library(socsci)
## Loading required package: tidyverse
## -- Attaching packages ----------------------------------------------------------------------------------------------------------------------- tidyverse 1.2.1 --
## v ggplot2 3.1.0       v purrr   0.3.0  
## v tibble  2.0.1       v dplyr   0.8.0.1
## v tidyr   0.8.2       v stringr 1.4.0  
## v readr   1.3.1       v forcats 0.4.0
## -- Conflicts -------------------------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()    masks stats::lag()
## Loading required package: rlang
## 
## Attaching package: 'rlang'
## The following objects are masked from 'package:purrr':
## 
##     %@%, as_function, flatten, flatten_chr, flatten_dbl,
##     flatten_int, flatten_lgl, flatten_raw, invoke, list_along,
##     modify, prepend, splice
## Loading required package: scales
## 
## Attaching package: 'scales'
## The following object is masked from 'package:purrr':
## 
##     discard
## The following object is masked from 'package:readr':
## 
##     col_factor
## Loading required package: broom
## Loading required package: glue
## 
## Attaching package: 'glue'
## The following object is masked from 'package:dplyr':
## 
##     collapse
house <- read_csv("https://raw.githubusercontent.com/ryanburge/pls2003_sp17/master/house.csv")
## Parsed with column specification:
## cols(
##   id = col_double(),
##   date = col_datetime(format = ""),
##   price = col_double(),
##   bedrooms = col_double(),
##   bathrooms = col_double(),
##   sqft_living = col_double(),
##   sqft_lot = col_double(),
##   floors = col_double(),
##   waterfront = col_double(),
##   condition = col_double(),
##   grade = col_double(),
##   yr_built = col_double()
## )

The question says: 4 bedrooms, 2 bathrooms. The house was built in 1987 and has 1800 sq feet of living space

options(scipen = 999) ## To get rid of scientific notation 
reg1 <- lm(price ~ bedrooms + bathrooms + sqft_living + yr_built, data = house)
summary(reg1)
## 
## Call:
## lm(formula = price ~ bedrooms + bathrooms + sqft_living + yr_built, 
##     data = house)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1850266  -131910   -17121   100494  3950375 
## 
## Coefficients:
##                Estimate  Std. Error t value            Pr(>|t|)    
## (Intercept) 6028494.849  130027.974   46.36 <0.0000000000000002 ***
## bedrooms     -69666.804    2244.860  -31.03 <0.0000000000000002 ***
## bathrooms     82968.984    3731.591   22.23 <0.0000000000000002 ***
## sqft_living     300.224       2.956  101.57 <0.0000000000000002 ***
## yr_built      -3071.211      66.987  -45.85 <0.0000000000000002 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 246300 on 21608 degrees of freedom
## Multiple R-squared:  0.5506, Adjusted R-squared:  0.5506 
## F-statistic:  6620 on 4 and 21608 DF,  p-value: < 0.00000000000000022

So, we can do the math now.

Bedrooms: -69666 * 4 = -278664 Bathrooms: 82968 * 2 = 165936 Sq Ft: 300 * 1800 = 540000 Year Built: -3071 * 1987 = -6102077

Let’s addd all this together: 540000 + 165936 - 278664 - 6102077 = -5674805

Then we add our intercept: 6028494 -5674805 = $353,689