library(readxl)
library(fpp2)
## Loading required package: ggplot2
## Loading required package: forecast
## Loading required package: fma
## Loading required package: expsmooth
MoneyVelo <- read_excel("~/Predictive Analytics/MoneyVelo.xlsx", col_types = c("numeric", "numeric"))
View(MoneyVelo)
MoneyVelo_ts = ts(MoneyVelo$Velocity)
View(MoneyVelo_ts)
MoneyVelo_Neural_net = nnetar(MoneyVelo_ts)
MoneyVelo_neural_net_fcast = forecast(MoneyVelo_Neural_net,h = 50)
autoplot(MoneyVelo_neural_net_fcast)

summary(MoneyVelo_neural_net_fcast)
## 
## Forecast method: NNAR(1,1)
## 
## Model Information:
## 
## Average of 20 networks, each of which is
## a 1-1-1 network with 4 weights
## options were - linear output units 
## 
## Error measures:
##                        ME      RMSE       MAE        MPE     MAPE
## Training set 7.960221e-07 0.1662075 0.1173628 -0.4554223 4.951277
##                   MASE        ACF1
## Training set 0.9275149 0.009659928
## 
## Forecasts:
##     Point Forecast
## 103       1.714940
## 104       1.702187
## 105       1.691432
## 106       1.682393
## 107       1.674819
## 108       1.668487
## 109       1.663205
## 110       1.658807
## 111       1.655149
## 112       1.652112
## 113       1.649591
## 114       1.647502
## 115       1.645772
## 116       1.644339
## 117       1.643153
## 118       1.642172
## 119       1.641361
## 120       1.640690
## 121       1.640136
## 122       1.639678
## 123       1.639300
## 124       1.638987
## 125       1.638729
## 126       1.638516
## 127       1.638339
## 128       1.638194
## 129       1.638074
## 130       1.637975
## 131       1.637893
## 132       1.637825
## 133       1.637769
## 134       1.637723
## 135       1.637685
## 136       1.637654
## 137       1.637628
## 138       1.637606
## 139       1.637589
## 140       1.637574
## 141       1.637562
## 142       1.637552
## 143       1.637544
## 144       1.637537
## 145       1.637531
## 146       1.637527
## 147       1.637523
## 148       1.637520
## 149       1.637517
## 150       1.637515
## 151       1.637513
## 152       1.637512
# The forecast uses the last value and predictics a continuously decreasing trend that slowly levels out.