library(sp)
library(raster)
library(ncdf4)
library(rgdal)
FALSE rgdal: version: 1.3-6, (SVN revision 773)
FALSE Geospatial Data Abstraction Library extensions to R successfully loaded
FALSE Loaded GDAL runtime: GDAL 2.1.3, released 2017/20/01
FALSE Path to GDAL shared files: /Library/Frameworks/R.framework/Versions/3.5/Resources/library/rgdal/gdal
FALSE GDAL binary built with GEOS: FALSE
FALSE Loaded PROJ.4 runtime: Rel. 4.9.3, 15 August 2016, [PJ_VERSION: 493]
FALSE Path to PROJ.4 shared files: /Library/Frameworks/R.framework/Versions/3.5/Resources/library/rgdal/proj
FALSE Linking to sp version: 1.3-1
library(RColorBrewer)
library(lattice)
library(latticeExtra)
library(reshape2)
library(maps)
graphics.off()
rm(list=ls())
setwd("~/Dropbox/GY667 Assignment 3")
path <- file.path(getwd(),"Data");
load("~/Dropbox/GY667 Assignment 3/Data/world.coast.Rdata")
nc<-nc_open(file.path(path,'HadISST_sst.nc'))
lat<-ncvar_get(nc, 'latitude') # latitude
lon<-ncvar_get(nc, 'longitude') # logitude
time<-ncvar_get(nc, 'time')
tunits<-ncatt_get(nc,"time",attname="units")
tustr<-strsplit(tunits$value, " ")
date<-as.character(as.Date(time,origin=unlist(tustr)[3]))
sst <- ncvar_get(nc, 'sst')
lat <- ncvar_get(nc, 'latitude')
lon <- ncvar_get(nc, 'longitude')
time <- ncvar_get(nc, 'time')
fillvalue <- ncatt_get(nc,"sst","_FillValue")
sst[sst==fillvalue$value] <- NA
missvalue <- ncatt_get(nc,"sst","missing_value")
sst[sst==missvalue$value] <- NA
sst[sst==-1000] <- NA
year <- format(as.Date(date, format="%Y-%m-%d"),"%Y")
gmean <- colMeans(sst, na.rm = TRUE, dims=2)
annmean <- aggregate(gmean,by=list(year),FUN=mean,na.rm=TRUE)
avsst = rowMeans(sst,na.rm=TRUE,dims=2)
colors <- rev(brewer.pal(10, "RdYlBu"))
pal <- colorRampPalette(colors)
levelplot(avsst,col.regions = pal(100));
grid <- expand.grid(x=lon, y=lat)
grid$avsst <- as.vector(avsst)
levelplot(avsst~x*y,grid,col.regions = pal(100),
xlab='Longitude',ylab='Latitude',main='Average SST'
) +
layer(sp.lines(world.coast))
yrs <- annmean$Group.1
nyr <- length(yrs)
asst <- array(NA,c(dim(lon),dim(lat),nyr))
for (k in 1:nyr) {
asst[,,k] <- rowMeans(sst[,,year==yrs[k]],na.rm=FALSE,dims=2)
}
grid$an_avsst <- as.vector(rowMeans(asst,na.rm=FALSE,dims=2))
levelplot(an_avsst~x*y, data=grid,col.regions = pal(100),
xlab='Longitude',ylab='Latitude',main='Annually Averaged SST') +
layer(sp.lines(world.coast))
gmean <- colMeans(asst, na.rm = TRUE, dims=2)
for (k in 1:nyr){
asst[,,k]<-asst[,,k]-matrix(gmean[k],length(lon),length(lat))
}
lon0 <- -10.5 #
lat0 <- 51.5 #
sst_ts<-asst[which(lon==lon0),which(lat==lat0),]
plot(yrs,sst_ts,type='l',xlab='Year',ylab='SST Anomaly',main=paste0('SSTA at Long=', lon0, ',Lat=', lat0))
############# #Subpolar Gyre
lon1 <- -35.5
lat1 <- 59.5
plot(yrs,sst_ts,type='l',xlab='Year',ylab='SST Anomaly',main=paste0('SSTA at Long=', lon1, ',Lat=', lat1))
##############
nc<-nc_open(file.path(path,'iamo_ersst.nc'))
amv.monthly <- ncvar_get(nc,'AMO') # AMV
amv.time <- ncvar_get(nc, 'time') # time
tunits<-ncatt_get(nc,"time",attname="units")
tustr<-strsplit(tunits$value, " ")
amv.date <-as.character(as.Date(amv.time*365.25/12,origin=unlist(tustr)[3]))
amv.df <- data.frame("year"=format(as.Date(amv.date, format="%Y-%m-%d"),"%Y"),
"month"=format(as.Date(amv.date, format="%Y-%m-%d"),"%m"),
"amv"=amv.monthly)
amv.an <- aggregate(amv~year,amv.df,mean)
dim(asst)
## [1] 360 180 148
yrs[1]
## [1] "1870"
yrs[length(yrs)]
## [1] "2017"
amv.an$year
## [1] 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
## [15] 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
## [29] 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
## [43] 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
## [57] 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
## [71] 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
## [85] 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
## [99] 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991
## [113] 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
## [127] 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
## 140 Levels: 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 ... 2019
amv.an <- amv.an[1:138,]
yrs <- yrs[11:148]
asst <- asst[,,11:148]
sst_ts <- amv.an$amv
plot(yrs,sst_ts,type='l',xlab='Year',ylab='SST Anomaly',main='AMV')
c.matrix <- matrix(NA,length(lon),length(lat))
t.matrix <- matrix(NA,length(lon),length(lat))
for (i in 1:dim(lon)) {
for (j in 1:dim(lat)) {
if (length(asst[i,j,][!is.na(asst[i,j,])])>2){
c.matrix[i,j] <- cor(asst[i,j,], sst_ts)
p.vals <- cor.test(asst[i,j,], sst_ts)
t.matrix[i, j] <- p.vals$p.value
}
}
}
grid$corr <- as.vector(c.matrix)
grid$pval <- as.vector(t.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=paste0('Correlation of SSTA with AMV')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.01, col = "black"))
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
xlim=c(-120,10),ylim=c(0,80),
main=paste0('Correlation of SSTA with AMV')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.01, col = "black"))
r.matrix <- matrix(NA,length(lon),length(lat))
s.matrix <- matrix(NA,length(lon),length(lat))
for (i in 1:dim(lon)) {
for (j in 1:dim(lat)) {
if (length(asst[i,j,][!is.na(asst[i,j,])])>2){
r.lm <- lm(asst[i,j,]~sst_ts)
r.matrix[i,j] <- r.lm$coefficients[2]
smm<-summary(r.lm)
s.matrix[i, j] <- smm$coefficients[8]
}
}
}
grid$reg <- as.vector(r.matrix)
grid$sig <- as.vector(s.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(reg~x*y, data=grid , at=c(-15:15)/10,
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
xlim=c(-120,10),ylim=c(0,80),
main=('Regression of SSTA with AMV')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
levelplot(reg~x*y, data=grid , at=c(-15:15)/10,
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=('Regression of SSTA with AMV')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
###Comments The correlation and regression of the SST with AMV can be seen clearly in the graphs above. High SST levels can be seen around the atlantic area, with excessive amounts shown off the coast of Portugal. The regression shows greater significance in the middle of the North Atlantic between Ireland and Canada. The SST influence in the region is dominated by the Atlantic Multidecadal OScillation (AMO) (Gastineau and Frankignoul; 2015). They link the ocean circulation linked withe the atmospheric conditions of AMO to the regression and correlation patterns seen in the maps above.
ncenso<-nc_open(file.path(path,'ihadisst1_nino12a.nc'))
timeenso<-ncvar_get(ncenso, 'time')
tunitsenso<-ncatt_get(ncenso,"time",attname="units")
tustrenso<-strsplit(tunitsenso$value, " ")
dateenso<-as.character(as.Date(timeenso*365.25/12,origin=unlist(tustrenso)[3]))
head(dateenso)
## [1] "1870-01-15" "1870-02-14" "1870-03-16" "1870-04-16" "1870-05-16"
## [6] "1870-06-16"
tail(dateenso)
## [1] "2019-07-17" "2019-08-17" "2019-09-16" "2019-10-17" "2019-11-16"
## [6] "2019-12-17"
sstenso <- ncvar_get(ncenso, 'Nino12')
fillvalueenso <- ncatt_get(ncenso,"Nino12","_FillValue")
sstenso[sstenso==fillvalueenso$value] <- NA
missvalueenso <- ncatt_get(ncenso,"Nino12","missing_value")
sstenso[sstenso==missvalueenso$value] <- NA
sstenso[sstenso==3000000000000000000000000000000000] <- NA
summary(sstenso)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -2.5295 -0.8158 -0.3026 -0.1794 0.2769 4.3790 11
ensoyear <- format(as.Date(dateenso, format ="%Y-%m-%d"),"%Y")
ensoannmean <- aggregate(sstenso,by=list(ensoyear), FUN= mean, na.rm= TRUE)
head(ensoannmean)
## Group.1 x
## 1 1870 -1.0840045
## 2 1871 -0.5825608
## 3 1872 -0.9003969
## 4 1873 -0.9435940
## 5 1874 -0.8821288
## 6 1875 -1.0859472
colnames(ensoannmean) <- c("Year", "ENSO")
dim(asst)
## [1] 360 180 138
yrs[1]
## [1] "1880"
yrs[length(yrs)]
## [1] "2017"
ensoannmean$year
## NULL
ensoannmean <- ensoannmean[1:138,]
yrsenso <- yrs[1:138]
asstenso <- asst[,,1:138]
sst_tsenso <- ensoannmean$ENSO
plot(yrsenso,sst_tsenso,type='l',xlab='Year',ylab='SST Anomaly',main='ENSO')
a.matrix <- matrix(NA,length(lon),length(lat))
b.matrix <- matrix(NA,length(lon),length(lat))
for (i in 1:dim(lon)) {
for (j in 1:dim(lat)) {
if (length(asstenso[i,j,][!is.na(asstenso[i,j,])])>2){
c.matrix[i,j] <- cor(asstenso[i,j,], sst_tsenso)
p.vals <- cor.test(asstenso[i,j,], sst_tsenso)
t.matrix[i, j] <- p.vals$p.value
}
}
}
grid$corr <- as.vector(c.matrix)
grid$pval <- as.vector(t.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=paste0('Correlation of SSTA with ENSO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
xlim=c(-80,60),ylim = c(-60,50),
main=paste0('Correlation of SSTA with ENSO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
### using LM. Linear regression ###lets calculate the correlation in a loop also
c.matrix <- matrix(NA,length(lon),length(lat))
t.matrix <- matrix(NA,length(lon),length(lat))
for (i in 1:dim(lon)) {
for (j in 1:dim(lat)) {
if (length(asstenso[i,j,][!is.na(asstenso[i,j,])])>2){
r.lm <- lm(asstenso[i,j,]~sst_tsenso)
c.matrix[i,j] <- r.lm$coefficients[2]
smm<-summary(r.lm)
t.matrix[i, j] <- smm$coefficients[8]
}
}
}
grid$reg <- as.vector(c.matrix)
grid$sig <- as.vector(t.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(reg~x*y, data=grid , at=c(-5:5)/10,
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=('Regression of SSTA With ENSO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
levelplot(reg~x*y, data=grid , at=c(-5:5)/10,
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
xlim=c(-80,60),ylim = c(-60,50),
main=('Regression of SSTA With ENSO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
##Comments ENSO shows a direct correlation and regression on the African border. While the significance of the patterns observed may not compare well to that of the AMO previouslt, there is still a correlation to be seen from the maps, at South America and the east coast of Africa, and the regression map reiterating this on a smaller scale. The link between SST anomalies and tropical ENSO events in the north Pacific can ve successfully reproduced by forcing the model atmosphere with tropical Pacific SST variations and allowing atmospheric perturbations (lau; 1997). This signifies that if it can be modelled showing the link between ENSO events, influencing SST due to ocean circulation coupling, ocean circulation does have an effect on these patterns.
ncpdo<-nc_open(file.path(path,'ipdo_ersst.nc'))
timepdo<-ncvar_get(ncpdo, 'time')
tunitspdo<-ncatt_get(ncpdo,"time",attname="units")
tustrpdo<-strsplit(tunitspdo$value, " ")
datepdo<-as.character(as.Date(timepdo*365.25/12,origin=unlist(tustrpdo)[3]))
head(datepdo)
## [1] "1880-01-15" "1880-02-14" "1880-03-15" "1880-04-15" "1880-05-15"
## [6] "1880-06-15"
tail(datepdo)
## [1] "2019-07-17" "2019-08-16" "2019-09-16" "2019-10-16" "2019-11-16"
## [6] "2019-12-16"
sstpdo <- ncvar_get(ncpdo, 'index')
fillvaluepdo <- ncatt_get(ncpdo,"index","_FillValue")
sstpdo[sstpdo==fillvaluepdo$value] <- NA
missvaluepdo <- ncatt_get(ncpdo,"index","missing_value")
sstpdo[sstpdo==missvaluepdo$value] <- NA
sstpdo[sstpdo==3000000000000000000000000000000000] <- NA
summary(sstpdo)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -3.57816 -0.87640 0.01883 0.00000 0.81825 3.45459 9
pdoyear <- format(as.Date(datepdo, format ="%Y-%m-%d"),"%Y")
pdoannmean <- aggregate(sstpdo,by=list(pdoyear), FUN= mean, na.rm= TRUE)
head(pdoannmean)
## Group.1 x
## 1 1880 -1.0941062
## 2 1881 -0.1329750
## 3 1882 -1.2800012
## 4 1883 -1.0194251
## 5 1884 0.4898186
## 6 1885 0.8920912
colnames(pdoannmean) <- c("Year", "PDO")
dim(asst)
## [1] 360 180 138
yrs[1]
## [1] "1880"
yrs[length(yrs)]
## [1] "2017"
pdoannmean$Year
## [1] "1880" "1881" "1882" "1883" "1884" "1885" "1886" "1887" "1888" "1889"
## [11] "1890" "1891" "1892" "1893" "1894" "1895" "1896" "1897" "1898" "1899"
## [21] "1900" "1901" "1902" "1903" "1904" "1905" "1906" "1907" "1908" "1909"
## [31] "1910" "1911" "1912" "1913" "1914" "1915" "1916" "1917" "1918" "1919"
## [41] "1920" "1921" "1922" "1923" "1924" "1925" "1926" "1927" "1928" "1929"
## [51] "1930" "1931" "1932" "1933" "1934" "1935" "1936" "1937" "1938" "1939"
## [61] "1940" "1941" "1942" "1943" "1944" "1945" "1946" "1947" "1948" "1949"
## [71] "1950" "1951" "1952" "1953" "1954" "1955" "1956" "1957" "1958" "1959"
## [81] "1960" "1961" "1962" "1963" "1964" "1965" "1966" "1967" "1968" "1969"
## [91] "1970" "1971" "1972" "1973" "1974" "1975" "1976" "1977" "1978" "1979"
## [101] "1980" "1981" "1982" "1983" "1984" "1985" "1986" "1987" "1988" "1989"
## [111] "1990" "1991" "1992" "1993" "1994" "1995" "1996" "1997" "1998" "1999"
## [121] "2000" "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009"
## [131] "2010" "2011" "2012" "2013" "2014" "2015" "2016" "2017" "2018" "2019"
pdoannmean <- pdoannmean[1:138,]
yrspdo <- yrs[1:138]
asstpdo <- asst[,,1:138]
sst_tspdo <- pdoannmean$PDO
plot(yrspdo,sst_tspdo,type='l',xlab='Year',ylab='SST Anomaly',main='PDO')
c.matrix <- matrix(NA,length(lon),length(lat))
t.matrix <- matrix(NA,length(lon),length(lat))
for (i in 1:dim(lon)) {
for (j in 1:dim(lat)) {
if (length(asstpdo[i,j,][!is.na(asstpdo[i,j,])])>2){
c.matrix[i,j] <- cor(asstpdo[i,j,], sst_tspdo)
p.vals <- cor.test(asstpdo[i,j,], sst_tspdo)
t.matrix[i, j] <- p.vals$p.value
}
}
}
grid$corr <- as.vector(c.matrix)
grid$pval <- as.vector(t.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=paste0('Correlation of SSTA with PDO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
xlim = c(-200,-50),ylim = c(-70,70),
main=paste0('Correlation of SSTA with PDO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
c.matrix <- matrix(NA,length(lon),length(lat))
t.matrix <- matrix(NA,length(lon),length(lat))
for (i in 1:dim(lon)) {
for (j in 1:dim(lat)) {
if (length(asstpdo[i,j,][!is.na(asstpdo[i,j,])])>2){
r.lm <- lm(asstpdo[i,j,]~sst_tspdo)
c.matrix[i,j] <- r.lm$coefficients[2]
smm<-summary(r.lm)
t.matrix[i, j] <- smm$coefficients[8]
}
}
}
grid$reg <- as.vector(c.matrix)
grid$sig <- as.vector(t.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(reg~x*y, data=grid , at=c(-5:5)/10,
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=('Regression of SSTA With PDO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
levelplot(reg~x*y, data=grid , at=c(-5:5)/10,
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
xlim = c(-200,-50),ylim = c(-70,70),
main=('Regression of SSTA With PDO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
##Comments Much like the AMO, PDO show a high significance level of the patterns shown in the correlation and regression of SST to PDO. There was a high correlation for PDO with SST, certainly off the coast of North and South America, andf then veering off towards the Asian side of the Pacific.(McPhaden and Zhang; 2002) discuss the slowdonw of the meridional circulation in the upper Pacific slowing down since the 1970s. It is causing an upwelling of about 25%. This upwelling has is associated with a rise in SST’s of about 0.8°C. This shows the clear role ocean circulation may have played in producing the patterns shown in the correlationa dn regression maps made of SST with PDO.
ncslp<-nc_open(file.path(path,'slp.mon.mean.nc'))
lat1<-ncvar_get(ncslp, 'lat') # latitude
lon1 <- ncvar_get(ncslp, 'lon')
lon1<- ifelse( lon1<=180, lon1, lon1-360)
timeslp<-ncvar_get(ncslp, 'time')
tunitsslp<-ncatt_get(ncslp,"time",attname="units")
tustrslp<-strsplit(tunitsslp$value, " ")
dateslp<-as.character(as.Date(timeslp/24-2,origin=unlist(tustrslp)[3]))
slp <- ncvar_get(ncslp, 'slp')
# load slp.mon.mean.nc
latslp <- ncvar_get(ncslp, 'lat')
lonslp <- ifelse(lon1<=180,lon1, lon1-360)
timeslp <- ncvar_get(ncslp, 'time')
fillvalue <- ncatt_get(ncslp,"slp","_FillValue")
slp[slp==fillvalue$value] <- NA
missvalue <- ncatt_get(ncslp,"slp","missing_value")
slp[slp==missvalue$value] <- NA
slp[slp==-9.96921e+36] <- NA
yearslp <- format(as.Date(dateslp, format="%Y-%m-%d"),"%Y")
gmeanslp <- colMeans(slp, na.rm = TRUE, dims=2)
annmeanslp <- aggregate(gmeanslp,by=list(yearslp),FUN=mean,na.rm=TRUE)
avslp = rowMeans(slp,na.rm=TRUE,dims=2)
avslp = rowMeans(slp,na.rm=FALSE,dims=2)
colors <- rev(brewer.pal(10, "RdYlBu"))
pal <- colorRampPalette(colors)
levelplot(avslp,col.regions = pal(100));
grid <- expand.grid(x=lon1, y=lat1)
grid$avslp <- as.vector(avslp)
levelplot(avslp~x*y,grid,col.regions = pal(100),
xlab='Longitude',ylab='Latitude',main='Average SLP'
) +
layer(sp.lines(world.coast))
yrsslp <- annmeanslp$Group.1
nyrslp <- length(yrsslp)
aslp <- array(slp, c(dim(lon1),dim(lat1),nyrslp))
for (k in 1:nyrslp) {
aslp[,,k] <- rowMeans(slp[,,yearslp==yrsslp[k]],na.rm=FALSE,dims=1) # annual averages from monthly data
}
grid$an_avslp <- as.vector(rowMeans(aslp,na.rm=FALSE,dims=2))
levelplot(avslp~x*y, data=grid,col.regions = pal(100),
xlab='Longitude',ylab='Latitude',main='Annually Averaged SLP') +
layer(sp.lines(world.coast))
###remove the global mean from each year ###lets do a traditional loop
gmeanslp <- colMeans(aslp, na.rm = TRUE, dims=2)
for (k in 1:nyrslp){
aslp[,,k]<-aslp[,,k]-matrix(gmeanslp[k],length(lon1),length(lat1))
}
lon0 <- -10.5 #
lat0 <- 51.5 #
slp_ts<-aslp[which(lon1==lon0),which(lat1==lat0),]
slp_ts <- annmeanslp$x
plot(yrsslp,slp_ts,type='l',xlab='Year',ylab='SLP Anomaly',main=paste0('SLPA at Long=', lon0, ',Lat=', lat0))
ncpdo<-nc_open(file.path(path,'ipdo_ersst.nc'))
timepdo<-ncvar_get(ncpdo, 'time')
tunitspdo<-ncatt_get(ncpdo,"time",attname="units")
tustrpdo<-strsplit(tunitspdo$value, " ")
datepdoslp<-as.character(as.Date(timepdo*365.25/12,origin=unlist(tustrpdo)[3]))
head(datepdoslp)
## [1] "1880-01-15" "1880-02-14" "1880-03-15" "1880-04-15" "1880-05-15"
## [6] "1880-06-15"
tail(datepdoslp)
## [1] "2019-07-17" "2019-08-16" "2019-09-16" "2019-10-16" "2019-11-16"
## [6] "2019-12-16"
slppdo <- ncvar_get(ncpdo, 'index')
fillvaluepdo <- ncatt_get(ncpdo,"index","_FillValue")
slppdo[slppdo==fillvaluepdo$value] <- NA
missvaluepdo <- ncatt_get(ncpdo,"index","missing_value")
slppdo[slppdo==missvaluepdo$value] <- NA
slppdo[slppdo==3000000000000000000000000000000000] <- NA
summary(slppdo)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -3.57816 -0.87640 0.01883 0.00000 0.81825 3.45459 9
pdoyearslp <- format(as.Date(datepdoslp, format ="%Y-%m-%d"),"%Y")
pdoannmeanslp <- aggregate(slppdo,by=list(pdoyearslp), FUN= mean, na.rm= TRUE)
head(pdoannmeanslp)
## Group.1 x
## 1 1880 -1.0941062
## 2 1881 -0.1329750
## 3 1882 -1.2800012
## 4 1883 -1.0194251
## 5 1884 0.4898186
## 6 1885 0.8920912
colnames(pdoannmeanslp) <- c("Year", "PDO")
dim(aslp)
## [1] 144 73 72
yrsslp[1]
## [1] "1947"
yrsslp[length(yrsslp)]
## [1] "2018"
pdoannmeanslp$Year
## [1] "1880" "1881" "1882" "1883" "1884" "1885" "1886" "1887" "1888" "1889"
## [11] "1890" "1891" "1892" "1893" "1894" "1895" "1896" "1897" "1898" "1899"
## [21] "1900" "1901" "1902" "1903" "1904" "1905" "1906" "1907" "1908" "1909"
## [31] "1910" "1911" "1912" "1913" "1914" "1915" "1916" "1917" "1918" "1919"
## [41] "1920" "1921" "1922" "1923" "1924" "1925" "1926" "1927" "1928" "1929"
## [51] "1930" "1931" "1932" "1933" "1934" "1935" "1936" "1937" "1938" "1939"
## [61] "1940" "1941" "1942" "1943" "1944" "1945" "1946" "1947" "1948" "1949"
## [71] "1950" "1951" "1952" "1953" "1954" "1955" "1956" "1957" "1958" "1959"
## [81] "1960" "1961" "1962" "1963" "1964" "1965" "1966" "1967" "1968" "1969"
## [91] "1970" "1971" "1972" "1973" "1974" "1975" "1976" "1977" "1978" "1979"
## [101] "1980" "1981" "1982" "1983" "1984" "1985" "1986" "1987" "1988" "1989"
## [111] "1990" "1991" "1992" "1993" "1994" "1995" "1996" "1997" "1998" "1999"
## [121] "2000" "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009"
## [131] "2010" "2011" "2012" "2013" "2014" "2015" "2016" "2017" "2018" "2019"
pdoannmeanslp1 <- pdoannmeanslp[67:138,]
yrspdoslp <- yrsslp[1:72]
aslppdo <- aslp[,,1:72]
slp_tspdo <- pdoannmeanslp1$PDO
plot(yrspdoslp,slp_tspdo,type='l',xlab='Year',ylab='SST Anomaly',main='PDO SLP Time Series')
c.matrix <- matrix(NA,length(lon1),length(lat1))
t.matrix <- matrix(NA,length(lon1),length(lat1))
for (i in 1:dim(lon1)) {
for (j in 1:dim(lat1)) {
if (length(aslppdo[i,j,][!is.na(aslppdo[i,j,])])>2){
c.matrix[i,j] <- cor(aslppdo[i,j,], slp_tspdo)
p.vals <- cor.test(aslppdo[i,j,], slp_tspdo)
t.matrix[i, j] <- p.vals$p.value
}
}
}
grid$corr <- as.vector(c.matrix)
grid$pval <- as.vector(t.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=paste0('Correlation of SLP with PDO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
###using LM. Linear regression ###lets calculate the correlation in a loop also
m.matrix <- matrix(NA,length(lon1),length(lat1))
n.matrix <- matrix(NA,length(lon1),length(lat1))
for (i in 1:dim(lon1)) {
for (j in 1:dim(lat1)) {
if (length(aslppdo[i,j,][!is.na(aslppdo[i,j,])])>2){
r.lm <- lm(aslppdo[i,j,]~slp_tspdo)
m.matrix[i,j] <- r.lm$coefficients[2]
smm<-summary(r.lm)
n.matrix[i, j] <- smm$coefficients[8]
}
}
}
grid$reg <- as.vector(m.matrix)
grid$sig <- as.vector(n.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(reg~x*y, data=grid , at=c(-2:2)/10,
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=('Regression of SLP With PDO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
##Comment I am not able to comment on the maps made bny any of the incdes due to a small error that i cannot find or seem to fix when coding the maps. It has restricted the reading of the maps, thus patterns cannot be seen or discussed unfortunately. It is not for a lack of tryingm, as I have been working on this a long time.
ncenso<-nc_open(file.path(path,'ihadisst1_nino12a.nc'))
timeenso<-ncvar_get(ncenso, 'time')
tunitsenso<-ncatt_get(ncenso,"time",attname="units")
tustrenso<-strsplit(tunitsenso$value, " ")
dateensoslp<-as.character(as.Date(timeenso*365.25/12,origin=unlist(tustrenso)[3]))
head(dateensoslp)
## [1] "1870-01-15" "1870-02-14" "1870-03-16" "1870-04-16" "1870-05-16"
## [6] "1870-06-16"
tail(dateensoslp)
## [1] "2019-07-17" "2019-08-17" "2019-09-16" "2019-10-17" "2019-11-16"
## [6] "2019-12-17"
slpenso <- ncvar_get(ncenso, 'Nino12')
fillvalueenso <- ncatt_get(ncenso,"Nino12","_FillValue")
slpenso[slpenso==fillvalueenso$value] <- NA
missvalueenso <- ncatt_get(ncenso,"Nino12","missing_value")
slpenso[slpenso==missvalueenso$value] <- NA
slpenso[slpenso==3000000000000000000000000000000000] <- NA
summary(slpenso)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -2.5295 -0.8158 -0.3026 -0.1794 0.2769 4.3790 11
ensoyearslp <- format(as.Date(dateensoslp, format ="%Y-%m-%d"),"%Y")
ensoannmeanslp <- aggregate(slpenso,by=list(ensoyearslp), FUN= mean, na.rm= TRUE)
head(ensoannmeanslp)
## Group.1 x
## 1 1870 -1.0840045
## 2 1871 -0.5825608
## 3 1872 -0.9003969
## 4 1873 -0.9435940
## 5 1874 -0.8821288
## 6 1875 -1.0859472
colnames(ensoannmeanslp) <- c("Year", "ENSO")
dim(aslp)
## [1] 144 73 72
yrsslp[1]
## [1] "1947"
yrsslp[length(yrsslp)]
## [1] "2018"
ensoannmeanslp$Year
## [1] "1870" "1871" "1872" "1873" "1874" "1875" "1876" "1877" "1878" "1879"
## [11] "1880" "1881" "1882" "1883" "1884" "1885" "1886" "1887" "1888" "1889"
## [21] "1890" "1891" "1892" "1893" "1894" "1895" "1896" "1897" "1898" "1899"
## [31] "1900" "1901" "1902" "1903" "1904" "1905" "1906" "1907" "1908" "1909"
## [41] "1910" "1911" "1912" "1913" "1914" "1915" "1916" "1917" "1918" "1919"
## [51] "1920" "1921" "1922" "1923" "1924" "1925" "1926" "1927" "1928" "1929"
## [61] "1930" "1931" "1932" "1933" "1934" "1935" "1936" "1937" "1938" "1939"
## [71] "1940" "1941" "1942" "1943" "1944" "1945" "1946" "1947" "1948" "1949"
## [81] "1950" "1951" "1952" "1953" "1954" "1955" "1956" "1957" "1958" "1959"
## [91] "1960" "1961" "1962" "1963" "1964" "1965" "1966" "1967" "1968" "1969"
## [101] "1970" "1971" "1972" "1973" "1974" "1975" "1976" "1977" "1978" "1979"
## [111] "1980" "1981" "1982" "1983" "1984" "1985" "1986" "1987" "1988" "1989"
## [121] "1990" "1991" "1992" "1993" "1994" "1995" "1996" "1997" "1998" "1999"
## [131] "2000" "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009"
## [141] "2010" "2011" "2012" "2013" "2014" "2015" "2016" "2017" "2018" "2019"
ensoannmeanslp1 <- ensoannmeanslp[78:138,]
yrsensoslp <- yrsslp[1:61]
aslpenso <- aslp[,,1:61]
slp_tsenso <- ensoannmeanslp1$ENSO
plot(yrsensoslp,slp_tsenso,type='l',xlab='Year',ylab='SST Anomaly',main='ENSO SLP Time Series')
c.matrix <- matrix(NA,length(lon1),length(lat1))
t.matrix <- matrix(NA,length(lon1),length(lat1))
for (i in 1:dim(lon1)) {
for (j in 1:dim(lat1)) {
if (length(aslpenso[i,j,][!is.na(aslpenso[i,j,])])>2){
c.matrix[i,j] <- cor(aslpenso[i,j,], slp_tsenso)
p.vals <- cor.test(aslpenso[i,j,], slp_tsenso)
t.matrix[i, j] <- p.vals$p.value
}
}
}
grid$corr <- as.vector(c.matrix)
grid$pval <- as.vector(t.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=paste0('Correlation of SLP with ENSO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
### using LM. Linear regression ###lets calculate the correlation in a loop also
c.matrix <- matrix(NA,length(lon1),length(lat1))
t.matrix <- matrix(NA,length(lon1),length(lat1))
for (i in 1:dim(lon1)) {
for (j in 1:dim(lat1)) {
if (length(aslpenso[i,j,][!is.na(aslpenso[i,j,])])>2){
r.lm <- lm(aslpenso[i,j,]~slp_tsenso)
c.matrix[i,j] <- r.lm$coefficients[2]
smm<-summary(r.lm)
t.matrix[i, j] <- smm$coefficients[8]
}
}
}
grid$reg <- as.vector(m.matrix)
grid$sig <- as.vector(n.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(reg~x*y, data=grid , at=c(-2:2)/10,
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=('Regression of SLP With ENSO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
ncamo<-nc_open(file.path(path,'iamo_ersst.nc'))
timeamo<-ncvar_get(ncamo, 'time')
tunitsamo<-ncatt_get(ncamo,"time",attname="units")
tustramo<-strsplit(tunitsamo$value, " ")
dateamoslp<-as.character(as.Date(timeamo*365.25/12,origin=unlist(tustramo)[3]))
head(dateamoslp)
## [1] "1880-01-15" "1880-02-14" "1880-03-15" "1880-04-15" "1880-05-15"
## [6] "1880-06-15"
tail(dateamoslp)
## [1] "2019-07-17" "2019-08-16" "2019-09-16" "2019-10-16" "2019-11-16"
## [6] "2019-12-16"
slpamo <- ncvar_get(ncamo, 'AMO')
fillvalueamo <- ncatt_get(ncamo,"AMO","_FillValue")
slpamo[slpamo==fillvalueamo$value] <- NA
missvalueamo <- ncatt_get(ncamo,"AMO","missing_value")
slpamo[slpamo==missvalueamo$value] <- NA
slpamo[slpamo==3e+33] <- NA
summary(slpamo)
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -0.733522 -0.169803 -0.004612 0.000000 0.168052 0.851506 9
amoyearslp <- format(as.Date(dateamoslp, format ="%Y-%m-%d"),"%Y")
amoannmeanslp <- aggregate(slpamo,by=list(amoyearslp), FUN= mean, na.rm= TRUE)
head(amoannmeanslp)
## Group.1 x
## 1 1880 0.26576526
## 2 1881 -0.02418830
## 3 1882 0.06306856
## 4 1883 0.01907216
## 5 1884 -0.08529102
## 6 1885 0.04853270
colnames(amoannmeanslp) <- c("Year", "AMO")
dim(aslp)
## [1] 144 73 72
yrsslp[1]
## [1] "1947"
yrsslp[length(yrsslp)]
## [1] "2018"
amoannmeanslp$Year
## [1] "1880" "1881" "1882" "1883" "1884" "1885" "1886" "1887" "1888" "1889"
## [11] "1890" "1891" "1892" "1893" "1894" "1895" "1896" "1897" "1898" "1899"
## [21] "1900" "1901" "1902" "1903" "1904" "1905" "1906" "1907" "1908" "1909"
## [31] "1910" "1911" "1912" "1913" "1914" "1915" "1916" "1917" "1918" "1919"
## [41] "1920" "1921" "1922" "1923" "1924" "1925" "1926" "1927" "1928" "1929"
## [51] "1930" "1931" "1932" "1933" "1934" "1935" "1936" "1937" "1938" "1939"
## [61] "1940" "1941" "1942" "1943" "1944" "1945" "1946" "1947" "1948" "1949"
## [71] "1950" "1951" "1952" "1953" "1954" "1955" "1956" "1957" "1958" "1959"
## [81] "1960" "1961" "1962" "1963" "1964" "1965" "1966" "1967" "1968" "1969"
## [91] "1970" "1971" "1972" "1973" "1974" "1975" "1976" "1977" "1978" "1979"
## [101] "1980" "1981" "1982" "1983" "1984" "1985" "1986" "1987" "1988" "1989"
## [111] "1990" "1991" "1992" "1993" "1994" "1995" "1996" "1997" "1998" "1999"
## [121] "2000" "2001" "2002" "2003" "2004" "2005" "2006" "2007" "2008" "2009"
## [131] "2010" "2011" "2012" "2013" "2014" "2015" "2016" "2017" "2018" "2019"
amoannmeanslp1 <- amoannmeanslp[68:138,]
yrsamoslp <- yrsslp[1:71]
aslpamo <- aslp[,,1:71]
slp_tsamo <- amoannmeanslp1$AMO
plot(yrsamoslp,slp_tsamo,type='l',xlab='Year',ylab='SLP Anomaly',main='AMO SLP Time Series')
c.matrix <- matrix(NA,length(lon1),length(lat1))
t.matrix <- matrix(NA,length(lon1),length(lat1))
for (i in 1:dim(lon1)) {
for (j in 1:dim(lat1)) {
if (length(aslpamo[i,j,][!is.na(aslpamo[i,j,])])>2){
c.matrix[i,j] <- cor(aslpamo[i,j,], slp_tsamo)
p.vals <- cor.test(aslpamo[i,j,], slp_tsamo)
t.matrix[i, j] <- p.vals$p.value
}
}
}
grid$corr <- as.vector(c.matrix)
grid$pval <- as.vector(t.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=paste0('Correlation of SLP with AMO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
levelplot(corr~x*y, data=grid , # xlim=c(-120,10),ylim=c(0,80), # at=c(-1:1),
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
xlim=c(-120,10),ylim=c(0,80),
main=paste0('Correlation of SLP with AMO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
###using LM. Linear regression
c.matrix <- matrix(NA,length(lon1),length(lat1))
t.matrix <- matrix(NA,length(lon1),length(lat1))
for (i in 1:dim(lon1)) {
for (j in 1:dim(lat1)) {
if (length(aslpamo[i,j,][!is.na(aslpamo[i,j,])])>2){
r.lm <- lm(aslpamo[i,j,]~slp_tsamo)
c.matrix[i,j] <- r.lm$coefficients[2]
smm<-summary(r.lm)
t.matrix[i, j] <- smm$coefficients[8]
}
}
}
grid$reg <- as.vector(c.matrix)
grid$sig <- as.vector(t.matrix)
sig <- subset(grid[, c(1, 2, 5, 6)], pval < 0.01) # 1 = lat, 2 = lon, 5 = corr, 6 = pval
sig <- SpatialPointsDataFrame(coords = sig[, c(1, 2)], data = sig)
levelplot(reg~x*y, data=grid , at=c(-2:2)/10,
col.regions = pal(100),xlab='Longitude',ylab='Latitude',
main=('Regression of SLP With AMO')) +
layer(sp.lines(world.coast)) +
layer(sp.points(sig, pch = 20, cex = 0.005, col = "black"))
Gastineau, G. and Frankignoul, C., 2015. Influence of the North Atlantic SST variability on the atmospheric circulation during the twentieth century. Journal of Climate, 28(4), pp.1396-1416.
Lau, N.C., 1997. Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bulletin of the American Meteorological Society, 78(1), pp.21-34.
McPhaden, M.J. and Zhang, D., 2002. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature, 415(6872), p.603.