.457875
## 55 55.5 901 6.017620
## 56 56.5 915 5.878645
## 57 57.5 928 5.730354
## 58 58.5 942 4.973650
## 59 59.5 956 4.438070
## 60 60.5 971 4.100145
## 61 61.5 986 4.066679
## 62 62.5 1001 4.135838
## 63 63.5 1016 4.279653
## 64 64.5 1030 4.552184
## 65 65.5 1046 4.453671
## 66 66.5 1062 3.856089
## 67 67.5 1078 3.332126
## 68 68.5 1094 3.338043
## 69 69.5 1110 2.857666
## 70 70.5 1128 2.945790
## 71 71.5 1145 3.181091
## 72 72.5 1162 3.169516
## 73 73.5 1179 3.264456
## 74 74.5 1193 3.076379
## 75 75.5 1204 2.978972
## 76 76.5 1215 2.583651
## 77 77.5 1226 2.643265
## 78 78.5 1238 2.716400
## 79 79.5 1249 3.054755
## 80 80.5 1260 3.309969
## 81 81.5 1271 3.163409
## 82 82.5 1283 3.301127
## 83 83.5 1295 3.584154
## 84 84.5 1306 3.432241
## 85 85.5 1317 3.552090
## 86 86.5 1329 3.674155
## 87 87.5 1341 3.623346
## 88 88.5 1351 3.878361
## 89 89.5 1363 3.637920
## 90 90.5 1374 3.835111
## 91 91.5 1394 4.014143
## 92 92.5 1414 3.765091
## 93 93.5 1434 3.446115
## 94 94.5 1450 3.197042
## 95 95.5 1465 3.329886
## 96 96.5 1481 3.299276
## 97 97.5 1498 3.917728
## 98 98.5 1514 4.155598
## 99 99.5 1530 3.868432
## 100 100.5 1547 4.382393
## 101 101.5 1563 4.860751
## 102 102.5 1579 3.966304
## 103 103.5 1594 3.675474
## 104 104.5 1611 3.837248
## 105 105.5 1628 3.534530
## 106 106.5 1644 3.563904
## 107 107.5 1661 3.788020
## 108 108.5 1676 3.879560
## 109 109.5 1693 3.805774
## 110 110.5 1709 3.918059
## 111 111.5 1725 3.382664
## 112 112.5 1743 3.275352
## 113 113.5 1758 3.508124
## 114 114.5 1775 3.336683
## 115 115.5 1791 3.440599
## 116 116.5 1807 3.149928
## 117 117.5 1823 3.343145
## 118 118.5 1839 3.592170
## 119 119.5 1854 3.534219
## 120 120.5 1870 3.235294
## 121 121.5 1885 4.449962
## 122 122.5 1898 4.898037
## 123 123.5 1913 5.230712
## 124 124.5 1929 6.110103
## 125 125.5 1947 7.180254
## 126 126.5 1966 8.135059
## 127 127.5 1984 5.375809
## 128 128.5 2002 5.995919
## 129 129.5 2021 5.529431
## 130 130.5 2039 3.812317
## 131 131.5 2058 3.123999
## 132 132.5 2076 2.813258
## 133 133.5 2095 2.726319
## 134 134.5 2118 2.771712
## 135 135.5 2143 2.951715
## 136 136.5 2166 3.166971
## 137 137.5 2189 4.259669
## 138 138.5 2208 4.458926
## 139 139.5 2227 4.826600
## 140 140.5 2246 5.364557
## 141 141.5 2265 4.981949
## 142 142.5 2284 5.589076
## 143 143.5 2302 5.838948
## 144 144.5 2318 5.485098
## 145 145.5 2332 6.699447
## 146 146.5 2347 6.787330
## 147 147.5 2363 7.378235
## 148 148.5 2423 7.858579
## 149 149.5 2479 6.963563
## 150 150.5 2539 9.848972
## 151 151.5 2597 4.565316
## 152 152.5 2619 4.732059
## 153 153.5 2675 5.319823
## 154 154.5 2734 5.797322
## 155 155.5 2754 6.678646
## 156 156.5 2780 7.823529
## 157 157.5 2808 7.850310
## 158 158.5 2837 8.278430
## 159 159.5 2869 9.029725
## 160 160.5 2904 9.429488
## 161 161.5 2940 13.373226
## 162 162.5 2972 8.005047
## 163 163.5 3000 4.453560
## 164 164.5 3029 2.716013
## 165 165.5 3060 4.285510
## 166 166.5 3091 4.675365
## 167 167.5 3123 4.600708
## 168 168.5 3154 3.827977
## 169 169.5 3183 3.873075
## 170 170.5 3211 4.200064
## 171 171.5 3227 3.984615
## 172 172.5 3243 3.497369
## 173 173.5 3260 4.551347
## 174 174.5 3277 5.583756
## 175 175.5 3295 5.934426
## 176 176.5 3313 5.505051
## 177 177.5 3331 6.937106
## 178 178.5 3349 11.920223
## 179 179.5 3367 15.132718
## 180 180.5 3384 6.235254
## 181 181.5 3401 4.204724
## 182 182.5 3421 3.261355
## 183 183.5 3439 3.482280
## 184 184.5 3456 4.265250
## 185 185.5 3474 4.475618
## 186 186.5 3493 4.235406
## 187 187.5 3510 3.686557
## 188 188.5 3527 4.290982
## 189 189.5 3547 4.806867
## 190 190.5 3564 8.603820
## 191 191.5 3582 5.449544
## 192 192.5 3601 4.454306
## 193 193.5 3618 4.293064
## 194 194.5 3637 3.800000
## 195 195.5 3654 3.283302
## 196 196.5 3672 3.110505
## 197 197.5 3690 3.645525
## 198 198.5 3708 2.927707
## 199 199.5 3727 3.690945
## 200 200.5 3743 4.500000
## 201 201.5 3762 5.072346
## 202 202.5 3779 5.275229
## 203 203.5 3798 5.306696
## 204 204.5 3815 5.733873
## 205 205.5 3833 4.700721
## 206 206.5 3850 5.009033
## 207 207.5 3867 4.946029
## 208 208.5 3885 4.543952
## 209 209.5 3901 4.395791
## 210 210.5 3917 5.784563
## 211 211.5 3934 3.705837
## 212 212.5 3948 3.474676
## 213 213.5 3962 3.584607
## 214 214.5 3977 3.506235
## 215 215.5 3992 3.027920
## 216 216.5 4006 3.226983
## 217 217.5 4021 3.844119
## 218 218.5 4035 2.981030
## 219 219.5 4050 2.955572
## 220 220.5 4065 3.022084
## 221 221.5 4080 2.986551
## 222 222.5 4094 3.000191
## 223 223.5 4109 1.848938
## 224 224.5 4122 2.664462
## 225 225.5 4136 2.890909
## 226 226.5 4153 2.814842
## 227 227.5 4175 2.823039
## 228 228.5 4198 3.138848
## 229 229.5 4218 3.596265
## 230 230.5 4236 3.740927
## 231 231.5 4283 3.588749
## 232 232.5 4322 3.469968
## 233 233.5 4355 3.311868
## 234 234.5 4382 2.988379
## 235 235.5 4411 3.216852
## 236 236.5 4440 2.872154
## 237 237.5 4468 3.008753
## 238 238.5 4496 2.944807
## 239 239.5 4524 3.066594
## 240 240.5 4552 2.471990
## 241 241.5 4579 2.806899
## 242 242.5 4604 3.042927
## 243 243.5 NA NA
## 244 244.5 NA NA
## 245 245.5 NA NA
## 246 246.5 NA NA
## 247 247.5 NA NA
## 248 248.5 NA NA
## 249 NA NA NA
## 250 NA NA NA
mydata <- read.table("pedrido.csv", header=TRUE, sep=",")
plot(mydata$Age, mydata$Sand, type= 'l')
cycles can arguably been seen at intervals of 1000 age. The data peaks at 1000 intervals, a peak is seen at 3000 age, smaller peak at 2000 and another at 1000. 4000 age is the only one that the cycle does not match up to.
mydata$Depth=NULL;
ls<- lsp(mydata, from = NULL, to = NULL, ofac = 4, alpha = 0.05, plot = TRUE)
There are two significant peaks in the data, both at the beginning, one reaching above 30nnormalised power while the second reaches 20 normalised power. They do not indicaate a significant cycle as there is no correlation between them.
lsp(mydata, from = NULL, to = NULL, ofac = 5, alpha = 0.05,type = c("period"), plot = TRUE)
New_age <- seq(from = -10, to = 4600, by = 10)
new_data <- approx(x=mydata$Age, y=mydata$Sand, xout=New_age, method="linear")
names(new_data) <- c("date","sand")
plot(mydata$Age, mydata$Sand, type="o", col="blue", lty=1, main= "Original vs Downsacmpled Data")
points(new_data$date, new_data$sand, col="red", pch="*")
lines(new_data$date, new_data$sand, col="red",lty=2)
write.csv(new_data, file = "PedridoEvenData.csv")
Pedrido <- read.csv("PedridoEvenData.csv")[ ,3]
New_age <- read.csv("PedridoEvenData.csv")[ ,2]
my.data = data.frame(date = New_age, Pedrido=Pedrido)
my.wt = analyze.wavelet(my.data, "Pedrido", loess.span = 0, dt = 10, dj = 1/20, make.pval = TRUE,
method = "white.noise", params = NULL, n.sim = 100, date.format = "%Y", date.tz = NULL, verbose = TRUE)
## Starting wavelet transformation...
## ... and simulations...
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 9%
|
|====== | 10%
|
|======= | 11%
|
|======== | 12%
|
|======== | 13%
|
|========= | 14%
|
|========== | 15%
|
|========== | 16%
|
|=========== | 17%
|
|============ | 18%
|
|============ | 19%
|
|============= | 20%
|
|============== | 21%
|
|============== | 22%
|
|=============== | 23%
|
|================ | 24%
|
|================ | 25%
|
|================= | 26%
|
|================== | 27%
|
|================== | 28%
|
|=================== | 29%
|
|==================== | 30%
|
|==================== | 31%
|
|===================== | 32%
|
|===================== | 33%
|
|====================== | 34%
|
|======================= | 35%
|
|======================= | 36%
|
|======================== | 37%
|
|========================= | 38%
|
|========================= | 39%
|
|========================== | 40%
|
|=========================== | 41%
|
|=========================== | 42%
|
|============================ | 43%
|
|============================= | 44%
|
|============================= | 45%
|
|============================== | 46%
|
|=============================== | 47%
|
|=============================== | 48%
|
|================================ | 49%
|
|================================ | 50%
|
|================================= | 51%
|
|================================== | 52%
|
|================================== | 53%
|
|=================================== | 54%
|
|==================================== | 55%
|
|==================================== | 56%
|
|===================================== | 57%
|
|====================================== | 58%
|
|====================================== | 59%
|
|======================================= | 60%
|
|======================================== | 61%
|
|======================================== | 62%
|
|========================================= | 63%
|
|========================================== | 64%
|
|========================================== | 65%
|
|=========================================== | 66%
|
|============================================ | 67%
|
|============================================ | 68%
|
|============================================= | 69%
|
|============================================== | 70%
|
|============================================== | 71%
|
|=============================================== | 72%
|
|=============================================== | 73%
|
|================================================ | 74%
|
|================================================= | 75%
|
|================================================= | 76%
|
|================================================== | 77%
|
|=================================================== | 78%
|
|=================================================== | 79%
|
|==================================================== | 80%
|
|===================================================== | 81%
|
|===================================================== | 82%
|
|====================================================== | 83%
|
|======================================================= | 84%
|
|======================================================= | 85%
|
|======================================================== | 86%
|
|========================================================= | 87%
|
|========================================================= | 88%
|
|========================================================== | 89%
|
|========================================================== | 90%
|
|=========================================================== | 91%
|
|============================================================ | 92%
|
|============================================================ | 93%
|
|============================================================= | 94%
|
|============================================================== | 95%
|
|============================================================== | 96%
|
|=============================================================== | 97%
|
|================================================================ | 98%
|
|================================================================ | 99%
|
|=================================================================| 100%
## Class attributes are accessible through following names:
## series loess.span dt dj Wave Phase Ampl Power Power.avg Power.pval Power.avg.pval Ridge Period Scale nc nr coi.1 coi.2 axis.1 axis.2 date.format date.tz
wt.image(my.wt, color.key = "i", label.time.axis = TRUE, main = "wavelet power spectrum",
legend.params = list(lab = "wavelet power levels"), periodlab = "period (years)", timelab = "time (years)",
date.format = "%d", spec.time.axis = list(at = seq(-10, 462, by = 10), labels = seq(0, 460, by = 50)))
## Warning in wt.image(my.wt, color.key = "i", label.time.axis = TRUE, main = "wavelet power spectrum", :
## Please check your time axis specifications. Default settings were used.
2500 to 3500 years ago there was a siginifcant cycle found at that level every 512 years,.
wt.avg(my.wt, siglvl=0.05, sigcol="red")
read.csv("NAO_and_precipitation_data.csv", header=FALSE)
## V1 V2 V3
## 1 1 -21.656377981 0.16
## 2 2 29.966778089 0.27
## 3 3 -28.510065841 -0.45
## 4 4 24.413090229 -0.88
## 5 5 -38.763753701 -0.09
## 6 6 -33.140597631 0.88
## 7 7 -21.167441561 -0.62
## 8 8 -37.844285490 0.15
## 9 9 -8.771129420 0.15
## 10 10 51.702026650 -0.01
## 11 11 24.475182720 0.42
## 12 12 -16.851661210 0.93
## 13 13 0.921494860 -0.09
## 14 14 -21.055349070 -0.09
## 15 15 -12.782192999 0.35
## 16 16 13.090963071 -0.25
## 17 17 -21.985880859 0.18
## 18 18 2.037275211 -0.68
## 19 19 -22.739568719 0.55
## 20 20 -2.866412649 -0.22
## 21 21 3.106743421 0.34
## 22 22 3.029899492 0.26
## 23 23 0.003055562 0.62
## 24 24 21.426211632 0.07
## 25 25 -10.750632298 -0.08
## 26 26 9.172523772 0.20
## 27 27 34.245679842 0.24
## 28 28 35.968835912 -0.30
## 29 29 2.841991982 -0.79
## 30 30 -3.784851947 0.76
## 31 31 -53.361695877 -0.78
## 32 32 5.561460193 -0.18
## 33 33 -14.365383737 0.97
## 34 34 -25.842227667 -0.04
## 35 35 -21.069071597 0.44
## 36 36 16.804084473 -0.66
## 37 37 -2.022759456 -0.29
## 38 38 8.500396614 -0.18
## 39 39 -16.126447316 0.98
## 40 40 -26.303291246 -0.44
## 41 41 14.319864824 0.33
## 42 42 23.743020894 0.31
## 43 43 5.016176964 -0.07
## 44 44 13.989333035 1.58
## 45 45 33.162489105 0.54
## 46 46 0.485645175 -0.42
## 47 47 17.408801245 -0.12
## 48 48 42.781957315 -0.80
## 49 49 9.405113385 0.12
## 50 50 -11.721730545 0.47
## 51 51 17.151425526 -0.11
## 52 52 2.424581596 -0.22
## 53 53 29.697737666 0.05
## 54 54 -14.329106264 -0.92
## 55 55 18.044049806 -0.36
## 56 56 -15.532794124 -0.01
## 57 57 -15.859638054 0.09
## 58 58 -5.886481983 1.09
## 59 59 77.486674087 0.64
## 60 60 57.459830157 0.58
## 61 61 19.132986227 0.19
## 62 62 4.056142297 -0.32
## 63 63 -18.820701633 -0.64
## 64 64 -35.997545563 0.01
## 65 65 -8.074389493 0.64
## 66 66 0.648766578 0.60
## 67 67 -59.528077352 0.03
## 68 68 -18.054921282 -0.64
## 69 69 1.168234788 -0.10
## 70 70 19.241390858 0.87
## 71 71 -27.635453072 -0.24
## 72 72 -41.662297002 0.35
## 73 73 -21.589140931 0.85
## 74 74 -15.665984861 0.53
## 75 75 22.207171209 0.04
## 76 76 17.030327279 0.08
## 77 77 -18.896516651 -0.40
## 78 78 -17.573360581 -0.43
## 79 79 34.599795489 0.87
## 80 80 31.672951560 0.62
## 81 81 -30.303892370 0.10
## 82 82 14.719263700 0.28
## 83 83 -39.857580230 0.56
## 84 84 -19.434424160 0.63
## 85 85 -32.361268090 -0.10
## 86 86 27.861887980 -0.05
## 87 87 -31.214955949 0.48
## 88 88 14.208200121 0.21
## 89 89 17.481356191 0.87
## 90 90 9.054512261 0.80
## 91 91 25.727668331 -0.87
## 92 92 3.150824401 -0.42
## 93 93 -40.676019529 -0.38
## 94 94 17.047136542 0.51
## 95 95 -5.629707388 0.35
## 96 96 9.443448682 0.62
## 97 97 -17.383395248 0.16
## 98 98 18.289760822 0.52
## 99 99 32.112916892 0.82
## 100 100 3.986072962 -0.01
## 101 101 23.959229032 0.29
## 102 102 40.382385103 0.10
## 103 103 3.305541173 -0.26
## 104 104 31.328697243 0.22
## 105 105 -1.048146687 0.17
## 106 106 -4.774990617 0.13
## 107 107 -13.851834547 -0.32
## 108 108 -32.428678477 -0.06
## 109 109 -6.605522406 -0.42
## 110 110 -39.032366336 0.42
## 111 111 -25.059210266 0.25
## 112 112 16.213945804 -0.13
## 113 113 58.637101874 0.17
## 114 114 -2.489742056 0.92
## 115 115 15.833414014 -0.46
## 116 116 19.156570085 -0.50
## 117 117 9.179726155 -0.73
## 118 118 -3.097117775 -0.53
## 119 119 17.576038295 0.97
## 120 120 -25.100805635 -0.10
## 121 121 -2.577649565 0.22
## 122 122 8.545506505 0.47
## 123 123 5.668662576 -0.09
## 124 124 35.741818646 0.80
## 125 125 -26.835025284 0.48
## 126 126 5.288130786 0.49
## 127 127 13.461286856 -0.07
## 128 128 -22.665557074 -0.37
## 129 129 -54.792401004 0.40
## 130 130 -0.569244933 0.51
## 131 131 7.453911137 -0.64
## 132 132 -27.922932793 0.17
## 133 133 10.750223277 -0.02
## 134 134 27.123379347 0.12
## 135 135 -41.653464583 0.49
## 136 136 6.619691487 -0.30
## 137 137 25.642847557 1.05
## 138 138 -12.183996372 -0.13
## 139 139 -51.360840302 -0.39
## 140 140 -45.737684232 0.24
## 141 141 -25.014528162 -0.23
## 142 142 45.458627908 -0.22
## 143 143 -2.818216022 0.56
## 144 144 -19.795059952 -0.62
## 145 145 16.878096119 -0.44
## 146 146 21.201252189 0.18
## 147 147 -19.425591741 -0.55
## 148 148 22.447564329 -0.04
## 149 149 -11.179279601 -0.09
## 150 150 56.293876469 0.59
## 151 151 5.517032539 0.05
## 152 152 -17.709811390 -0.07
## 153 153 38.763344680 -0.21
## 154 154 9.936500750 0.21
## 155 155 -16.290343180 0.19
## 156 156 17.182812890 -0.37
## 157 157 -24.894031040 -0.09
## 158 158 7.629125030 0.67
## 159 159 -7.797718899 0.34
## 160 160 31.475437171 0.26
## 161 161 -25.001406759 -0.47
## 162 162 -29.878250689 0.56
## 163 163 -33.455094619 -0.51
## 164 164 35.868061451 -0.32
## 165 165 -5.758782479 0.57
## 166 166 62.364373592 1.23
## 167 167 -5.412470338 0.34
## 168 168 -32.539314268 1.11
## 169 169 -21.316158198 0.12
## 170 170 49.306997872 0.51
## 171 171 54.430153942 -0.61
## 172 172 25.953310012 -1.01
## 173 173 -17.173533918 -0.18
## 174 174 -9.750377847 0.25
## 175 175 -3.677221777 0.04
## 176 176 -13.304065707 -0.04
## 177 177 -25.330909637 -0.45
## 178 178 53.442246433 -0.04
## 179 179 -29.034597497 -0.30
## 180 180 -14.761441427 0.01
## 181 181 -12.938285356 -0.26
## 182 182 -46.665129286 -0.18
## 183 183 5.008026784 -0.38
## 184 184 13.231182854 -0.68
## 185 185 -8.295661076 -0.38
## 186 186 -30.072505006 -2.35
## 187 187 -3.549348936 0.46
## 188 188 -28.726192865 -0.63
## 189 189 -1.653036795 0.59
## 190 190 83.220119275 0.10
## 191 191 -6.706724655 1.16
## 192 192 48.166431415 0.39
NAO_precip_winter <- read.table("NAO_and_precipitation_data.csv", sep=",")[,2:3]
my.date <- seq(as.POSIXct("1825-01-30 00:00:00", format = "%Y"),
by = "year",
length.out = 192)
date<- my.date
my.data <- cbind(NAO_precip_winter,date)
my.wc <- analyze.coherency(my.data, c(1, 2), dt=1)
## Smoothing the time series...
## Starting wavelet transformation and coherency computation...
## ... and simulations...
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 9%
|
|====== | 10%
|
|======= | 11%
|
|======== | 12%
|
|======== | 13%
|
|========= | 14%
|
|========== | 15%
|
|========== | 16%
|
|=========== | 17%
|
|============ | 18%
|
|============ | 19%
|
|============= | 20%
|
|============== | 21%
|
|============== | 22%
|
|=============== | 23%
|
|================ | 24%
|
|================ | 25%
|
|================= | 26%
|
|================== | 27%
|
|================== | 28%
|
|=================== | 29%
|
|==================== | 30%
|
|==================== | 31%
|
|===================== | 32%
|
|===================== | 33%
|
|====================== | 34%
|
|======================= | 35%
|
|======================= | 36%
|
|======================== | 37%
|
|========================= | 38%
|
|========================= | 39%
|
|========================== | 40%
|
|=========================== | 41%
|
|=========================== | 42%
|
|============================ | 43%
|
|============================= | 44%
|
|============================= | 45%
|
|============================== | 46%
|
|=============================== | 47%
|
|=============================== | 48%
|
|================================ | 49%
|
|================================ | 50%
|
|================================= | 51%
|
|================================== | 52%
|
|================================== | 53%
|
|=================================== | 54%
|
|==================================== | 55%
|
|==================================== | 56%
|
|===================================== | 57%
|
|====================================== | 58%
|
|====================================== | 59%
|
|======================================= | 60%
|
|======================================== | 61%
|
|======================================== | 62%
|
|========================================= | 63%
|
|========================================== | 64%
|
|========================================== | 65%
|
|=========================================== | 66%
|
|============================================ | 67%
|
|============================================ | 68%
|
|============================================= | 69%
|
|============================================== | 70%
|
|============================================== | 71%
|
|=============================================== | 72%
|
|=============================================== | 73%
|
|================================================ | 74%
|
|================================================= | 75%
|
|================================================= | 76%
|
|================================================== | 77%
|
|=================================================== | 78%
|
|=================================================== | 79%
|
|==================================================== | 80%
|
|===================================================== | 81%
|
|===================================================== | 82%
|
|====================================================== | 83%
|
|======================================================= | 84%
|
|======================================================= | 85%
|
|======================================================== | 86%
|
|========================================================= | 87%
|
|========================================================= | 88%
|
|========================================================== | 89%
|
|========================================================== | 90%
|
|=========================================================== | 91%
|
|============================================================ | 92%
|
|============================================================ | 93%
|
|============================================================= | 94%
|
|============================================================== | 95%
|
|============================================================== | 96%
|
|=============================================================== | 97%
|
|================================================================ | 98%
|
|================================================================ | 99%
|
|=================================================================| 100%
## Class attributes are accessible through following names:
## series loess.span dt dj Wave.xy Angle sWave.xy sAngle Power.xy Power.xy.avg Power.xy.pval Power.xy.avg.pval Coherency Coherence Coherence.avg Coherence.pval Coherence.avg.pval Wave.x Wave.y Phase.x Phase.y Ampl.x Ampl.y Power.x Power.y Power.x.avg Power.y.avg Power.x.pval Power.y.pval Power.x.avg.pval Power.y.avg.pval sPower.x sPower.y Ridge.xy Ridge.co Ridge.x Ridge.y Period Scale nc nr coi.1 coi.2 axis.1 axis.2 date.format date.tz
wc.image(my.wc, main = "cross-wavelet power spectrum, x over y",
legend.params = list(lab = "cross-wavelet power levels"),
periodlab = "period (years)", show.date = TRUE)
CETtemp <- read.csv("CET.csv")[ ,2]
New_age_CET <- read.csv("CET.csv")[,3]
my.data = data.frame(date = New_age_CET, CETtemp=CETtemp)
my.wt = analyze.wavelet(my.data, "CETtemp", loess.span = 0, dt = 10, dj = 1/20, make.pval = TRUE,
method = "white.noise", params = NULL, n.sim = 100, date.format = "%Y", date.tz = NULL, verbose = TRUE)
## Starting wavelet transformation...
## ... and simulations...
##
|
| | 0%
|
|= | 1%
|
|= | 2%
|
|== | 3%
|
|=== | 4%
|
|=== | 5%
|
|==== | 6%
|
|===== | 7%
|
|===== | 8%
|
|====== | 9%
|
|====== | 10%
|
|======= | 11%
|
|======== | 12%
|
|======== | 13%
|
|========= | 14%
|
|========== | 15%
|
|========== | 16%
|
|=========== | 17%
|
|============ | 18%
|
|============ | 19%
|
|============= | 20%
|
|============== | 21%
|
|============== | 22%
|
|=============== | 23%
|
|================ | 24%
|
|================ | 25%
|
|================= | 26%
|
|================== | 27%
|
|================== | 28%
|
|=================== | 29%
|
|==================== | 30%
|
|==================== | 31%
|
|===================== | 32%
|
|===================== | 33%
|
|====================== | 34%
|
|======================= | 35%
|
|======================= | 36%
|
|======================== | 37%
|
|========================= | 38%
|
|========================= | 39%
|
|========================== | 40%
|
|=========================== | 41%
|
|=========================== | 42%
|
|============================ | 43%
|
|============================= | 44%
|
|============================= | 45%
|
|============================== | 46%
|
|=============================== | 47%
|
|=============================== | 48%
|
|================================ | 49%
|
|================================ | 50%
|
|================================= | 51%
|
|================================== | 52%
|
|================================== | 53%
|
|=================================== | 54%
|
|==================================== | 55%
|
|==================================== | 56%
|
|===================================== | 57%
|
|====================================== | 58%
|
|====================================== | 59%
|
|======================================= | 60%
|
|======================================== | 61%
|
|======================================== | 62%
|
|========================================= | 63%
|
|========================================== | 64%
|
|========================================== | 65%
|
|=========================================== | 66%
|
|============================================ | 67%
|
|============================================ | 68%
|
|============================================= | 69%
|
|============================================== | 70%
|
|============================================== | 71%
|
|=============================================== | 72%
|
|=============================================== | 73%
|
|================================================ | 74%
|
|================================================= | 75%
|
|================================================= | 76%
|
|================================================== | 77%
|
|=================================================== | 78%
|
|=================================================== | 79%
|
|==================================================== | 80%
|
|===================================================== | 81%
|
|===================================================== | 82%
|
|====================================================== | 83%
|
|======================================================= | 84%
|
|======================================================= | 85%
|
|======================================================== | 86%
|
|========================================================= | 87%
|
|========================================================= | 88%
|
|========================================================== | 89%
|
|========================================================== | 90%
|
|=========================================================== | 91%
|
|============================================================ | 92%
|
|============================================================ | 93%
|
|============================================================= | 94%
|
|============================================================== | 95%
|
|============================================================== | 96%
|
|=============================================================== | 97%
|
|================================================================ | 98%
|
|================================================================ | 99%
|
|=================================================================| 100%
## Class attributes are accessible through following names:
## series loess.span dt dj Wave Phase Ampl Power Power.avg Power.pval Power.avg.pval Ridge Period Scale nc nr coi.1 coi.2 axis.1 axis.2 date.format date.tz
wt.image(my.wt, color.key = "i", label.time.axis = TRUE, main = "wavelet power spectrum CET",
legend.params = list(lab = "wavelet power levels"), periodlab = "period (years)", timelab = "calender date (years)",
date.format = "%Y", spec.time.axis = list(at = seq(-10, 462, by = 10), labels = seq(1659, 2018, by = 50)))
## Warning in wt.image(my.wt, color.key = "i", label.time.axis = TRUE, main = "wavelet power spectrum CET", :
## Please check your time axis specifications. Default settings were used.
There are significant cycles. a 64 year cycle at 50 index years. Similarly at 300 index there is a cycle period of 128 years, albeit at minimal wavelet power levels. Many smaller cycles can be seen in more recent years, cycles between 0-64 years at 300 index. However, these cycles are very short and are thus difficult to interpret the exact length.
wt.avg(my.wt, siglvl=0.05, sigcol="red")
The average cycle can be seen at 512 years, however at a low average wavelet power (below 0.01) There are no significant cycles beyond this to be seen in this wavelet transform analysis.