Interceptless PA model

head(df.pa[,c("id","exam_num","bc_pa","PE","pos_PE","neg_PE")])
##     id exam_num     bc_pa       PE pos_PE neg_PE
## 1 5002        1 33.648438 1.000000      1      0
## 2 5002        1 19.898438 0.940000      1      0
## 3 5002        1        NA 0.883600      1      0
## 4 5002        1  1.898438 0.830584      1      0
## 5 5002        1        NA 0.780749      1      0
## 6 5002        1        NA 0.733904      1      0
summary(df.pa.lmer)
## 
## Call:
## lm(formula = bc_pa ~ 0 + pos_PE + neg_PE, data = df.pa)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -68.625  -8.931   0.290   9.409  62.125 
## 
## Coefficients:
##        Estimate Std. Error t value Pr(>|t|)    
## pos_PE   3.0354     0.3636   8.348   <2e-16 ***
## neg_PE  -5.7915     0.4690 -12.348   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 15.33 on 2843 degrees of freedom
##   (4403 observations deleted due to missingness)
## Multiple R-squared:  0.07248,    Adjusted R-squared:  0.07183 
## F-statistic: 111.1 on 2 and 2843 DF,  p-value: < 2.2e-16

Contrast: Negative PE - Positive PE = 2.7561259

Interceptless NA model

head(df.na[,c("id","exam_num","bc_na","PE","pos_PE","neg_PE")])
##     id exam_num     bc_na        PE pos_PE neg_PE
## 1 5002        1 -10.77083 1.0000000      1      0
## 2 5002        1   6.56250 0.9600000      1      0
## 3 5002        1        NA 0.9216000      1      0
## 4 5002        1 -12.43750 0.8847360      1      0
## 5 5002        1        NA 0.8493466      1      0
## 6 5002        1        NA 0.8153727      1      0
summary(df.na.lmer)
## 
## Call:
## lm(formula = bc_na ~ 0 + pos_PE + neg_PE, data = df.na)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -54.366 -11.761  -1.160   9.855  68.840 
## 
## Coefficients:
##        Estimate Std. Error t value Pr(>|t|)    
## pos_PE  -1.3959     0.4081   -3.42 0.000634 ***
## neg_PE   8.4845     0.5264   16.12  < 2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 17.2 on 2843 degrees of freedom
##   (4403 observations deleted due to missingness)
## Multiple R-squared:  0.08717,    Adjusted R-squared:  0.08652 
## F-statistic: 135.7 on 2 and 2843 DF,  p-value: < 2.2e-16

Contrast: Negative PE - Positive PE = 7.0886945