1 Loading, setting up

library(tidyverse)
library(lavaan)
library(lavaan.survey)
library(corrr)

d <- read_csv("2019-04-05-mvs-data.csv")

2 Descriptives, alpha, correlations

safe_log <- function(x) {
    ifelse(x == 0, NA, log(x))
}

# 
# d <- d %>% 
#     mutate(posemo_l = log(posemo), # affective
#            cogproc_l = log(cogproc), # cognitive
#            cogproc_prop_l = log(cogproc_prop))
# 
# d <- mutate(d, cogproc_prop_s = cogproc_prop_l,
#             Tone_prop_s = Tone_prop /100,
#             emo_prop_s = emo_prop/100)

d <- d %>% 
    mutate(cogproc_prop_l = safe_log(cogproc_prop),
           posemo_prop_l = safe_log(posemo_prop),
           ts_60_sq = sqrt(ts_60),
           tone_prop_l = safe_log(Tone_prop))

d %>% 
    select(pre_uv, pre_int, cogproc_prop, cogproc_prop_l, posemo_prop, posemo_prop_l, emo_prop, beh_eng, ts_60, ts_60_sq, final_grade) %>%
    psych::describe()
##                vars   n   mean     sd median trimmed    mad     min
## pre_uv            1 628   3.76   0.74   3.67    3.78   0.49    1.00
## pre_int           2 623   4.31   0.59   4.40    4.37   0.59    1.80
## cogproc_prop      3 620 921.75 392.32 855.89  884.62 314.55    0.00
## cogproc_prop_l    4 619   6.75   0.41   6.75    6.76   0.36    5.01
## posemo_prop       5 620 228.35  92.31 210.92  218.37  71.33    0.00
## posemo_prop_l     6 617   5.37   0.37   5.35    5.36   0.35    4.13
## emo_prop          7 620 159.97  86.18 147.58  153.34  69.17 -100.28
## beh_eng           8 620   0.01   1.49   0.09    0.00   1.55   -3.31
## ts_60             9 634  31.60  22.35  26.58   28.82  17.72    0.01
## ts_60_sq         10 634   5.27   1.96   5.16    5.23   1.73    0.11
## final_grade      11 634  77.37  21.44  83.69   81.69  13.97    0.90
##                    max   range  skew kurtosis    se
## pre_uv            5.00    4.00 -0.28    -0.13  0.03
## pre_int           5.00    3.20 -0.78     0.57  0.02
## cogproc_prop   3916.91 3916.91  1.76     7.69 15.76
## cogproc_prop_l    8.27    3.26 -0.36     1.51  0.02
## posemo_prop     816.63  816.63  1.59     5.19  3.71
## posemo_prop_l     6.71    2.58  0.09     0.68  0.01
## emo_prop        675.16  775.44  1.26     4.71  3.46
## beh_eng           5.30    8.61  0.12    -0.10  0.06
## ts_60           147.85  147.84  1.44     2.89  0.89
## ts_60_sq         12.16   12.05  0.25     0.35  0.08
## final_grade     100.00   99.10 -1.86     3.16  0.85
hist(d$cogproc_prop_l)

hist(d$emo_prop)

hist(d$posemo_prop)

hist(d$posemo_prop_l)

hist(d$beh_eng)

hist(d$ts_60)

hist(d$ts_60_sq)

pre_uv_d <- select(d, q1, q4, q5, q8, q10)
psych::alpha(pre_uv_d)
## 
## Reliability analysis   
## Call: psych::alpha(x = pre_uv_d)
## 
##   raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.87      0.87    0.85      0.58 6.9 0.0083  4.3 0.59     0.57
## 
##  lower alpha upper     95% confidence boundaries
## 0.85 0.87 0.88 
## 
##  Reliability if an item is dropped:
##     raw_alpha std.alpha G6(smc) average_r S/N alpha se  var.r med.r
## q1       0.83      0.84    0.80      0.57 5.2   0.0109 0.0040  0.54
## q4       0.85      0.86    0.83      0.61 6.3   0.0093 0.0021  0.61
## q5       0.84      0.85    0.81      0.58 5.6   0.0103 0.0027  0.57
## q8       0.83      0.83    0.79      0.55 4.9   0.0111 0.0012  0.55
## q10      0.84      0.85    0.81      0.58 5.6   0.0104 0.0046  0.57
## 
##  Item statistics 
##       n raw.r std.r r.cor r.drop mean   sd
## q1  630  0.82  0.83  0.78   0.73  4.3 0.65
## q4  627  0.78  0.77  0.67   0.63  4.3 0.80
## q5  629  0.80  0.81  0.74   0.69  4.3 0.67
## q8  629  0.84  0.85  0.82   0.75  4.4 0.64
## q10 631  0.83  0.81  0.74   0.69  4.2 0.86
## 
## Non missing response frequency for each item
##        1    2    3    4    5 miss
## q1  0.00 0.01 0.07 0.48 0.44 0.01
## q4  0.01 0.03 0.08 0.38 0.50 0.01
## q5  0.00 0.01 0.07 0.52 0.39 0.01
## q8  0.00 0.01 0.06 0.49 0.44 0.01
## q10 0.00 0.04 0.15 0.38 0.42 0.00
d %>% 
    select(pre_uv, pre_int, cogproc_prop_l, emo_prop, beh_eng, final_grade) %>% 
    corrr::correlate() %>% 
    slice() %>% 
    fashion()
##          rowname pre_uv pre_int cogproc_prop_l emo_prop beh_eng
## 1         pre_uv            .51           -.15     -.09     .02
## 2        pre_int    .51                    .01     -.10     .20
## 3 cogproc_prop_l   -.15     .01                     .43     .06
## 4       emo_prop   -.09    -.10            .43             -.13
## 5        beh_eng    .02     .20            .06     -.13        
## 6    final_grade    .05     .15            .25     -.02     .59
##   final_grade
## 1         .05
## 2         .15
## 3         .25
## 4        -.02
## 5         .59
## 6
d %>% 
    select(pre_uv, pre_int, cogproc, posemo, beh_eng, final_grade)
## # A tibble: 634 x 6
##    pre_uv pre_int cogproc posemo beh_eng final_grade
##     <dbl>   <dbl>   <dbl>  <dbl>   <dbl>       <dbl>
##  1   3.67     4.2   15.1    3.56   1.07         93.5
##  2   3        4      7.17  19.0   -2.11         81.7
##  3   3        4.2   15.2    2.91   0.812        88.5
##  4   3.67     4     14.5    5.59  -1.34         81.9
##  5   3.67     3.8   16.7    3.79  -1.43         84  
##  6   4        3.6   15.0    5.69  -0.589        83.6
##  7   3.67     4.2   15.1    5.15  -0.800        97.8
##  8   2        3.8   18.0    6.22   0.401        96.1
##  9   3.33     4.8   15.7    8.48   1.21         81.0
## 10   4.67     4.6   12.3    6.30   0.121        93.9
## # … with 624 more rows

3 SEM

3.1 Affective

m <-
    '
    pre_int =~ q1 + q4 + q5 + q8 + q10
    tone_prop_l ~ a*pre_int
    final_grade_s ~ c*pre_int + b*tone_prop_l
           # indirect effect (a*b)
             ab := a*b
           # total effect
             total := c + (a*b)
    '

m_est <- sem(m, data = d)
group <- svydesign(ids = ~course_ID, data = d)
out_robust <- lavaan.survey(m_est, group)
summary(out_robust, standardized = T, fit.measures = T)
## lavaan 0.6-3 ended normally after 55 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         22
## 
##   Number of observations                           608
## 
##   Estimator                                         ML      Robust
##   Model Fit Test Statistic                      25.648      15.737
##   Degrees of freedom                                13          13
##   P-value (Chi-square)                           0.019       0.264
##   Scaling correction factor                                  1.630
##     for the Satorra-Bentler correction
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             1482.124     646.104
##   Degrees of freedom                                21          21
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.991       0.996
##   Tucker-Lewis Index (TLI)                       0.986       0.993
## 
##   Robust Comparative Fit Index (CFI)                         0.997
##   Robust Tucker-Lewis Index (TLI)                            0.995
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3788.315   -3788.315
##   Loglikelihood unrestricted model (H1)      -3775.492   -3775.492
## 
##   Number of free parameters                         22          22
##   Akaike (AIC)                                7620.631    7620.631
##   Bayesian (BIC)                              7717.655    7717.655
##   Sample-size adjusted Bayesian (BIC)         7647.810    7647.810
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.040       0.019
##   90 Percent Confidence Interval          0.016  0.063       0.000  0.041
##   P-value RMSEA <= 0.05                          0.742       0.994
## 
##   Robust RMSEA                                               0.024
##   90 Percent Confidence Interval                             0.000  0.059
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.018       0.018
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   pre_int =~                                                            
##     q1                1.000                               0.518    0.791
##     q4                1.028    0.070   14.630    0.000    0.532    0.665
##     q5                0.975    0.071   13.719    0.000    0.505    0.769
##     q8                1.044    0.077   13.538    0.000    0.541    0.840
##     q10               1.235    0.059   20.819    0.000    0.640    0.748
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   tone_prop_l ~                                                         
##     pre_int    (a)    0.026    0.060    0.438    0.661    0.014    0.030
##   final_grade_s ~                                                       
##     pre_int    (c)    0.262    0.101    2.587    0.010    0.135    0.140
##     tone_prp_l (b)    0.313    0.127    2.459    0.014    0.313    0.144
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .q1                4.354    0.052   84.141    0.000    4.354    6.645
##    .q4                4.355    0.044   99.530    0.000    4.355    5.443
##    .q5                4.303    0.037  114.938    0.000    4.303    6.551
##    .q8                4.359    0.048   91.020    0.000    4.359    6.773
##    .q10               4.188    0.061   68.867    0.000    4.188    4.897
##    .tone_prop_l       8.159    0.035  235.609    0.000    8.159   18.285
##    .final_grade_s    -2.534    1.041   -2.435    0.015   -2.534   -2.620
##     pre_int           0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .q1                0.161    0.017    9.585    0.000    0.161    0.375
##    .q4                0.357    0.051    6.946    0.000    0.357    0.558
##    .q5                0.177    0.026    6.901    0.000    0.177    0.409
##    .q8                0.122    0.017    6.970    0.000    0.122    0.294
##    .q10               0.322    0.029   11.034    0.000    0.322    0.440
##    .tone_prop_l       0.199    0.048    4.186    0.000    0.199    0.999
##    .final_grade_s     0.896    0.068   13.234    0.000    0.896    0.958
##     pre_int           0.268    0.040    6.718    0.000    1.000    1.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     ab                0.008    0.020    0.407    0.684    0.004    0.004
##     total             0.270    0.107    2.527    0.012    0.140    0.144

3.2 Cognitive

m <-
    '
    pre_int =~ q1 + q4 + q5 + q8 + q10
    cogproc_prop_l ~ a*pre_int
    final_grade_s ~ c*pre_int + b*cogproc_prop_l
           # indirect effect (a*b)
             ab := a*b
           # total effect
             total := c + (a*b)
    '

m_est <- sem(m, data = d)
group <- svydesign(ids = ~course_ID, data = d)
out_robust <- lavaan.survey(m_est, group)
summary(out_robust, standardized = T, fit.measures = T)
## lavaan 0.6-3 ended normally after 60 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         22
## 
##   Number of observations                           607
## 
##   Estimator                                         ML      Robust
##   Model Fit Test Statistic                      29.122      19.030
##   Degrees of freedom                                13          13
##   P-value (Chi-square)                           0.006       0.122
##   Scaling correction factor                                  1.530
##     for the Satorra-Bentler correction
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             1505.927     751.864
##   Degrees of freedom                                21          21
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.989       0.992
##   Tucker-Lewis Index (TLI)                       0.982       0.987
## 
##   Robust Comparative Fit Index (CFI)                         0.994
##   Robust Tucker-Lewis Index (TLI)                            0.990
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3722.053   -3722.053
##   Loglikelihood unrestricted model (H1)      -3707.492   -3707.492
## 
##   Number of free parameters                         22          22
##   Akaike (AIC)                                7488.106    7488.106
##   Bayesian (BIC)                              7585.093    7585.093
##   Sample-size adjusted Bayesian (BIC)         7515.249    7515.249
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.045       0.028
##   90 Percent Confidence Interval          0.023  0.067       0.000  0.048
##   P-value RMSEA <= 0.05                          0.607       0.967
## 
##   Robust RMSEA                                               0.034
##   90 Percent Confidence Interval                             0.000  0.065
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.020       0.020
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   pre_int =~                                                            
##     q1                1.000                               0.516    0.790
##     q4                1.034    0.072   14.424    0.000    0.533    0.666
##     q5                0.981    0.069   14.141    0.000    0.506    0.770
##     q8                1.044    0.078   13.411    0.000    0.539    0.839
##     q10               1.237    0.061   20.415    0.000    0.638    0.747
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   cogproc_prop_l ~                                                      
##     pre_int    (a)    0.015    0.038    0.393    0.695    0.008    0.019
##   final_grade_s ~                                                       
##     pre_int    (c)    0.259    0.105    2.468    0.014    0.133    0.138
##     cgprc_prp_ (b)    0.578    0.151    3.827    0.000    0.578    0.247
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .q1                4.356    0.051   85.634    0.000    4.356    6.667
##    .q4                4.356    0.044  100.070    0.000    4.356    5.440
##    .q5                4.303    0.037  115.171    0.000    4.303    6.547
##    .q8                4.361    0.047   93.068    0.000    4.361    6.795
##    .q10               4.189    0.060   69.935    0.000    4.189    4.903
##    .cogproc_prop_l    6.745    0.043  158.598    0.000    6.745   16.302
##    .final_grade_s    -3.875    1.020   -3.798    0.000   -3.875   -4.006
##     pre_int           0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .q1                0.161    0.017    9.622    0.000    0.161    0.376
##    .q4                0.357    0.052    6.915    0.000    0.357    0.556
##    .q5                0.176    0.026    6.868    0.000    0.176    0.407
##    .q8                0.122    0.017    6.971    0.000    0.122    0.296
##    .q10               0.323    0.029   11.066    0.000    0.323    0.442
##    .cogproc_prop_l    0.171    0.020    8.538    0.000    0.171    1.000
##    .final_grade_s     0.859    0.057   15.071    0.000    0.859    0.919
##     pre_int           0.266    0.039    6.743    0.000    1.000    1.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     ab                0.009    0.022    0.392    0.695    0.004    0.005
##     total             0.267    0.107    2.498    0.012    0.138    0.143

3.3 Behavioral

m <-
    '
    pre_int =~ q1 + q4 + q5 + q8 + q10
    ts_60_sq ~ a*pre_int
    final_grade_s ~ c*pre_int + b*ts_60_sq
           # indirect effect (a*b)
             ab := a*b
           # total effect
             total := c + (a*b)
    '

m_est <- sem(m, data = d)
group <- svydesign(ids = ~course_ID, data = d)
out_robust <- lavaan.survey(m_est, group)
summary(out_robust, standardized = T, fit.measures = T)
## lavaan 0.6-3 ended normally after 54 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         22
## 
##   Number of observations                           622
## 
##   Estimator                                         ML      Robust
##   Model Fit Test Statistic                      21.569      13.490
##   Degrees of freedom                                13          13
##   P-value (Chi-square)                           0.062       0.411
##   Scaling correction factor                                  1.599
##     for the Satorra-Bentler correction
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             1644.789     839.386
##   Degrees of freedom                                21          21
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.995       0.999
##   Tucker-Lewis Index (TLI)                       0.991       0.999
## 
##   Robust Comparative Fit Index (CFI)                         1.000
##   Robust Tucker-Lewis Index (TLI)                            0.999
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -4757.268   -4757.268
##   Loglikelihood unrestricted model (H1)      -4746.484   -4746.484
## 
##   Number of free parameters                         22          22
##   Akaike (AIC)                                9558.536    9558.536
##   Bayesian (BIC)                              9656.061    9656.061
##   Sample-size adjusted Bayesian (BIC)         9586.215    9586.215
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.033       0.008
##   90 Percent Confidence Interval          0.000  0.056       0.000  0.035
##   P-value RMSEA <= 0.05                          0.879       0.999
## 
##   Robust RMSEA                                               0.010
##   90 Percent Confidence Interval                             0.000  0.052
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.014       0.014
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   pre_int =~                                                            
##     q1                1.000                               0.515    0.789
##     q4                1.035    0.069   14.989    0.000    0.533    0.669
##     q5                0.989    0.072   13.736    0.000    0.509    0.770
##     q8                1.041    0.074   14.118    0.000    0.536    0.837
##     q10               1.259    0.060   21.007    0.000    0.649    0.752
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ts_60_sq ~                                                            
##     pre_int    (a)    0.434    0.182    2.378    0.017    0.223    0.114
##   final_grade_s ~                                                       
##     pre_int    (c)    0.209    0.090    2.313    0.021    0.108    0.107
##     ts_60_sq   (b)    0.224    0.017   12.814    0.000    0.224    0.436
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .q1                4.350    0.051   85.038    0.000    4.350    6.658
##    .q4                4.349    0.044   99.740    0.000    4.349    5.455
##    .q5                4.297    0.037  116.502    0.000    4.297    6.499
##    .q8                4.359    0.047   92.214    0.000    4.359    6.807
##    .q10               4.178    0.062   67.582    0.000    4.178    4.842
##    .ts_60_sq          5.258    0.151   34.903    0.000    5.258    2.679
##    .final_grade_s    -1.181    0.122   -9.717    0.000   -1.181   -1.175
##     pre_int           0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .q1                0.161    0.016    9.888    0.000    0.161    0.378
##    .q4                0.351    0.050    6.992    0.000    0.351    0.552
##    .q5                0.178    0.025    7.060    0.000    0.178    0.406
##    .q8                0.122    0.017    7.381    0.000    0.122    0.299
##    .q10               0.324    0.028   11.428    0.000    0.324    0.435
##    .ts_60_sq          3.801    0.393    9.668    0.000    3.801    0.987
##    .final_grade_s     0.796    0.065   12.310    0.000    0.796    0.787
##     pre_int           0.266    0.038    6.964    0.000    1.000    1.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##     ab                0.097    0.043    2.230    0.026    0.050    0.050
##     total             0.306    0.109    2.817    0.005    0.158    0.157

3.4 All variables

m <-
    '
    pre_int =~ q1 + q4 + q5 + q8 + q10

    ts_60_sq ~ pre_int
    cogproc_prop_l ~ pre_int
    tone_prop_l ~ pre_int
    final_grade_s ~ pre_int + ts_60_sq + cogproc_prop_l + tone_prop_l
    '

m_est <- sem(m, data = d)
group <- svydesign(ids = ~course_ID, data = d)
out_robust <- lavaan.survey(m_est, group)
summary(out_robust, standardized = T, fit.measures = T)
## lavaan 0.6-3 ended normally after 70 iterations
## 
##   Optimization method                           NLMINB
##   Number of free parameters                         30
## 
##   Number of observations                           607
## 
##   Estimator                                         ML      Robust
##   Model Fit Test Statistic                     518.796     340.793
##   Degrees of freedom                                24          24
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.522
##     for the Satorra-Bentler correction
## 
## Model test baseline model:
## 
##   Minimum Function Test Statistic             2121.064    1096.095
##   Degrees of freedom                                36          36
##   P-value                                        0.000       0.000
## 
## User model versus baseline model:
## 
##   Comparative Fit Index (CFI)                    0.763       0.701
##   Tucker-Lewis Index (TLI)                       0.644       0.552
## 
##   Robust Comparative Fit Index (CFI)                         0.765
##   Robust Tucker-Lewis Index (TLI)                            0.647
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -5230.106   -5230.106
##   Loglikelihood unrestricted model (H1)      -4970.708   -4970.708
## 
##   Number of free parameters                         30          30
##   Akaike (AIC)                               10520.212   10520.212
##   Bayesian (BIC)                             10652.468   10652.468
##   Sample-size adjusted Bayesian (BIC)        10557.225   10557.225
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.184       0.147
##   90 Percent Confidence Interval          0.171  0.198       0.136  0.159
##   P-value RMSEA <= 0.05                          0.000       0.000
## 
##   Robust RMSEA                                               0.182
##   90 Percent Confidence Interval                             0.165  0.199
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.109       0.109
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard Errors                           Robust.sem
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   pre_int =~                                                            
##     q1                1.000                               0.515    0.789
##     q4                1.034    0.071   14.465    0.000    0.533    0.666
##     q5                0.981    0.069   14.155    0.000    0.506    0.770
##     q8                1.046    0.077   13.518    0.000    0.539    0.840
##     q10               1.239    0.060   20.532    0.000    0.638    0.747
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   ts_60_sq ~                                                            
##     pre_int           0.388    0.191    2.034    0.042    0.200    0.103
##   cogproc_prop_l ~                                                      
##     pre_int           0.016    0.038    0.411    0.681    0.008    0.019
##   tone_prop_l ~                                                         
##     pre_int          -0.001    0.044   -0.012    0.990   -0.000   -0.001
##   final_grade_s ~                                                       
##     pre_int           0.178    0.091    1.967    0.049    0.092    0.093
##     ts_60_sq          0.201    0.016   12.718    0.000    0.201    0.398
##     cogproc_prop_l    0.699    0.137    5.093    0.000    0.699    0.294
##     tone_prop_l      -0.249    0.174   -1.431    0.152   -0.249   -0.101
## 
## Intercepts:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .q1                4.356    0.051   85.634    0.000    4.356    6.667
##    .q4                4.356    0.044  100.070    0.000    4.356    5.440
##    .q5                4.303    0.037  115.171    0.000    4.303    6.547
##    .q8                4.361    0.047   93.068    0.000    4.361    6.795
##    .q10               4.189    0.060   69.935    0.000    4.189    4.903
##    .ts_60_sq          5.285    0.150   35.307    0.000    5.285    2.712
##    .cogproc_prop_l    6.745    0.043  158.598    0.000    6.745   16.302
##    .tone_prop_l       8.167    0.034  237.070    0.000    8.167   20.439
##    .final_grade_s    -3.726    2.243   -1.661    0.097   -3.726   -3.782
##     pre_int           0.000                               0.000    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .q1                0.161    0.017    9.651    0.000    0.161    0.378
##    .q4                0.357    0.052    6.924    0.000    0.357    0.557
##    .q5                0.176    0.026    6.854    0.000    0.176    0.408
##    .q8                0.121    0.017    7.012    0.000    0.121    0.295
##    .q10               0.323    0.029   11.137    0.000    0.323    0.442
##    .ts_60_sq          3.758    0.399    9.425    0.000    3.758    0.989
##    .cogproc_prop_l    0.171    0.020    8.539    0.000    0.171    1.000
##    .tone_prop_l       0.160    0.015   10.608    0.000    0.160    1.000
##    .final_grade_s     0.706    0.049   14.316    0.000    0.706    0.727
##     pre_int           0.266    0.039    6.755    0.000    1.000    1.000