Efecto mínimo detectable (EMD)

Para una aleatorización a nivel de aglomerados, se puede emplear el siguiente cálculo.

\[MDE=(t_{1-\kappa}+t_\alpha) \sqrt{\frac{1}{Jp(1-p)}} \sqrt{\rho + \frac{(1-\rho)\sigma^2}{n}}\]

Reordenando y despejando \(J\) tenemos:

\[J=(\frac{t_{1-\kappa}+t_\alpha}{MDE})^2 \frac{1}{p(1-p)} ( \rho + \frac{(1-\rho)\sigma^2}{n} )\]

Se estandariza la siguiente notación: Para facilitar el análisis de los parámetros en el modelo y obtener un cálculo de poder inmediato, redefinimos la variabilidad en términos del coeficiente de correlación intraclase \(\rho\); este se expresaría como un ratio de la variabilidad entre clusters respecto a la variabilidad total, tal como sigue:

\[\rho=\frac{\tau}{\tau+\sigma^2}\] Dado que \(\tau+\sigma^2\) es la variabilidad total, la podemos restringir a 1. De ese modo, \(\rho=\tau\), lo que implica además que \(1-\rho=\sigma^2\).

Reemplazando los datos como supuestos tenemos:

t_mk=0.84
t_alpha=1.96
MDE=0.2
p=0.5
rho=0.15
sigma2=1-rho
n=12  

J=((t_mk+t_alpha)/MDE)^2*(1/(p*(1-p)))*(rho+(((1-p)*sigma2)/n))
J
## [1] 145.3667

Procesamiento de Cenagro 2012

Tratamiento de bases de datos

#lima
setwd("C:/Users/sant_/Documents/Consultorias/2019/nico/cenagro")
library(dplyr)
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(foreign)

##Bases generales
lima_rec02 <- read.dbf("lima/351-Modulo231/03_IVCENAGRO_REC02.dbf") 
lima_rec04a <- read.dbf("lima/351-Modulo236/08_IVCENAGRO_REC04A.dbf") 

## Pollos
lima_pollos <- filter(lima_rec04a, P067_01==761)

## Ganado lechero (solo vacas)
lima_vacas <- filter(lima_rec04a, P067_01==674)

## Papas
lima_papas <- filter(lima_rec02, (
  P024_03==2610 | P024_03==2611 | P024_03==2612 | P024_03==2613 | P024_03==2614 | 
    P024_03==2615 | P024_03==5049 | P024_03==5062 | P024_03==5074 | P024_03==5075 | 
    P024_03==5076 | P024_03==5077 | P024_03==5078 | P024_03==5079 | P024_03==5080 | 
    P024_03==5081 | P024_03==5090 | P024_03==5091 | P024_03==5113 | P024_03==5122 | 
    P024_03==5123 | P024_03==5124 | P024_03==5125 | P024_03==5126 | P024_03==5130 | 
    P024_03==5135 | P024_03==5136 | P024_03==5137 | P024_03==5142 | P024_03==5145 | 
    P024_03==5146 | P024_03==5155 | P024_03==5157 | P024_03==5159 | P024_03==5160 | 
    P024_03==5170 | P024_03==5183 | P024_03==5184 | P024_03==5185 | P024_03==5213 | 
    P024_03==5214 | P024_03==5231 | P024_03==5304 | P024_03==5344 | P024_03==5345 | 
    P024_03==5346 | P024_03==5347 | P024_03==5395 | P024_03==5399 | P024_03==5406 | 
    P024_03==5412 | P024_03==5436 | P024_03==5440 | P024_03==5441 | P024_03==5442 | 
    P024_03==5458 | P024_03==5496 | P024_03==5512 | P024_03==5554 | P024_03==5586 | 
    P024_03==5651 | P024_03==5658 | P024_03==5689 | P024_03==5733 | P024_03==5819 | 
    P024_03==5942 | P024_03==5952 | P024_03==6099 | P024_03==6147 | P024_03==6148 | 
    P024_03==6149 | P024_03==6482 | P024_03==6811 | P024_03==6898 | P024_03==6940 | 
    P024_03==7125 | P024_03==7126 | P024_03==7127 | P024_03==7219 | P024_03==8000 | 
    P024_03==8001 | P024_03==8002 | P024_03==8017 | P024_03==8074 | P024_03==8086 | 
    P024_03==8163 | P024_03==8194 | P024_03==8207 | P024_03==8217 | P024_03==8218 | 
    P024_03==8219 | P024_03==8233 | P024_03==8253 | P024_03==8275 | P024_03==8276 | 
    P024_03==8286 | P024_03==8287 | P024_03==8320 | P024_03==8404 | P024_03==8408 ))

## Naranjas y mandarinas
lima_narmand <- filter(lima_rec02, (
  P024_03==1146 | P024_03==5533 | P024_03==5568 | P024_03==5593 | P024_03==5611 | 
  P024_03==5641 | P024_03==5751 | P024_03==5754 | P024_03==5762 | P024_03==5765 | 
  P024_03==5810 | P024_03==5929 | P024_03==5931 | P024_03==6004 | P024_03==6045 | 
  P024_03==6066 | P024_03==6087 | P024_03==6088 | P024_03==6089 | P024_03==6096 | 
  P024_03==6097 | P024_03==6098 | P024_03==6099 | P024_03==6100 | P024_03==6101 | 
  P024_03==6102 | P024_03==6103 | P024_03==6121 | P024_03==6190 | P024_03==6216 | 
  P024_03==6312 | P024_03==6313 | P024_03==6378 | P024_03==6405 | P024_03==6419 | 
  P024_03==6420 | P024_03==6421 | P024_03==6422 | P024_03==6423 | P024_03==6424 | 
  P024_03==6470 | P024_03==6517 | P024_03==6539 | P024_03==6660 | P024_03==6991 | 
  P024_03==6992 | P024_03==7192 | P024_03==6650 | P024_03==6969 | P024_03==8384 ))
#Ancash
setwd("C:/Users/sant_/Documents/Consultorias/2019/nico/cenagro")
library(dplyr)
library(foreign)

##Bases generales
ancash_rec02 <- read.dbf("ancash/338-Modulo231/03_IVCENAGRO_REC02.dbf") 
ancash_rec04a <- read.dbf("ancash/338-Modulo236/08_IVCENAGRO_REC04A.dbf") 

## Pollos
ancash_pollos <- filter(ancash_rec04a, P067_01==761)

## Ganado lechero (solo vacas)
ancash_vacas <- filter(ancash_rec04a, P067_01==674)

## Papas
ancash_papas <- filter(ancash_rec02, (
  P024_03==2610 | P024_03==2611 | P024_03==2612 | P024_03==2613 | P024_03==2614 | 
    P024_03==2615 | P024_03==5049 | P024_03==5062 | P024_03==5074 | P024_03==5075 | 
    P024_03==5076 | P024_03==5077 | P024_03==5078 | P024_03==5079 | P024_03==5080 | 
    P024_03==5081 | P024_03==5090 | P024_03==5091 | P024_03==5113 | P024_03==5122 | 
    P024_03==5123 | P024_03==5124 | P024_03==5125 | P024_03==5126 | P024_03==5130 | 
    P024_03==5135 | P024_03==5136 | P024_03==5137 | P024_03==5142 | P024_03==5145 | 
    P024_03==5146 | P024_03==5155 | P024_03==5157 | P024_03==5159 | P024_03==5160 | 
    P024_03==5170 | P024_03==5183 | P024_03==5184 | P024_03==5185 | P024_03==5213 | 
    P024_03==5214 | P024_03==5231 | P024_03==5304 | P024_03==5344 | P024_03==5345 | 
    P024_03==5346 | P024_03==5347 | P024_03==5395 | P024_03==5399 | P024_03==5406 | 
    P024_03==5412 | P024_03==5436 | P024_03==5440 | P024_03==5441 | P024_03==5442 | 
    P024_03==5458 | P024_03==5496 | P024_03==5512 | P024_03==5554 | P024_03==5586 | 
    P024_03==5651 | P024_03==5658 | P024_03==5689 | P024_03==5733 | P024_03==5819 | 
    P024_03==5942 | P024_03==5952 | P024_03==6099 | P024_03==6147 | P024_03==6148 | 
    P024_03==6149 | P024_03==6482 | P024_03==6811 | P024_03==6898 | P024_03==6940 | 
    P024_03==7125 | P024_03==7126 | P024_03==7127 | P024_03==7219 | P024_03==8000 | 
    P024_03==8001 | P024_03==8002 | P024_03==8017 | P024_03==8074 | P024_03==8086 | 
    P024_03==8163 | P024_03==8194 | P024_03==8207 | P024_03==8217 | P024_03==8218 | 
    P024_03==8219 | P024_03==8233 | P024_03==8253 | P024_03==8275 | P024_03==8276 | 
    P024_03==8286 | P024_03==8287 | P024_03==8320 | P024_03==8404 | P024_03==8408 ))

## Naranjas y mandarinas
ancash_narmand <- filter(ancash_rec02, (
  P024_03==1146 | P024_03==5533 | P024_03==5568 | P024_03==5593 | P024_03==5611 | 
  P024_03==5641 | P024_03==5751 | P024_03==5754 | P024_03==5762 | P024_03==5765 | 
  P024_03==5810 | P024_03==5929 | P024_03==5931 | P024_03==6004 | P024_03==6045 | 
  P024_03==6066 | P024_03==6087 | P024_03==6088 | P024_03==6089 | P024_03==6096 | 
  P024_03==6097 | P024_03==6098 | P024_03==6099 | P024_03==6100 | P024_03==6101 | 
  P024_03==6102 | P024_03==6103 | P024_03==6121 | P024_03==6190 | P024_03==6216 | 
  P024_03==6312 | P024_03==6313 | P024_03==6378 | P024_03==6405 | P024_03==6419 | 
  P024_03==6420 | P024_03==6421 | P024_03==6422 | P024_03==6423 | P024_03==6424 | 
  P024_03==6470 | P024_03==6517 | P024_03==6539 | P024_03==6660 | P024_03==6991 | 
  P024_03==6992 | P024_03==7192 | P024_03==6650 | P024_03==6969 | P024_03==8384 ))
#ica
setwd("C:/Users/sant_/Documents/Consultorias/2019/nico/cenagro")
library(dplyr)
library(foreign)

##Bases generales
ica_rec02 <- read.dbf("ica/347-Modulo231/03_IVCENAGRO_REC02.dbf") 
ica_rec04a <- read.dbf("ica/347-Modulo236/08_IVCENAGRO_REC04A.dbf") 

## Pollos
ica_pollos <- filter(ica_rec04a, P067_01==761)

## Ganado lechero (solo vacas)
ica_vacas <- filter(ica_rec04a, P067_01==674)

## Papas
ica_papas <- filter(ica_rec02, (
  P024_03==2610 | P024_03==2611 | P024_03==2612 | P024_03==2613 | P024_03==2614 | 
    P024_03==2615 | P024_03==5049 | P024_03==5062 | P024_03==5074 | P024_03==5075 | 
    P024_03==5076 | P024_03==5077 | P024_03==5078 | P024_03==5079 | P024_03==5080 | 
    P024_03==5081 | P024_03==5090 | P024_03==5091 | P024_03==5113 | P024_03==5122 | 
    P024_03==5123 | P024_03==5124 | P024_03==5125 | P024_03==5126 | P024_03==5130 | 
    P024_03==5135 | P024_03==5136 | P024_03==5137 | P024_03==5142 | P024_03==5145 | 
    P024_03==5146 | P024_03==5155 | P024_03==5157 | P024_03==5159 | P024_03==5160 | 
    P024_03==5170 | P024_03==5183 | P024_03==5184 | P024_03==5185 | P024_03==5213 | 
    P024_03==5214 | P024_03==5231 | P024_03==5304 | P024_03==5344 | P024_03==5345 | 
    P024_03==5346 | P024_03==5347 | P024_03==5395 | P024_03==5399 | P024_03==5406 | 
    P024_03==5412 | P024_03==5436 | P024_03==5440 | P024_03==5441 | P024_03==5442 | 
    P024_03==5458 | P024_03==5496 | P024_03==5512 | P024_03==5554 | P024_03==5586 | 
    P024_03==5651 | P024_03==5658 | P024_03==5689 | P024_03==5733 | P024_03==5819 | 
    P024_03==5942 | P024_03==5952 | P024_03==6099 | P024_03==6147 | P024_03==6148 | 
    P024_03==6149 | P024_03==6482 | P024_03==6811 | P024_03==6898 | P024_03==6940 | 
    P024_03==7125 | P024_03==7126 | P024_03==7127 | P024_03==7219 | P024_03==8000 | 
    P024_03==8001 | P024_03==8002 | P024_03==8017 | P024_03==8074 | P024_03==8086 | 
    P024_03==8163 | P024_03==8194 | P024_03==8207 | P024_03==8217 | P024_03==8218 | 
    P024_03==8219 | P024_03==8233 | P024_03==8253 | P024_03==8275 | P024_03==8276 | 
    P024_03==8286 | P024_03==8287 | P024_03==8320 | P024_03==8404 | P024_03==8408 ))

## Naranjas y mandarinas
ica_narmand <- filter(ica_rec02, (
  P024_03==1146 | P024_03==5533 | P024_03==5568 | P024_03==5593 | P024_03==5611 | 
  P024_03==5641 | P024_03==5751 | P024_03==5754 | P024_03==5762 | P024_03==5765 | 
  P024_03==5810 | P024_03==5929 | P024_03==5931 | P024_03==6004 | P024_03==6045 | 
  P024_03==6066 | P024_03==6087 | P024_03==6088 | P024_03==6089 | P024_03==6096 | 
  P024_03==6097 | P024_03==6098 | P024_03==6099 | P024_03==6100 | P024_03==6101 | 
  P024_03==6102 | P024_03==6103 | P024_03==6121 | P024_03==6190 | P024_03==6216 | 
  P024_03==6312 | P024_03==6313 | P024_03==6378 | P024_03==6405 | P024_03==6419 | 
  P024_03==6420 | P024_03==6421 | P024_03==6422 | P024_03==6423 | P024_03==6424 | 
  P024_03==6470 | P024_03==6517 | P024_03==6539 | P024_03==6660 | P024_03==6991 | 
  P024_03==6992 | P024_03==7192 | P024_03==6650 | P024_03==6969 | P024_03==8384 ))
#junin
setwd("C:/Users/sant_/Documents/Consultorias/2019/nico/cenagro")
library(dplyr)
library(foreign)

##Bases generales
junin_rec02 <- read.dbf("junin/348-Modulo231/03_IVCENAGRO_REC02.dbf") 
junin_rec04a <- read.dbf("junin/348-Modulo236/08_IVCENAGRO_REC04A.dbf") 

## Pollos
junin_pollos <- filter(junin_rec04a, P067_01==761)

## Ganado lechero (solo vacas)
junin_vacas <- filter(junin_rec04a, P067_01==674)

## Papas
junin_papas <- filter(junin_rec02, (
  P024_03==2610 | P024_03==2611 | P024_03==2612 | P024_03==2613 | P024_03==2614 | 
    P024_03==2615 | P024_03==5049 | P024_03==5062 | P024_03==5074 | P024_03==5075 | 
    P024_03==5076 | P024_03==5077 | P024_03==5078 | P024_03==5079 | P024_03==5080 | 
    P024_03==5081 | P024_03==5090 | P024_03==5091 | P024_03==5113 | P024_03==5122 | 
    P024_03==5123 | P024_03==5124 | P024_03==5125 | P024_03==5126 | P024_03==5130 | 
    P024_03==5135 | P024_03==5136 | P024_03==5137 | P024_03==5142 | P024_03==5145 | 
    P024_03==5146 | P024_03==5155 | P024_03==5157 | P024_03==5159 | P024_03==5160 | 
    P024_03==5170 | P024_03==5183 | P024_03==5184 | P024_03==5185 | P024_03==5213 | 
    P024_03==5214 | P024_03==5231 | P024_03==5304 | P024_03==5344 | P024_03==5345 | 
    P024_03==5346 | P024_03==5347 | P024_03==5395 | P024_03==5399 | P024_03==5406 | 
    P024_03==5412 | P024_03==5436 | P024_03==5440 | P024_03==5441 | P024_03==5442 | 
    P024_03==5458 | P024_03==5496 | P024_03==5512 | P024_03==5554 | P024_03==5586 | 
    P024_03==5651 | P024_03==5658 | P024_03==5689 | P024_03==5733 | P024_03==5819 | 
    P024_03==5942 | P024_03==5952 | P024_03==6099 | P024_03==6147 | P024_03==6148 | 
    P024_03==6149 | P024_03==6482 | P024_03==6811 | P024_03==6898 | P024_03==6940 | 
    P024_03==7125 | P024_03==7126 | P024_03==7127 | P024_03==7219 | P024_03==8000 | 
    P024_03==8001 | P024_03==8002 | P024_03==8017 | P024_03==8074 | P024_03==8086 | 
    P024_03==8163 | P024_03==8194 | P024_03==8207 | P024_03==8217 | P024_03==8218 | 
    P024_03==8219 | P024_03==8233 | P024_03==8253 | P024_03==8275 | P024_03==8276 | 
    P024_03==8286 | P024_03==8287 | P024_03==8320 | P024_03==8404 | P024_03==8408 ))

## Naranjas y mandarinas
junin_narmand <- filter(junin_rec02, (
  P024_03==1146 | P024_03==5533 | P024_03==5568 | P024_03==5593 | P024_03==5611 | 
  P024_03==5641 | P024_03==5751 | P024_03==5754 | P024_03==5762 | P024_03==5765 | 
  P024_03==5810 | P024_03==5929 | P024_03==5931 | P024_03==6004 | P024_03==6045 | 
  P024_03==6066 | P024_03==6087 | P024_03==6088 | P024_03==6089 | P024_03==6096 | 
  P024_03==6097 | P024_03==6098 | P024_03==6099 | P024_03==6100 | P024_03==6101 | 
  P024_03==6102 | P024_03==6103 | P024_03==6121 | P024_03==6190 | P024_03==6216 | 
  P024_03==6312 | P024_03==6313 | P024_03==6378 | P024_03==6405 | P024_03==6419 | 
  P024_03==6420 | P024_03==6421 | P024_03==6422 | P024_03==6423 | P024_03==6424 | 
  P024_03==6470 | P024_03==6517 | P024_03==6539 | P024_03==6660 | P024_03==6991 | 
  P024_03==6992 | P024_03==7192 | P024_03==6650 | P024_03==6969 | P024_03==8384 ))
#cajamarca
setwd("C:/Users/sant_/Documents/Consultorias/2019/nico/cenagro")
library(dplyr)
library(foreign)

##Bases generales
cajamarca_rec02 <- read.dbf("cajamarca/342-Modulo231/03_IVCENAGRO_REC02.dbf") 
cajamarca_rec04a <- read.dbf("cajamarca/342-Modulo236/08_IVCENAGRO_REC04A.dbf") 

## Pollos
cajamarca_pollos <- filter(cajamarca_rec04a, P067_01==761)

## Ganado lechero (solo vacas)
cajamarca_vacas <- filter(cajamarca_rec04a, P067_01==674)

## Papas
cajamarca_papas <- filter(cajamarca_rec02, (
  P024_03==2610 | P024_03==2611 | P024_03==2612 | P024_03==2613 | P024_03==2614 | 
    P024_03==2615 | P024_03==5049 | P024_03==5062 | P024_03==5074 | P024_03==5075 | 
    P024_03==5076 | P024_03==5077 | P024_03==5078 | P024_03==5079 | P024_03==5080 | 
    P024_03==5081 | P024_03==5090 | P024_03==5091 | P024_03==5113 | P024_03==5122 | 
    P024_03==5123 | P024_03==5124 | P024_03==5125 | P024_03==5126 | P024_03==5130 | 
    P024_03==5135 | P024_03==5136 | P024_03==5137 | P024_03==5142 | P024_03==5145 | 
    P024_03==5146 | P024_03==5155 | P024_03==5157 | P024_03==5159 | P024_03==5160 | 
    P024_03==5170 | P024_03==5183 | P024_03==5184 | P024_03==5185 | P024_03==5213 | 
    P024_03==5214 | P024_03==5231 | P024_03==5304 | P024_03==5344 | P024_03==5345 | 
    P024_03==5346 | P024_03==5347 | P024_03==5395 | P024_03==5399 | P024_03==5406 | 
    P024_03==5412 | P024_03==5436 | P024_03==5440 | P024_03==5441 | P024_03==5442 | 
    P024_03==5458 | P024_03==5496 | P024_03==5512 | P024_03==5554 | P024_03==5586 | 
    P024_03==5651 | P024_03==5658 | P024_03==5689 | P024_03==5733 | P024_03==5819 | 
    P024_03==5942 | P024_03==5952 | P024_03==6099 | P024_03==6147 | P024_03==6148 | 
    P024_03==6149 | P024_03==6482 | P024_03==6811 | P024_03==6898 | P024_03==6940 | 
    P024_03==7125 | P024_03==7126 | P024_03==7127 | P024_03==7219 | P024_03==8000 | 
    P024_03==8001 | P024_03==8002 | P024_03==8017 | P024_03==8074 | P024_03==8086 | 
    P024_03==8163 | P024_03==8194 | P024_03==8207 | P024_03==8217 | P024_03==8218 | 
    P024_03==8219 | P024_03==8233 | P024_03==8253 | P024_03==8275 | P024_03==8276 | 
    P024_03==8286 | P024_03==8287 | P024_03==8320 | P024_03==8404 | P024_03==8408 ))

## Naranjas y mandarinas
cajamarca_narmand <- filter(cajamarca_rec02, (
  P024_03==1146 | P024_03==5533 | P024_03==5568 | P024_03==5593 | P024_03==5611 | 
  P024_03==5641 | P024_03==5751 | P024_03==5754 | P024_03==5762 | P024_03==5765 | 
  P024_03==5810 | P024_03==5929 | P024_03==5931 | P024_03==6004 | P024_03==6045 | 
  P024_03==6066 | P024_03==6087 | P024_03==6088 | P024_03==6089 | P024_03==6096 | 
  P024_03==6097 | P024_03==6098 | P024_03==6099 | P024_03==6100 | P024_03==6101 | 
  P024_03==6102 | P024_03==6103 | P024_03==6121 | P024_03==6190 | P024_03==6216 | 
  P024_03==6312 | P024_03==6313 | P024_03==6378 | P024_03==6405 | P024_03==6419 | 
  P024_03==6420 | P024_03==6421 | P024_03==6422 | P024_03==6423 | P024_03==6424 | 
  P024_03==6470 | P024_03==6517 | P024_03==6539 | P024_03==6660 | P024_03==6991 | 
  P024_03==6992 | P024_03==7192 | P024_03==6650 | P024_03==6969 | P024_03==8384 ))
#lalibertad
setwd("C:/Users/sant_/Documents/Consultorias/2019/nico/cenagro")
library(dplyr)
library(foreign)

##Bases generales
lalibertad_rec02 <- read.dbf("lalibertad/349-Modulo231/03_IVCENAGRO_REC02.dbf") 
lalibertad_rec04a <- read.dbf("lalibertad/349-Modulo236/08_IVCENAGRO_REC04A.dbf") 

## Pollos
lalibertad_pollos <- filter(lalibertad_rec04a, P067_01==761)

## Ganado lechero (solo vacas)
lalibertad_vacas <- filter(lalibertad_rec04a, P067_01==674)

## Papas
lalibertad_papas <- filter(lalibertad_rec02, (
  P024_03==2610 | P024_03==2611 | P024_03==2612 | P024_03==2613 | P024_03==2614 | 
    P024_03==2615 | P024_03==5049 | P024_03==5062 | P024_03==5074 | P024_03==5075 | 
    P024_03==5076 | P024_03==5077 | P024_03==5078 | P024_03==5079 | P024_03==5080 | 
    P024_03==5081 | P024_03==5090 | P024_03==5091 | P024_03==5113 | P024_03==5122 | 
    P024_03==5123 | P024_03==5124 | P024_03==5125 | P024_03==5126 | P024_03==5130 | 
    P024_03==5135 | P024_03==5136 | P024_03==5137 | P024_03==5142 | P024_03==5145 | 
    P024_03==5146 | P024_03==5155 | P024_03==5157 | P024_03==5159 | P024_03==5160 | 
    P024_03==5170 | P024_03==5183 | P024_03==5184 | P024_03==5185 | P024_03==5213 | 
    P024_03==5214 | P024_03==5231 | P024_03==5304 | P024_03==5344 | P024_03==5345 | 
    P024_03==5346 | P024_03==5347 | P024_03==5395 | P024_03==5399 | P024_03==5406 | 
    P024_03==5412 | P024_03==5436 | P024_03==5440 | P024_03==5441 | P024_03==5442 | 
    P024_03==5458 | P024_03==5496 | P024_03==5512 | P024_03==5554 | P024_03==5586 | 
    P024_03==5651 | P024_03==5658 | P024_03==5689 | P024_03==5733 | P024_03==5819 | 
    P024_03==5942 | P024_03==5952 | P024_03==6099 | P024_03==6147 | P024_03==6148 | 
    P024_03==6149 | P024_03==6482 | P024_03==6811 | P024_03==6898 | P024_03==6940 | 
    P024_03==7125 | P024_03==7126 | P024_03==7127 | P024_03==7219 | P024_03==8000 | 
    P024_03==8001 | P024_03==8002 | P024_03==8017 | P024_03==8074 | P024_03==8086 | 
    P024_03==8163 | P024_03==8194 | P024_03==8207 | P024_03==8217 | P024_03==8218 | 
    P024_03==8219 | P024_03==8233 | P024_03==8253 | P024_03==8275 | P024_03==8276 | 
    P024_03==8286 | P024_03==8287 | P024_03==8320 | P024_03==8404 | P024_03==8408 ))

## Naranjas y mandarinas
lalibertad_narmand <- filter(lalibertad_rec02, (
  P024_03==1146 | P024_03==5533 | P024_03==5568 | P024_03==5593 | P024_03==5611 | 
  P024_03==5641 | P024_03==5751 | P024_03==5754 | P024_03==5762 | P024_03==5765 | 
  P024_03==5810 | P024_03==5929 | P024_03==5931 | P024_03==6004 | P024_03==6045 | 
  P024_03==6066 | P024_03==6087 | P024_03==6088 | P024_03==6089 | P024_03==6096 | 
  P024_03==6097 | P024_03==6098 | P024_03==6099 | P024_03==6100 | P024_03==6101 | 
  P024_03==6102 | P024_03==6103 | P024_03==6121 | P024_03==6190 | P024_03==6216 | 
  P024_03==6312 | P024_03==6313 | P024_03==6378 | P024_03==6405 | P024_03==6419 | 
  P024_03==6420 | P024_03==6421 | P024_03==6422 | P024_03==6423 | P024_03==6424 | 
  P024_03==6470 | P024_03==6517 | P024_03==6539 | P024_03==6660 | P024_03==6991 | 
  P024_03==6992 | P024_03==7192 | P024_03==6650 | P024_03==6969 | P024_03==8384 ))

Reporte general: Nro. de productores por departamento y producto

#Reportes generales
Nro_productores=cbind(c(nrow(cajamarca_vacas),nrow(lalibertad_vacas),nrow(lima_vacas),nrow(ancash_vacas),nrow(ica_vacas),nrow(junin_vacas)),
                      c(nrow(cajamarca_papas),nrow(lalibertad_papas),nrow(lima_papas),nrow(ancash_papas),nrow(ica_papas),nrow(junin_papas)),
                      c(nrow(cajamarca_narmand),nrow(lalibertad_narmand),nrow(lima_narmand),nrow(ancash_narmand),nrow(ica_narmand),nrow(junin_narmand)),
                      c(nrow(cajamarca_pollos),nrow(lalibertad_pollos),nrow(lima_pollos),nrow(ancash_pollos),nrow(ica_pollos),nrow(junin_pollos)))
rownames(Nro_productores) <- c("Cajamarca","La Libertad","Lima","Ancash","Ica","Junín")
colnames(Nro_productores) <- c("Ganado lechero","Papas","Cítricos","Pollos")
Nro_productores
##             Ganado lechero  Papas Cítricos Pollos
## Cajamarca           122397 103050        8  71518
## La Libertad          30919  47250        8  24396
## Lima                 15481  10695     2500   7075
## Ancash               34695  78324       23   9895
## Ica                   2859    666      131   3240
## Junín                25380  62610      381  13872

Estadísticas de producción agropecuaria por distrito

lalibertad

Ganado lechero

lalibertad_vacas <- mutate(lalibertad_vacas, ubigeo=paste(lalibertad_vacas$P001,lalibertad_vacas$P002,lalibertad_vacas$P003))
Tlalibertad_vacas <- group_by(lalibertad_vacas, ubigeo)
vacas <- data.frame(summarize(Tlalibertad_vacas, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
vacas
##      ubigeo SuperficieTotal      Media Minimo Maximo
## 1  13 01 01             531  19.666667      1    178
## 2  13 01 02              37   7.400000      1     17
## 3  13 01 04            1405  29.893617      1    335
## 4  13 01 06             812   3.741935      1     42
## 5  13 01 07             697   8.011494      1    150
## 6  13 01 08              46   1.314286      1      3
## 7  13 01 09            2305 329.285714      1   1232
## 8  13 01 10             407   3.230159      1    138
## 9  13 01 11             224   8.615385      1     70
## 10 13 02 01             162   2.655738      1     15
## 11 13 02 02             150   2.142857      1      6
## 12 13 02 03             176   3.087719      1     10
## 13 13 02 04              11   2.200000      1      5
## 14 13 02 05            1147   8.891473      1    450
## 15 13 02 06             673   3.759777      1     80
## 16 13 02 07             625  20.161290      1    485
## 17 13 02 08             995  14.420290      1    838
## 18 13 03 01            1611   3.948529      1     35
## 19 13 03 02             486   3.000000      1     20
## 20 13 03 03             609   3.421348      1     18
## 21 13 03 04             200   2.631579      1     15
## 22 13 03 05            1136   4.437500      1     75
## 23 13 03 06             147   3.585366      1     15
## 24 13 04 01             373   2.453947      1     16
## 25 13 04 02            1319   2.937639      1     25
## 26 13 04 03             293   2.547826      1     40
## 27 13 05 01            1621   1.529245      1     20
## 28 13 05 02             917   1.493485      1      9
## 29 13 05 03            1267   1.506540      1      9
## 30 13 05 04            1291   1.754076      1     15
## 31 13 06 01            1931   1.465099      1      7
## 32 13 06 02            1835   1.755981      1     12
## 33 13 06 04             630   1.438356      1     11
## 34 13 06 05             939   2.871560      1     25
## 35 13 06 06             270   2.125984      1     15
## 36 13 06 08             700   1.670644      1     10
## 37 13 06 10             173   1.616822      1      4
## 38 13 06 11            1500   1.557632      1     13
## 39 13 06 13            1186   1.642659      1     10
## 40 13 06 14            4694   2.076991      1     30
## 41 13 07 01             348   2.829268      0     15
## 42 13 07 02             141   2.820000      1     20
## 43 13 07 03            1197  46.038462      1   1092
## 44 13 07 04               4   1.333333      1      2
## 45 13 07 05             349   2.860656      1     24
## 46 13 08 01            1540   2.475884      1     30
## 47 13 08 02             740   2.624113      1     27
## 48 13 08 03            1648   2.209115      1     20
## 49 13 08 04             794   1.800454      1     10
## 50 13 08 05             248   3.100000      1     10
## 51 13 08 06             476   1.830769      1      7
## 52 13 08 07              63   3.150000      1     10
## 53 13 08 08            1649   3.239686      1     30
## 54 13 08 09             295   3.172043      1     19
## 55 13 08 10             289   2.627273      1     15
## 56 13 08 11             428   1.981481      0     18
## 57 13 08 12             343   1.834225      1     15
## 58 13 08 13             349   1.866310      1     17
## 59 13 09 01            2183   1.655042      1     10
## 60 13 09 02            1147   1.745814      1     23
## 61 13 09 03             637   2.081699      1     30
## 62 13 09 04             362   1.306859      1      6
## 63 13 09 05             782   1.551587      1      9
## 64 13 09 06            1410   1.707022      1     12
## 65 13 09 07            1302   1.745308      1     11
## 66 13 09 08             506   1.888060      1     12
## 67 13 10 01            3975   1.810109      1     30
## 68 13 10 02             889   1.746562      1     12
## 69 13 10 03            1229   2.118966      1     10
## 70 13 10 04             397   2.089474      1     12
## 71 13 10 05             441   1.621324      1     15
## 72 13 10 06            2059   2.118313      1     30
## 73 13 10 07             579   1.539894      1      6
## 74 13 10 08            1100   3.273810      1     18
## 75 13 11 01            1753   2.566618      1     24
## 76 13 11 02             751   1.925641      1      8
## 77 13 11 03             383   2.201149      1     15
## 78 13 11 04            1191   2.465839      1     16
## 79 13 12 01            3969  10.125000      1   2327
## 80 13 12 02            1630   4.630682      1     72
## 81 13 12 03             117   2.785714      1     18

Papas

lalibertad_papas <- mutate(lalibertad_papas, ubigeo=paste(lalibertad_papas$P001,lalibertad_papas$P002,lalibertad_papas$P003))
Tlalibertad_papas <- group_by(lalibertad_papas, ubigeo)
papas <- data.frame(summarize(Tlalibertad_papas, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
papas
##      ubigeo SuperficieTotal     Media Minimo Maximo
## 1  13 01 01          0.3000 0.3000000 0.3000   0.30
## 2  13 01 06         14.8600 0.6460870 0.0100   4.00
## 3  13 01 07          0.2970 0.0594000 0.0035   0.25
## 4  13 01 08          0.2500 0.2500000 0.2500   0.25
## 5  13 01 10          0.8100 0.2700000 0.0600   0.50
## 6  13 02 01          0.3000 0.1500000 0.0500   0.25
## 7  13 02 02          0.3000 0.3000000 0.3000   0.30
## 8  13 02 08          0.5800 0.1450000 0.0060   0.50
## 9  13 03 01        181.8300 0.3819958 0.0050   3.00
## 10 13 03 02        248.8200 0.5733180 0.1500   4.00
## 11 13 03 03         85.4000 0.3846847 0.0500   3.50
## 12 13 03 04         44.4000 0.6253521 0.1000   2.00
## 13 13 03 05        236.4000 0.5710145 0.0500   3.00
## 14 13 03 06         30.9500 0.4761538 0.1000   2.00
## 15 13 04 02          1.0000 1.0000000 1.0000   1.00
## 16 13 05 01       1546.0961 0.5511929 0.0001   7.00
## 17 13 05 02        492.9600 0.7082759 0.0100   8.00
## 18 13 05 03        368.2300 0.5463353 0.0200   5.00
## 19 13 05 04        403.4300 0.6403651 0.0100   5.00
## 20 13 06 01        706.9397 0.5380059 0.0015 200.00
## 21 13 06 02        909.8890 0.6457693 0.0040  13.00
## 22 13 06 04         32.6792 0.1835910 0.0010   2.00
## 23 13 06 05        591.0750 1.3464123 0.0050 200.00
## 24 13 06 06         50.5400 0.2871591 0.0500   1.00
## 25 13 06 08        644.2063 0.6188341 0.0100  10.00
## 26 13 06 10        125.9400 0.3537640 0.0050   6.00
## 27 13 06 11        532.2567 0.6069062 0.0030   5.00
## 28 13 06 13        700.8335 0.2597604 0.0030   5.00
## 29 13 06 14       2896.9335 0.7264126 0.0010 300.00
## 30 13 08 01        695.7375 0.3297334 0.0025 100.00
## 31 13 08 02       1444.4070 4.0234178 0.0150 300.00
## 32 13 08 03        612.8200 0.4132299 0.0200   5.00
## 33 13 08 04        803.1408 0.9338847 0.0012 200.00
## 34 13 08 05         34.1300 0.5250769 0.0200   3.00
## 35 13 08 06         82.3900 0.2402041 0.0100   1.00
## 36 13 08 07          0.7500 0.3750000 0.2500   0.50
## 37 13 08 08        436.7045 0.6006939 0.0015   6.00
## 38 13 08 09         52.6600 0.6421951 0.0050   3.00
## 39 13 08 10         51.3500 0.7442029 0.1000  10.25
## 40 13 08 11         64.8700 0.1340289 0.0100   2.00
## 41 13 08 12         85.9600 0.2737580 0.0100   1.50
## 42 13 08 13         35.3100 0.3331132 0.0500   2.00
## 43 13 09 01       1953.3606 0.4332137 0.0025   7.00
## 44 13 09 02       1041.1140 0.4372591 0.0020   8.00
## 45 13 09 03        573.9600 0.6178256 0.0400  35.00
## 46 13 09 04        694.1954 0.4181900 0.0020   3.50
## 47 13 09 05        702.1600 0.3660897 0.0100   4.00
## 48 13 09 06        769.4975 0.4086551 0.0001   5.00
## 49 13 09 07        781.5295 0.4070466 0.0015   6.50
## 50 13 09 08        378.8460 0.3913698 0.0015   3.00
## 51 13 10 01        213.2800 0.6749367 0.0100   7.50
## 52 13 10 02        136.3700 0.4471148 0.0100   7.00
## 53 13 10 03        401.4000 0.5629734 0.0060  10.00
## 54 13 10 04        119.8612 0.5423584 0.0025   2.00
## 55 13 10 05        136.0048 0.2833433 0.0020   2.50
## 56 13 10 06        515.3020 0.5595027 0.0020  50.00
## 57 13 10 07        149.0600 0.6316102 0.0100   7.00
## 58 13 10 08        341.8780 0.5259662 0.0020  50.00
## 59 13 11 01         89.2700 0.3704149 0.0600   2.00
## 60 13 11 02         81.1649 0.2696508 0.0014   6.00
## 61 13 11 03         18.9501 0.2037645 0.0050   1.00
## 62 13 11 04        181.0400 0.3165035 0.0200   3.25
## 63 13 12 01         30.5000 1.7941176 0.2500  10.00
## 64 13 12 02         23.6300 2.9537500 0.7000   6.00

Cítricos

lalibertad_narmand <- mutate(lalibertad_narmand, ubigeo=paste(lalibertad_narmand$P001,lalibertad_narmand$P002,lalibertad_narmand$P003))
Tlalibertad_narmand <- group_by(lalibertad_narmand, ubigeo)
citricos <- data.frame(summarize(Tlalibertad_narmand, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
citricos
##     ubigeo SuperficieTotal  Media Minimo Maximo
## 1 13 01 06            3.74   3.74   3.74   3.74
## 2 13 01 08            0.10   0.10   0.10   0.10
## 3 13 04 02            0.50   0.50   0.50   0.50
## 4 13 07 05            0.12   0.12   0.12   0.12
## 5 13 08 12            0.50   0.50   0.50   0.50
## 6 13 09 03            0.10   0.10   0.10   0.10
## 7 13 12 01            2.00   2.00   2.00   2.00
## 8 13 12 02          101.75 101.75 101.75 101.75

Pollos

lalibertad_pollos <- mutate(lalibertad_pollos, ubigeo=paste(lalibertad_pollos$P001,lalibertad_pollos$P002,lalibertad_pollos$P003))
Tlalibertad_pollos <- group_by(lalibertad_pollos, ubigeo)
pollos <- data.frame(summarize(Tlalibertad_pollos, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
pollos
##      ubigeo SuperficieTotal        Media Minimo Maximo
## 1  13 01 01           56608 1.769000e+03      3  28300
## 2  13 01 02             155 1.937500e+01      2    100
## 3  13 01 04         4365505 4.960801e+04      3 780000
## 4  13 01 06         1764293 3.869064e+03      1 450000
## 5  13 01 07           50773 6.680658e+02      1  49800
## 6  13 01 08          331408 2.529832e+03      1 330000
## 7  13 01 09          898032 1.122540e+05      8 256000
## 8  13 01 10          288011 1.523868e+03      1 285000
## 9  13 01 11             244 2.218182e+01      4    100
## 10 13 02 01             768 9.974026e+00      1     30
## 11 13 02 02          618954 6.128257e+03      1 124700
## 12 13 02 03             856 1.083544e+01      2     30
## 13 13 02 04             438 9.733333e+00      1     30
## 14 13 02 05            1192 9.240310e+00      1    100
## 15 13 02 06          361436 2.331845e+03      1 280000
## 16 13 02 07           83426 2.139128e+03      2  69553
## 17 13 02 08            2868 1.297738e+01      1    100
## 18 13 03 01               9 4.500000e+00      4      5
## 19 13 03 02             676 8.047619e+00      1     71
## 20 13 03 03             406 5.413333e+00      1     20
## 21 13 03 04               1 1.000000e+00      1      1
## 22 13 03 05             241 4.725490e+00      1     16
## 23 13 04 01            4282 1.259412e+01      1    100
## 24 13 04 02          616170 9.494145e+02      1 207360
## 25 13 04 03            3128 1.117143e+01      1    106
## 26 13 05 01            4525 5.677541e+00      1     50
## 27 13 05 02            2688 5.946903e+00      1     37
## 28 13 05 03            4724 6.462380e+00      1     40
## 29 13 05 04            3549 7.834437e+00      1     60
## 30 13 06 01            8770 6.124302e+00      1    100
## 31 13 06 02            3984 5.724138e+00      0     60
## 32 13 06 04            2832 5.732794e+00      0     30
## 33 13 06 05            2080 7.349823e+00      1     50
## 34 13 06 06             235 6.351351e+00      0     18
## 35 13 06 08            1816 6.283737e+00      1     39
## 36 13 06 10             635 5.934579e+00      2     16
## 37 13 06 11            4993 6.587071e+00      1     60
## 38 13 06 13             960 6.400000e+00      1     20
## 39 13 06 14            7282 5.605851e+00      0     90
## 40 13 07 01         1160777 8.793765e+03      1 571000
## 41 13 07 02            4411 1.091832e+01      1    150
## 42 13 07 03          182135 1.011861e+04      1 100000
## 43 13 07 04         1000052 1.666753e+05      2 800000
## 44 13 07 05            3895 1.228707e+01      2    200
## 45 13 08 01            1982 4.857843e+00      1     32
## 46 13 08 02             644 5.111111e+00      1     16
## 47 13 08 03            2664 4.649215e+00      0     28
## 48 13 08 04             437 4.965909e+00      1     40
## 49 13 08 05              16 4.000000e+00      1      7
## 50 13 08 06              44 5.500000e+00      2     12
## 51 13 08 07              12 6.000000e+00      2     10
## 52 13 08 08            2039 7.903101e+00      1    200
## 53 13 08 09             682 8.023529e+00      1     50
## 54 13 08 10             558 7.643836e+00      1     32
## 55 13 08 11              68 4.250000e+00      1     14
## 56 13 08 12             192 4.571429e+00      1     11
## 57 13 08 13             188 4.820513e+00      1     10
## 58 13 09 01           12556 6.512448e+00      1   2200
## 59 13 09 02            2557 4.623870e+00      0     40
## 60 13 09 03            2163 6.324561e+00      1    200
## 61 13 09 04            4001 4.746145e+00      1     25
## 62 13 09 05            3621 5.150782e+00      1     30
## 63 13 09 06            3314 5.450658e+00      0    200
## 64 13 09 07            3311 4.223214e+00      1     50
## 65 13 09 08            3144 5.328814e+00      1     50
## 66 13 10 01            5896 6.457831e+00      0     50
## 67 13 10 02            2032 6.233129e+00      1     80
## 68 13 10 03            2053 6.601286e+00      1     80
## 69 13 10 04             721 8.011111e+00      2     50
## 70 13 10 05             227 1.194737e+01      1    112
## 71 13 10 06            2418 5.623256e+00      1     30
## 72 13 10 07            1305 5.240964e+00      1     39
## 73 13 10 08            1073 4.452282e+00      1     20
## 74 13 11 01            4296 2.169697e+01      0   1800
## 75 13 11 02            1099 7.579310e+00      1     50
## 76 13 11 03            2696 1.095935e+01      1    200
## 77 13 11 04            2011 7.312727e+00      1     36
## 78 13 12 01         2771279 6.614031e+03      1 701000
## 79 13 12 02         1035049 3.891162e+03      1 220225
## 80 13 12 03          580084 4.462185e+04      2 190533

cajamarca

Ganado lechero

cajamarca_vacas <- mutate(cajamarca_vacas, ubigeo=paste(cajamarca_vacas$P001,cajamarca_vacas$P002,cajamarca_vacas$P003))
Tcajamarca_vacas <- group_by(cajamarca_vacas, ubigeo)
vacas <- data.frame(summarize(Tcajamarca_vacas, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
vacas
##       ubigeo SuperficieTotal    Media Minimo Maximo
## 1   06 01 01            5863 2.737162      1    371
## 2   06 01 02            1871 1.804243      1     10
## 3   06 01 03            1542 1.966837      1     21
## 4   06 01 04            3495 2.989735      1    476
## 5   06 01 05           17915 2.523950      1     64
## 6   06 01 06            1066 2.119284      1     18
## 7   06 01 07            1039 3.463333      1     44
## 8   06 01 08            8909 2.702973      1    100
## 9   06 01 09             671 1.525000      1     10
## 10  06 01 10             148 1.494949      1      6
## 11  06 01 11            2436 2.709677      1     30
## 12  06 01 12            1184 2.557235      1    187
## 13  06 02 01             828 1.527675      1     24
## 14  06 02 02            4069 2.118168      1     20
## 15  06 02 03            1622 1.670443      1     17
## 16  06 02 04             894 2.050459      1     15
## 17  06 03 01            1093 1.762903      1     12
## 18  06 03 02             587 2.111511      1     10
## 19  06 03 03             811 1.393471      1      4
## 20  06 03 04            4668 2.386503      1     35
## 21  06 03 05             292 2.703704      1      9
## 22  06 03 06            1821 2.575672      1     20
## 23  06 03 07             974 1.913556      1    100
## 24  06 03 08            1718 2.239896      1     14
## 25  06 03 09            5675 1.904362      1     30
## 26  06 03 10            5429 3.583498      1     38
## 27  06 03 11             132 1.552941      1      6
## 28  06 03 12            1416 1.724726      1     20
## 29  06 04 01           13756 1.879235      1     25
## 30  06 04 02            1307 1.516241      1     15
## 31  06 04 03            1364 2.098462      1     10
## 32  06 04 04            3265 1.675218      1     35
## 33  06 04 05             315 1.657895      1      8
## 34  06 04 06             447 1.960526      1     14
## 35  06 04 07            2052 1.770492      1     23
## 36  06 04 08            3589 1.976322      1     20
## 37  06 04 09            3660 1.960364      1     20
## 38  06 04 10            5383 1.790156      1     18
## 39  06 04 11            2418 2.782509      1     30
## 40  06 04 12             979 2.096360      0     10
## 41  06 04 13            1944 1.892892      1     20
## 42  06 04 14             246 1.720280      1     18
## 43  06 04 15            3679 2.378151      1     18
## 44  06 04 16             570 2.270916      1     20
## 45  06 04 17            4444 1.915517      1     15
## 46  06 04 18             435 2.558824      1     15
## 47  06 04 19            5752 1.780254      1     12
## 48  06 05 01            2729 2.924973      1     80
## 49  06 05 02             158 2.724138      1     24
## 50  06 05 03             745 2.450658      1     17
## 51  06 05 04             399 1.472325      1      6
## 52  06 05 05             693 2.125767      1     20
## 53  06 05 06             304 1.911950      1     11
## 54  06 05 07             553 2.333333      1     21
## 55  06 05 08             251 2.127119      1     11
## 56  06 06 01           13386 1.819492      0     24
## 57  06 06 02            1481 1.716107      1     12
## 58  06 06 03             885 2.418033      1     30
## 59  06 06 04             191 1.528000      1      5
## 60  06 06 05             805 1.750000      1      7
## 61  06 06 06             870 1.831579      1     11
## 62  06 06 07            5034 1.688129      1     31
## 63  06 06 08            2503 2.488072      1     15
## 64  06 06 09             214 1.963303      1     12
## 65  06 06 10             790 1.899038      1     14
## 66  06 06 11            1084 1.843537      1     10
## 67  06 06 12             660 1.709845      1     12
## 68  06 06 13            1623 1.953069      1     15
## 69  06 06 14            2702 1.934145      1     20
## 70  06 06 15             531 3.360759      1     94
## 71  06 07 01            2111 1.587218      1     10
## 72  06 07 02            3776 3.125828      1     45
## 73  06 07 03            4889 2.076890      0     40
## 74  06 08 01            2256 2.685714      1     64
## 75  06 08 02            1958 6.775087      1    458
## 76  06 08 03            1428 2.509666      1     30
## 77  06 08 04            1960 2.242563      1     40
## 78  06 08 05            1064 2.249471      1     20
## 79  06 08 06             465 3.000000      1     21
## 80  06 08 07             731 2.070822      1     28
## 81  06 08 08             246 2.176991      1     11
## 82  06 08 09            1442 1.909934      1     20
## 83  06 08 10             645 1.966463      1     14
## 84  06 08 11             839 2.581538      1     15
## 85  06 08 12            2118 3.228659      1     35
## 86  06 09 01            2108 3.340729      1     40
## 87  06 09 02            1485 3.817481      1     78
## 88  06 09 03            4251 3.134956      1     40
## 89  06 09 04             706 2.377104      1     30
## 90  06 09 05            1479 2.515306      1     20
## 91  06 09 06            3018 3.864277      0     86
## 92  06 09 07            1652 2.259918      1     15
## 93  06 10 01            1506 1.590285      1     11
## 94  06 10 02             454 1.459807      1      8
## 95  06 10 03             591 2.686364      1     15
## 96  06 10 04            3151 2.896140      1    130
## 97  06 10 05             259 1.550898      1     10
## 98  06 10 06             433 1.383387      1     10
## 99  06 10 07            3348 2.125714      1     31
## 100 06 11 01            3272 1.809735      1     19
## 101 06 11 02             548 2.647343      1     14
## 102 06 11 03            2701 2.477982      1     35
## 103 06 11 04            3804 4.517815      1     40
## 104 06 11 05             642 2.118812      1     12
## 105 06 11 06             241 1.746377      1     10
## 106 06 11 07            3343 2.274150      1     20
## 107 06 11 08             365 2.534722      1     25
## 108 06 11 09            2232 2.786517      1     20
## 109 06 11 10             706 2.485915      1     23
## 110 06 11 11            4740 3.342736      1     40
## 111 06 11 12            2746 3.113379      1     35
## 112 06 11 13            1026 2.658031      1     25
## 113 06 12 01            3008 2.029690      1     30
## 114 06 12 02            1097 1.990926      1     12
## 115 06 12 03             182 1.876289      1      8
## 116 06 12 04            2641 3.032147      1     33
## 117 06 13 01            1006 1.564541      0      9
## 118 06 13 02             550 1.612903      1     15
## 119 06 13 03            3991 2.503764      1     23
## 120 06 13 04            1198 1.439904      1     10
## 121 06 13 05            1562 1.481973      1      5
## 122 06 13 06            1209 1.695652      1     10
## 123 06 13 07            1838 2.269136      1     16
## 124 06 13 08             833 1.557009      1     10
## 125 06 13 09             259 4.177419      1     20
## 126 06 13 10            1022 1.747009      1     10
## 127 06 13 11             741 1.798544      1      8

Papas

cajamarca_papas <- mutate(cajamarca_papas, ubigeo=paste(cajamarca_papas$P001,cajamarca_papas$P002,cajamarca_papas$P003))
Tcajamarca_papas <- group_by(cajamarca_papas, ubigeo)
papas <- data.frame(summarize(Tcajamarca_papas, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
papas
##       ubigeo SuperficieTotal     Media Minimo Maximo
## 1   06 01 01        713.0200 0.1757939 0.0003 200.00
## 2   06 01 02        175.5750 0.1894013 0.0050   2.00
## 3   06 01 03        132.2125 0.2523139 0.0010   2.00
## 4   06 01 04        155.5230 0.2549557 0.0010   2.50
## 5   06 01 05       3124.7061 0.3689581 0.0010 200.00
## 6   06 01 06        303.3260 0.3048503 0.0020   3.50
## 7   06 01 07        165.0919 0.2442188 0.0006  20.00
## 8   06 01 08        979.2109 0.2715504 0.0003  50.00
## 9   06 01 09        151.4700 0.3047686 0.0100   6.00
## 10  06 01 10        132.7508 0.2084000 0.0020   2.75
## 11  06 01 11        475.4649 0.3743818 0.0010   6.00
## 12  06 01 12         87.2260 0.2478011 0.0050   2.00
## 13  06 02 01        532.8461 0.2600518 0.0004  10.00
## 14  06 02 02        948.7900 0.4433598 0.0100 100.00
## 15  06 02 03        299.6541 0.2381988 0.0004   3.00
## 16  06 02 04        234.9500 0.3671094 0.0100   3.50
## 17  06 03 01        779.4652 0.3436795 0.0010  40.00
## 18  06 03 02        117.8800 0.2585088 0.0100   2.00
## 19  06 03 03        126.2750 0.2856900 0.0050   2.00
## 20  06 03 04       1461.6480 0.5587339 0.0040 200.00
## 21  06 03 05         22.2100 0.5552500 0.0050   2.20
## 22  06 03 06        428.3993 0.5659172 0.0020 100.00
## 23  06 03 07        322.5550 0.3435091 0.0050  10.00
## 24  06 03 08        498.2136 0.3904495 0.0040   5.00
## 25  06 03 09       1511.9204 0.3310533 0.0001  30.00
## 26  06 03 10        675.9588 0.3985606 0.0005  10.00
## 27  06 03 11         86.2400 0.4562963 0.0400  10.00
## 28  06 03 12        375.0200 0.2988207 0.0050   2.00
## 29  06 04 01       3821.6476 0.4902062 0.0003 250.00
## 30  06 04 02        121.6700 0.3227321 0.0500   1.00
## 31  06 04 03         94.2700 0.2271566 0.0100   2.50
## 32  06 04 04        406.7550 0.2753927 0.0100   2.02
## 33  06 04 05          6.1300 0.2357692 0.1000   0.50
## 34  06 04 06         32.7600 0.2848696 0.0100   2.00
## 35  06 04 07        328.2300 0.4533564 0.0200   4.00
## 36  06 04 08        403.6200 0.2692595 0.0100   3.00
## 37  06 04 09        228.1125 0.4580572 0.0300   3.00
## 38  06 04 10        857.1500 0.2859073 0.0100   4.00
## 39  06 04 11         13.2100 0.4403333 0.0100   2.00
## 40  06 04 12        208.2000 0.4248980 0.2000   4.00
## 41  06 04 13        129.4500 0.1912112 0.0050   2.50
## 42  06 04 14          5.6300 0.2680952 0.0700   0.75
## 43  06 04 15        176.4000 0.5600000 0.0100   3.00
## 44  06 04 16         10.1800 0.3084848 0.1000   1.00
## 45  06 04 17        803.1870 0.3708158 0.0020   3.00
## 46  06 04 18          4.7500 0.2638889 0.1200   0.50
## 47  06 04 19       1013.1570 0.3846458 0.0020 100.00
## 48  06 05 01        158.5700 0.4556609 0.0200   4.00
## 49  06 05 02          0.9600 0.1600000 0.0100   0.25
## 50  06 05 03         31.0100 0.4367606 0.0200   1.00
## 51  06 05 04         60.5700 0.2422800 0.0100   1.50
## 52  06 05 05          3.2500 0.3250000 0.2500   1.00
## 53  06 05 06         11.1600 0.1992857 0.0100   0.50
## 54  06 05 07         44.4100 0.3364394 0.1000   1.25
## 55  06 06 01       2828.1979 0.3599590 0.0010  13.00
## 56  06 06 02          3.5100 0.5014286 0.0100   1.00
## 57  06 06 03          0.2500 0.2500000 0.2500   0.25
## 58  06 06 04          0.0300 0.0300000 0.0300   0.03
## 59  06 06 05         17.6100 0.2174074 0.0100   1.00
## 60  06 06 06          0.7500 0.2500000 0.2500   0.25
## 61  06 06 07         70.8900 0.5100000 0.0200   4.00
## 62  06 06 08         65.7000 0.2628000 0.0100   1.50
## 63  06 06 09          1.1500 0.1642857 0.0500   0.25
## 64  06 06 10         53.1000 0.3179641 0.0500   2.00
## 65  06 06 11          1.2500 0.3125000 0.2500   0.50
## 66  06 06 12          4.4500 0.2966667 0.1000   1.00
## 67  06 06 13         30.9000 0.4478261 0.2000   1.50
## 68  06 06 14        276.0970 0.3590338 0.0100   3.00
## 69  06 07 01       1880.0133 1.0520500 0.0010 250.00
## 70  06 07 02        437.0700 0.3669773 0.0100  13.00
## 71  06 07 03        783.9300 0.3000115 0.0050   5.00
## 72  06 08 01         11.4700 0.4779167 0.0100   2.50
## 73  06 08 03          1.5800 0.2633333 0.0800   0.50
## 74  06 08 04          3.0000 0.5000000 0.2500   1.00
## 75  06 08 05          2.3500 0.2350000 0.1000   0.25
## 76  06 08 06          0.5000 0.5000000 0.5000   0.50
## 77  06 08 07         10.2500 0.3534483 0.2500   1.00
## 78  06 08 08          0.2500 0.2500000 0.2500   0.25
## 79  06 08 09         92.0500 0.4109375 0.0500   3.00
## 80  06 08 10          3.7500 0.3125000 0.1000   0.50
## 81  06 08 12          1.5000 0.7500000 0.5000   1.00
## 82  06 09 01          0.1000 0.1000000 0.1000   0.10
## 83  06 09 02          0.7500 0.7500000 0.7500   0.75
## 84  06 09 03          1.2500 0.4166667 0.2500   0.50
## 85  06 09 07          1.2500 0.4166667 0.2500   0.50
## 86  06 10 01        346.1774 0.2595033 0.0005   4.00
## 87  06 10 02         42.7400 0.3365354 0.0100   3.00
## 88  06 10 03        412.9345 7.6469352 0.0100 400.00
## 89  06 10 04        770.8196 0.3489450 0.0004 100.00
## 90  06 10 05         23.2637 0.1954933 0.0012   1.50
## 91  06 10 06        665.3992 1.3124245 0.0010 300.00
## 92  06 10 07       1485.7544 0.4713688 0.0020  10.00
## 93  06 11 01        460.7545 0.2729588 0.0010   5.00
## 94  06 11 02         10.0500 0.5583333 0.1500   1.50
## 95  06 11 03        219.0600 0.2289028 0.0100   2.00
## 96  06 11 04        252.2700 0.3917236 0.0100   5.00
## 97  06 11 05         45.6300 0.3380000 0.0100   1.00
## 98  06 11 07        210.2400 0.2608437 0.0100   4.00
## 99  06 11 09        133.2700 0.3671350 0.0200   8.00
## 100 06 11 10         10.0000 0.3030303 0.2500   1.00
## 101 06 11 11        370.6416 0.4211836 0.0050   9.00
## 102 06 11 12        198.3500 0.3361864 0.0100   4.00
## 103 06 11 13         46.3000 0.3645669 0.1000   2.00
## 104 06 12 01        264.4975 0.3249355 0.0100   4.00
## 105 06 12 02         76.5600 0.4374857 0.0100   3.00
## 106 06 12 03          1.0000 0.3333333 0.2500   0.50
## 107 06 12 04        172.9000 0.3632353 0.0100   5.00
## 108 06 13 01         57.2900 0.2715166 0.0300   1.90
## 109 06 13 02         45.4900 0.2825466 0.0500   2.00
## 110 06 13 03        338.9000 0.4567385 0.0100   5.99
## 111 06 13 04         85.0000 0.4381443 0.1000   2.00
## 112 06 13 05        109.7400 0.3682550 0.0500   1.10
## 113 06 13 06        165.9000 0.2472429 0.0300   1.50
## 114 06 13 07        103.1700 0.2939316 0.0100  10.00
## 115 06 13 08         92.7800 0.3092667 0.0200   1.00
## 116 06 13 09          2.0000 2.0000000 2.0000   2.00
## 117 06 13 10        180.8603 0.2511949 0.0003   1.95
## 118 06 13 11        179.7100 0.3476015 0.0100   2.00

Cítricos

cajamarca_narmand <- mutate(cajamarca_narmand, ubigeo=paste(cajamarca_narmand$P001,cajamarca_narmand$P002,cajamarca_narmand$P003))
Tcajamarca_narmand <- group_by(cajamarca_narmand, ubigeo)
citricos <- data.frame(summarize(Tcajamarca_narmand, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
citricos
##     ubigeo SuperficieTotal Media Minimo Maximo
## 1 06 03 02            0.10  0.10   0.10   0.10
## 2 06 03 04            0.50  0.50   0.50   0.50
## 3 06 04 11            1.00  1.00   1.00   1.00
## 4 06 05 01            0.01  0.01   0.01   0.01
## 5 06 06 01            0.05  0.05   0.05   0.05
## 6 06 06 10            0.25  0.25   0.25   0.25
## 7 06 08 08            0.15  0.15   0.15   0.15
## 8 06 10 01            0.04  0.04   0.04   0.04

Pollos

cajamarca_pollos <- mutate(cajamarca_pollos, ubigeo=paste(cajamarca_pollos$P001,cajamarca_pollos$P002,cajamarca_pollos$P003))
Tcajamarca_pollos <- group_by(cajamarca_pollos, ubigeo)
pollos <- data.frame(summarize(Tcajamarca_pollos, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
pollos
##       ubigeo SuperficieTotal     Media Minimo Maximo
## 1   06 01 01           19480  6.006784      0    300
## 2   06 01 02             103  3.814815      1     15
## 3   06 01 03            1315  4.354305      1     30
## 4   06 01 04             136  7.555556      1     20
## 5   06 01 05            8724  4.118980      0     32
## 6   06 01 06            5351  5.135317      1     50
## 7   06 01 07            3260  6.626016      1     70
## 8   06 01 08           13437  6.258500      0     60
## 9   06 01 09           14756 24.190164      1  11000
## 10  06 01 10            1731  6.340659      1     38
## 11  06 01 11            4183  5.088808      1     30
## 12  06 01 12            3250  5.742049      1     80
## 13  06 02 01           13148  7.184699      1    150
## 14  06 02 02           11596  7.772118      1    600
## 15  06 02 03            5221 15.869301      0   2000
## 16  06 02 04            1626  6.182510      1     40
## 17  06 03 01            1049  5.763736      0     20
## 18  06 03 02            1617  5.426174      1     30
## 19  06 03 03            1053  4.808219      1     20
## 20  06 03 04            4393  4.801093      0     44
## 21  06 03 05             116  5.800000      2     10
## 22  06 03 06             617  6.049020      1     40
## 23  06 03 07             152  3.304348      1     20
## 24  06 03 08             408  4.000000      1     30
## 25  06 03 09            7777  3.931749      0     25
## 26  06 03 10            4141  5.302177      0     40
## 27  06 03 11            2151  8.638554      1     60
## 28  06 03 12             679  3.857955      1     15
## 29  06 04 01           23641  6.057136      1    200
## 30  06 04 02            2377  5.046709      1     25
## 31  06 04 03            2131  5.300995      1     24
## 32  06 04 04            2021  5.462162      0     30
## 33  06 04 05             201  6.483871      0     20
## 34  06 04 06            1885  8.303965      1    100
## 35  06 04 07            9071  7.368806      1     70
## 36  06 04 08            4093  5.622253      0     40
## 37  06 04 09             466  7.898305      2     24
## 38  06 04 10            8850  6.000000      0     50
## 39  06 04 11             684  8.444444      0     30
## 40  06 04 12            1629  7.472477      0     50
## 41  06 04 13             929  6.451389      1    100
## 42  06 04 14              74  5.285714      1     11
## 43  06 04 15           14236 13.072544      1    230
## 44  06 04 16               7  7.000000      7      7
## 45  06 04 17            2514  5.846512      0    100
## 46  06 04 18              15  3.000000      0      8
## 47  06 04 19            1056  4.821918      1     25
## 48  06 05 01            1161  8.352518      1     40
## 49  06 05 02             399 19.950000     10     51
## 50  06 05 03            2317  8.710526      1     50
## 51  06 05 04            1872  6.907749      1     40
## 52  06 05 05            2973 11.892000      1    700
## 53  06 05 06              58 29.000000      3     55
## 54  06 05 07             662  9.194444      2     40
## 55  06 05 08            5257 11.503282      1     60
## 56  06 06 01           46939  7.768785      0   3000
## 57  06 06 02           13125  7.892363      0     50
## 58  06 06 03            4406 11.473958      1     60
## 59  06 06 04            2800  9.210526      1     50
## 60  06 06 05            3997  7.671785      0     50
## 61  06 06 06              45  5.000000      1     15
## 62  06 06 07            7371  8.029412      0     50
## 63  06 06 08             386  8.577778      1     60
## 64  06 06 10            1723  8.927461      1     60
## 65  06 06 11            1115  8.991935      1     30
## 66  06 06 12            5160  8.087774      1     80
## 67  06 06 13            6415  9.060734      1     60
## 68  06 06 14            8525  7.374567      1     83
## 69  06 06 15            1690  9.388889      1     40
## 70  06 07 01            6877  5.147455      1     43
## 71  06 07 02            2110  6.963696      1     30
## 72  06 07 03            3979  4.127593      1     30
## 73  06 08 01           18371 16.580325      1   5000
## 74  06 08 02           28861 44.265337      0  20000
## 75  06 08 03            3145 10.080128      1     60
## 76  06 08 04           11608 10.738205      1    100
## 77  06 08 05              82  3.153846      0     12
## 78  06 08 06            2344 10.191304      1     50
## 79  06 08 07            5771  9.445172      1     50
## 80  06 08 08            3414 11.230263      1     50
## 81  06 08 09            5247  7.998476      1     40
## 82  06 08 10            1885  7.421260      1     50
## 83  06 08 11            1430 13.619048      1    100
## 84  06 08 12            7549 12.334967      1    120
## 85  06 09 01            4651 10.244493      1     50
## 86  06 09 02            5244 12.138889      1    300
## 87  06 09 03            9639 12.139798      0     70
## 88  06 09 04           11250 10.264599      1    100
## 89  06 09 05            4231 10.498759      0     50
## 90  06 09 06           12227 10.810787      0    100
## 91  06 09 07           11253  9.967228      0    100
## 92  06 10 01            7812  6.482988      0    150
## 93  06 10 02            1530  5.907336      1     21
## 94  06 10 03             274  9.448276      3     20
## 95  06 10 04            2423  4.750980      1     30
## 96  06 10 05            1533  6.813333      1     70
## 97  06 10 06             586  4.966102      1     20
## 98  06 10 07            1524  4.916129      0     40
## 99  06 11 01            5427  4.496272      0     30
## 100 06 11 03            1902  4.245536      1     22
## 101 06 11 04              13  3.250000      2      4
## 102 06 11 05            2692  9.478873      1     40
## 103 06 11 06            2154  8.685484      0     30
## 104 06 11 07            3020  3.381859      0     90
## 105 06 11 08            1341  9.860294      2     40
## 106 06 11 09              51  8.500000      2     24
## 107 06 11 10            1519 15.500000      2    500
## 108 06 11 11            1499  5.832685      0     30
## 109 06 11 12            2139  5.628947      1     25
## 110 06 11 13            2791  8.888535      1     50
## 111 06 12 01              63  4.846154      0     12
## 112 06 12 02            1804 10.802395      1    400
## 113 06 12 04              61  3.812500      1     15
## 114 06 13 01            3736 30.129032      0   2300
## 115 06 13 02              26  8.666667      7     11
## 116 06 13 03            7615  7.915800      0    100
## 117 06 13 04            4216  7.851024      1     35
## 118 06 13 05            4807  7.283333      1     50
## 119 06 13 06            6740  8.641026      1     60
## 120 06 13 07            2372  5.581176      0     20
## 121 06 13 08             919  5.967532      0     20
## 122 06 13 10            2372  8.123288      1     20
## 123 06 13 11            2406  6.701950      1     25

lima

Ganado lechero

lima_vacas <- mutate(lima_vacas, ubigeo=paste(lima_vacas$P001,lima_vacas$P002,lima_vacas$P003))
Tlima_vacas <- group_by(lima_vacas, ubigeo)
vacas <- data.frame(summarize(Tlima_vacas, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
vacas
##       ubigeo SuperficieTotal      Media Minimo Maximo
## 1   15 01 02              20  20.000000     20     20
## 2   15 01 03             110  55.000000     20     90
## 3   15 01 06             972  14.507463      1    130
## 4   15 01 08              23   7.666667      1     15
## 5   15 01 09              11   1.833333      1      3
## 6   15 01 10             127  12.700000      1     30
## 7   15 01 14             232 116.000000    114    118
## 8   15 01 18             209   8.708333      1     67
## 9   15 01 19            5809  27.530806      1    716
## 10  15 01 23             824  16.480000      1    340
## 11  15 01 25            1415  67.380952      2    690
## 12  15 01 33               1   1.000000      1      1
## 13  15 01 35               6   6.000000      6      6
## 14  15 01 42             100  16.666667      1     90
## 15  15 01 43               7   2.333333      1      4
## 16  15 02 01             223   4.847826      1     80
## 17  15 02 02             301   8.852941      1    200
## 18  15 02 03             578   8.257143      1    199
## 19  15 02 04            1991   5.545961      1     53
## 20  15 02 05             266   7.000000      1     63
## 21  15 03 01            2361   5.675481      1     67
## 22  15 03 02             551   3.422360      1     20
## 23  15 03 03            1817   4.819629      1     60
## 24  15 03 04             750   3.246753      1     20
## 25  15 03 05             712   4.263473      1     25
## 26  15 04 01            2453   9.051661      1    900
## 27  15 04 02             686   8.909091      1     30
## 28  15 04 03            1444   6.197425      1     31
## 29  15 04 04            1161   5.893401      1     40
## 30  15 04 05            1282   8.217949      1     30
## 31  15 04 06             474   4.601942      1    100
## 32  15 04 07             358   5.424242      1     20
## 33  15 05 01            2501   6.581579      1    223
## 34  15 05 02             266   6.650000      1    117
## 35  15 05 03              62   2.384615      1      6
## 36  15 05 04            1180  28.780488      1    200
## 37  15 05 05             762 190.500000      1    400
## 38  15 05 06              74   2.242424      1     10
## 39  15 05 07            3931  55.366197      1   1978
## 40  15 05 08             179   2.753846      1     18
## 41  15 05 09             686   7.221053      1    120
## 42  15 05 10            2257   7.075235      1    272
## 43  15 05 11             218   4.192308      1     22
## 44  15 05 12            3391  18.329730      1   1450
## 45  15 05 13              65   3.611111      1     16
## 46  15 05 14            1291  10.165354      1    100
## 47  15 05 15              21   1.750000      1      4
## 48  15 05 16              53   3.117647      1      7
## 49  15 06 01            1033  11.351648      1    324
## 50  15 06 02            1976  10.917127      1    250
## 51  15 06 03             538   5.546392      1     80
## 52  15 06 04             446   7.824561      1     80
## 53  15 06 05            3081  26.560345      1    568
## 54  15 06 06            1637   5.644828      1     40
## 55  15 06 07             410   7.735849      1     30
## 56  15 06 08            1276   7.733333      1     90
## 57  15 06 09             202   8.782609      2     25
## 58  15 06 10             544   7.157895      2     60
## 59  15 06 11            1162   7.354430      1     80
## 60  15 06 12            1087  12.077778      1     70
## 61  15 07 01             819   5.318182      1     20
## 62  15 07 02              27   5.400000      1     17
## 63  15 07 03             183   4.945946      1     18
## 64  15 07 04             781  10.012821      1     60
## 65  15 07 05              70   4.666667      1     11
## 66  15 07 06              94   2.764706      1      7
## 67  15 07 07             334   6.301887      1     22
## 68  15 07 08             674   8.986667      1     30
## 69  15 07 09            1136   5.259259      1     20
## 70  15 07 10             336   3.082569      1     20
## 71  15 07 11             339   2.947826      1     11
## 72  15 07 12             584   7.786667      1     25
## 73  15 07 13             543   4.379032      1     20
## 74  15 07 15             476   3.282759      1     15
## 75  15 07 16             651   6.925532      1     30
## 76  15 07 17              38   3.800000      1      8
## 77  15 07 18            1124   4.323077      1     22
## 78  15 07 19             607   7.493827      1     35
## 79  15 07 20             235   5.000000      1     17
## 80  15 07 21            1372   6.471698      1     30
## 81  15 07 22            1461   5.513208      1     90
## 82  15 07 23             401   6.573770      1     30
## 83  15 07 24             672   5.843478      1     24
## 84  15 07 25             151   4.081081      1     12
## 85  15 07 26             328   5.466667      1     20
## 86  15 07 27               1   1.000000      1      1
## 87  15 07 28              13   2.166667      1      4
## 88  15 07 29             377   3.886598      1     11
## 89  15 07 30              33   3.000000      1     10
## 90  15 07 31             159   7.571429      1     40
## 91  15 07 32             273   4.403226      1     15
## 92  15 08 01            1846   6.236486      1     40
## 93  15 08 02            2076   6.197015      1     60
## 94  15 08 03              39   3.545455      1     10
## 95  15 08 04            1642   5.822695      1     30
## 96  15 08 05             100   4.166667      1     15
## 97  15 08 06             161   3.926829      1     15
## 98  15 08 07            1102   6.638554      1     42
## 99  15 08 08            1422   4.787879      1     26
## 100 15 08 09            1708   9.333333      1     74
## 101 15 08 10            1724  11.808219      1    720
## 102 15 08 11             717  14.058824      1    270
## 103 15 08 12            7225  15.178571      1   1448
## 104 15 09 01            2453   7.322388      1    107
## 105 15 09 02             729   4.892617      1     34
## 106 15 09 03             460   5.287356      1     30
## 107 15 09 04             873   4.386935      1     38
## 108 15 09 05             704   4.165680      1     70
## 109 15 09 06            1524   5.729323      1     35
## 110 15 10 01             860   5.058824      1     40
## 111 15 10 02             224   9.333333      1     40
## 112 15 10 03             838   5.624161      1     20
## 113 15 10 04             721   8.792683      1     70
## 114 15 10 05             492   4.100000      1     15
## 115 15 10 06             313   4.287671      1     16
## 116 15 10 07             204   4.975610      2     20
## 117 15 10 08             277   6.441860      1     35
## 118 15 10 09             320   3.478261      1     20
## 119 15 10 10              72   5.538462      1     10
## 120 15 10 11             780   4.905660      1     25
## 121 15 10 12             679   6.345794      1     33
## 122 15 10 13             160   5.000000      1     12
## 123 15 10 14             945  10.053191      1     30
## 124 15 10 15             489   3.569343      1     50
## 125 15 10 16             756   8.042553      1     35
## 126 15 10 17             325   6.914894      1     20
## 127 15 10 18             457   5.313953      1     26
## 128 15 10 19             684   7.276596      1     45
## 129 15 10 20             848   5.542484      1     50
## 130 15 10 21             525   7.094595      3     18
## 131 15 10 22             433   4.811111      1     14
## 132 15 10 23             138   9.200000      3     40
## 133 15 10 24             758   6.890909      1     25
## 134 15 10 25             209   6.531250      1     19
## 135 15 10 26             139   9.266667      2     20
## 136 15 10 27             613   6.521277      1     17
## 137 15 10 28             785  13.534483      1     80
## 138 15 10 29             692   5.766667      1     30
## 139 15 10 30             639   6.454545      1     25
## 140 15 10 31             727   5.635659      1     20
## 141 15 10 32            1183   3.969799      1     20
## 142 15 10 33             418   7.333333      1     22

Papas

lima_papas <- mutate(lima_papas, ubigeo=paste(lima_papas$P001,lima_papas$P002,lima_papas$P003))
Tlima_papas <- group_by(lima_papas, ubigeo)
papas <- data.frame(summarize(Tlima_papas, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
papas
##       ubigeo SuperficieTotal       Media Minimo   Maximo
## 1   15 01 03          0.1410  0.02820000 0.0020   0.1000
## 2   15 01 06        555.7200  8.29432836 0.0100 250.7200
## 3   15 01 10          0.1000  0.10000000 0.1000   0.1000
## 4   15 01 14          1.4000  1.40000000 1.4000   1.4000
## 5   15 01 18          2.3565  0.06368919 0.0005   0.3000
## 6   15 01 19          0.9324  0.05827500 0.0012   0.2500
## 7   15 01 23          7.3520  0.49013333 0.0400   2.7500
## 8   15 01 26          0.1100  0.11000000 0.1100   0.1100
## 9   15 01 38          0.0100  0.01000000 0.0100   0.0100
## 10  15 01 42          0.0005  0.00050000 0.0005   0.0005
## 11  15 01 43          1.3420  0.01765789 0.0010   0.3000
## 12  15 02 01       2192.0500  3.53556452 0.0200 200.0000
## 13  15 02 02          0.6500  0.32500000 0.0500   0.6000
## 14  15 02 03        221.8500  2.26377551 0.0500  10.0000
## 15  15 02 04        151.3200  2.25850746 0.1000   8.0000
## 16  15 02 05        142.7818  1.98308056 0.1550  12.0000
## 17  15 03 01         53.7358  0.21408685 0.0020   3.0000
## 18  15 03 02         21.3525  0.12132102 0.0100   0.7500
## 19  15 03 03        896.2087  3.14459193 0.0100 800.0000
## 20  15 03 04         15.5625  0.26831897 0.0625   1.0000
## 21  15 03 05         21.8975  0.27718354 0.0050   2.0000
## 22  15 04 01         47.4700  0.59337500 0.0800  10.0000
## 23  15 04 02        203.3550  5.21423077 0.0040 200.0000
## 24  15 04 03         14.9740  0.26270175 0.0100   2.0000
## 25  15 04 04          7.2089  0.04119371 0.0009   0.5000
## 26  15 04 05         26.3500  0.29277778 0.0500   1.5000
## 27  15 04 06         21.1300  0.31073529 0.0300   1.5000
## 28  15 04 07         11.5100  1.15100000 0.0300   2.0000
## 29  15 05 01         95.2200  2.44153846 0.2500   9.0000
## 30  15 05 02          0.7800  0.78000000 0.7800   0.7800
## 31  15 05 04          4.5000  1.50000000 0.2500   3.0000
## 32  15 05 07        110.7800  2.57627907 0.7400   8.9000
## 33  15 05 08          0.0180  0.00600000 0.0030   0.0100
## 34  15 05 09          4.1900  0.83800000 0.0300   2.5000
## 35  15 05 10        406.7800  8.30163265 0.2400 300.0000
## 36  15 05 11          0.3200  0.16000000 0.0700   0.2500
## 37  15 05 12        386.2100  7.15203704 0.2000 250.0000
## 38  15 05 13          0.2668  0.03335000 0.0068   0.0900
## 39  15 05 14         47.1300  2.94562500 1.0000   5.0000
## 40  15 05 15          0.1798  0.03596000 0.0100   0.0798
## 41  15 06 01        821.0990  2.95359353 0.0100  30.0000
## 42  15 06 02          9.7450  0.08940367 0.0050   0.3000
## 43  15 06 03          2.1300  0.12529412 0.0050   0.6000
## 44  15 06 04        615.2200  2.67486957 0.1000  14.0000
## 45  15 06 05        567.0750  2.43379828 0.0050  11.0000
## 46  15 06 06         41.2900  0.33032000 0.0100   1.0000
## 47  15 06 07          2.0050  0.25062500 0.0050   0.5000
## 48  15 06 08          0.8855  0.00962500 0.0030   0.0300
## 49  15 06 09          1.5525  0.11089286 0.0010   0.5000
## 50  15 06 10          1.4600  0.05214286 0.0030   0.6000
## 51  15 06 11         22.5900  0.19643478 0.0100   0.7000
## 52  15 06 12          1.7450  0.19388889 0.0100   0.9000
## 53  15 07 01        187.4725  1.73585648 0.0020 150.0000
## 54  15 07 03          0.1100  0.01571429 0.0100   0.0300
## 55  15 07 04          0.7475  0.02265152 0.0010   0.3000
## 56  15 07 05          8.8720  0.03373384 0.0025   0.5000
## 57  15 07 06        303.9950  7.99986842 0.0030 150.0000
## 58  15 07 07          0.8292  0.02438824 0.0012   0.1500
## 59  15 07 08          0.6920  0.01472340 0.0020   0.2000
## 60  15 07 09         18.4627  0.09231350 0.0010   0.4000
## 61  15 07 10          4.6355  0.03069868 0.0030   0.2500
## 62  15 07 11       1551.1160 33.00246809 0.0080 250.0000
## 63  15 07 12          4.0685  0.13561667 0.0030   0.7500
## 64  15 07 13          4.2151  0.10280732 0.0021   0.5000
## 65  15 07 15         24.0200  0.11950249 0.0030   1.2000
## 66  15 07 16       3404.3700 45.39160000 0.0050 300.0000
## 67  15 07 18         11.8027  0.04817429 0.0005   1.8000
## 68  15 07 19        250.1838 22.74398182 0.0028 150.0000
## 69  15 07 20          4.5500  0.35000000 0.2500   0.5000
## 70  15 07 21        814.5750  8.85407609 0.0250 200.0000
## 71  15 07 22         16.4816  0.07665860 0.0001   2.0000
## 72  15 07 23          0.9660  0.08781818 0.0060   0.6000
## 73  15 07 24          5.8250  0.05443925 0.0010   0.5000
## 74  15 07 25          5.7525  0.16919118 0.0575   0.5750
## 75  15 07 26        208.0896  3.65069474 0.0025 200.0000
## 76  15 07 27          0.1000  0.10000000 0.1000   0.1000
## 77  15 07 28          0.0100  0.01000000 0.0100   0.0100
## 78  15 07 29         10.7797  0.10888586 0.0024   0.5000
## 79  15 07 30          0.0600  0.06000000 0.0600   0.0600
## 80  15 07 31        803.7060 29.76688889 0.0060 200.0000
## 81  15 07 32         10.1675  0.27479730 0.0100   0.7500
## 82  15 08 01          0.0130  0.00650000 0.0030   0.0100
## 83  15 08 02        106.4100  0.43256098 0.0100   3.0000
## 84  15 08 03          7.0000  2.33333333 2.0000   3.0000
## 85  15 08 04        596.4615  4.35373358 0.0050 250.0000
## 86  15 08 05          0.1300  0.03250000 0.0100   0.0500
## 87  15 08 06        590.4500 19.68166667 0.0500 300.0000
## 88  15 08 07         25.3501  0.25867449 0.0001   1.0000
## 89  15 08 08          9.8990  0.19798000 0.0040   1.0000
## 90  15 08 09         25.9782  0.24053889 0.0002   1.0000
## 91  15 08 10          1.7253  0.14377500 0.0060   1.0000
## 92  15 08 11         53.1909  3.79935000 0.1000  16.0000
## 93  15 08 12         96.1400  2.40350000 0.0700  14.0000
## 94  15 09 01        669.8569  1.85555928 0.0020 300.0000
## 95  15 09 02         17.6510  0.21013095 0.0050   1.5000
## 96  15 09 03         16.5100  0.25400000 0.0300   1.0000
## 97  15 09 04         29.2400  0.23967213 0.0300   0.7500
## 98  15 09 05          3.5000  0.38888889 0.0500   1.5000
## 99  15 09 06         43.7140  0.11657067 0.0010  16.5000
## 100 15 10 01         12.2110  0.08599296 0.0010   1.0000
## 101 15 10 02        180.6425  2.44111486 0.0020 100.0000
## 102 15 10 03         21.7100  0.35590164 0.0100   2.0000
## 103 15 10 04         12.8036  0.18290857 0.0030   1.5000
## 104 15 10 05         29.9100  0.17189655 0.0300   2.0000
## 105 15 10 06          6.8993  0.13267885 0.0003   2.0000
## 106 15 10 07        205.0889  4.18548776 0.0010 200.0000
## 107 15 10 08          3.6050  0.07510417 0.0100   0.3000
## 108 15 10 09          3.1400  0.08486486 0.0300   0.4000
## 109 15 10 10          1.3430  0.05372000 0.0050   0.5000
## 110 15 10 11          9.6100  0.24641026 0.0300   0.7500
## 111 15 10 12         17.7926  0.11553636 0.0007   1.0000
## 112 15 10 13        168.4989  3.82952045 0.0100 100.0000
## 113 15 10 14        300.6250  7.33231707 0.0020 300.0000
## 114 15 10 15         21.5900  0.17552846 0.0020   2.0000
## 115 15 10 16          5.8464  0.07692632 0.0015   0.5000
## 116 15 10 17          0.5136  0.01141333 0.0011   0.0400
## 117 15 10 18          5.8716  0.04414737 0.0005   0.9900
## 118 15 10 19         85.8400  0.52987654 0.0200   4.0000
## 119 15 10 20         34.2200  0.20993865 0.0100  10.0000
## 120 15 10 21          3.3510  0.03682418 0.0030   0.2500
## 121 15 10 22          5.4501  0.25952857 0.0001   0.5000
## 122 15 10 24        569.9074  6.70479294 0.0050 200.0000
## 123 15 10 25          1.2010  0.07506250 0.0040   0.2500
## 124 15 10 26          1.0189  0.03773704 0.0050   0.2500
## 125 15 10 27          0.3800  0.07600000 0.0050   0.2000
## 126 15 10 29        858.0140  5.50008974 0.0020 200.0000
## 127 15 10 30          1.7280  0.01280000 0.0010   0.0800
## 128 15 10 31         14.8161  0.15931290 0.0001   1.5000
## 129 15 10 32        508.4650  1.30042199 0.0020 200.0000
## 130 15 10 33          0.6952  0.01616744 0.0012   0.2000

Cítricos

lima_narmand <- mutate(lima_narmand, ubigeo=paste(lima_narmand$P001,lima_narmand$P002,lima_narmand$P003))
Tlima_narmand <- group_by(lima_narmand, ubigeo)
citricos <- data.frame(summarize(Tlima_narmand, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
citricos
##      ubigeo SuperficieTotal        Media  Minimo Maximo
## 1  15 01 09          0.1000  0.100000000  0.1000  0.100
## 2  15 01 14          1.0000  1.000000000  1.0000  1.000
## 3  15 01 18          0.0250  0.012500000  0.0050  0.020
## 4  15 01 19         86.0300 17.206000000  0.0300 38.000
## 5  15 01 23          4.7800  1.593333333  0.0300  4.000
## 6  15 01 26         96.4600 24.115000000  0.0600 96.000
## 7  15 01 27        199.9500  7.998000000  7.9500  8.000
## 8  15 01 42          0.0145  0.007250000  0.0025  0.012
## 9  15 01 43          0.0800  0.007272727  0.0020  0.018
## 10 15 02 02          2.8000  0.700000000  0.2500  1.800
## 11 15 02 03          9.1500  0.915000000  0.1000  3.000
## 12 15 02 04         30.0500  3.756250000  0.2500  8.000
## 13 15 02 05         10.0000 10.000000000 10.0000 10.000
## 14 15 03 05          0.0500  0.050000000  0.0500  0.050
## 15 15 05 01        447.7800  6.219166667  0.0100 80.000
## 16 15 05 04          1.0000  1.000000000  1.0000  1.000
## 17 15 05 06          0.1300  0.130000000  0.1300  0.130
## 18 15 05 07        295.9400 18.496250000  0.5000 67.000
## 19 15 05 08         22.8600  2.286000000  0.0700  6.500
## 20 15 05 09          0.2600  0.130000000  0.0600  0.200
## 21 15 05 10        119.5000  6.638888889  0.4500 50.300
## 22 15 05 12        197.3600  7.048571429  0.7500 34.500
## 23 15 05 13          0.5400  0.270000000  0.0400  0.500
## 24 15 05 14        363.0800 24.205333333  1.2500 80.500
## 25 15 05 15          7.7801  1.556020000  0.0144  6.880
## 26 15 06 01       2868.4743  3.141811939  0.0002 84.650
## 27 15 06 04       1372.1275  2.127329457  0.1000 16.500
## 28 15 06 05        253.9000  3.576056338  0.0500 44.960
## 29 15 07 28          0.1000  0.100000000  0.1000  0.100
## 30 15 08 01        264.5236  3.005950000  0.0100 73.000
## 31 15 08 06         82.2500 20.562500000 10.0000 32.250
## 32 15 08 10         74.6075  2.869519231  0.0275 23.000
## 33 15 08 11       1701.0900  3.507402062  0.0400 77.000
## 34 15 08 12         69.8400  3.880000000  0.1000 22.000
## 35 15 10 06          0.1000  0.100000000  0.1000  0.100

Pollos

lima_pollos <- mutate(lima_pollos, ubigeo=paste(lima_pollos$P001,lima_pollos$P002,lima_pollos$P003))
Tlima_pollos <- group_by(lima_pollos, ubigeo)
pollos <- data.frame(summarize(Tlima_pollos, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
pollos
##       ubigeo SuperficieTotal        Media Minimo Maximo
## 1   15 01 02           60020 2.000667e+04     10  60000
## 2   15 01 03             705 3.204545e+01      2    300
## 3   15 01 06           15627 5.444948e+01      1  10000
## 4   15 01 08           10352 7.963077e+02      2   5600
## 5   15 01 09             287 1.435000e+01      1     80
## 6   15 01 10               4 4.000000e+00      4      4
## 7   15 01 14             348 1.740000e+02     98    250
## 8   15 01 18           14404 8.891358e+01      2   9000
## 9   15 01 19          382756 1.428194e+03      1 166298
## 10  15 01 23          805641 7.067026e+03      1 135000
## 11  15 01 24          242000 2.420000e+05 242000 242000
## 12  15 01 25           82426 4.121300e+03      2  50000
## 13  15 01 26         1601738 8.430200e+04      2 768004
## 14  15 01 27          523136 2.615680e+05 140000 383136
## 15  15 01 29         2256870 2.507633e+05     20 570000
## 16  15 01 33             256 1.347368e+01      1     50
## 17  15 01 35             189 1.718182e+01      7     50
## 18  15 01 42           51064 4.220165e+02      1  40000
## 19  15 01 43             604 1.232653e+01      2     40
## 20  15 02 01            1506 9.354037e+00      1     40
## 21  15 02 02         3683829 1.400695e+04      1 225681
## 22  15 02 03            1236 8.351351e+00      1     33
## 23  15 02 04            3135 1.215116e+01      1    100
## 24  15 02 05             108 7.714286e+00      3     20
## 25  15 03 01             292 6.212766e+00      1     40
## 26  15 03 02              69 3.631579e+00      1      8
## 27  15 03 03               6 2.000000e+00      1      3
## 28  15 03 04             113 4.708333e+00      2     11
## 29  15 03 05             201 8.739130e+00      2     30
## 30  15 04 01             454 6.394366e+00      1     50
## 31  15 04 02             173 1.153333e+01      1     40
## 32  15 04 03              97 8.818182e+00      2     40
## 33  15 04 04             267 6.357143e+00      1     25
## 34  15 04 05              32 2.909091e+00      1      5
## 35  15 04 06              69 3.833333e+00      2     12
## 36  15 04 07         1805815 1.962842e+04      1 800000
## 37  15 05 01          474704 1.707568e+03      1 273540
## 38  15 05 02          315595 3.586307e+03      1 270000
## 39  15 05 03             595 8.150685e+00      1     71
## 40  15 05 04         1702307 2.210788e+04      2 778458
## 41  15 05 05         2138965 7.922093e+04      4 900000
## 42  15 05 06          176777 2.762141e+03      2 145911
## 43  15 05 07            1256 9.812500e+00      1     50
## 44  15 05 08            3484 9.340483e+00      1    200
## 45  15 05 09          234813 1.701543e+03      1 207176
## 46  15 05 10           43497 1.430822e+02      1   6000
## 47  15 05 11            1133 1.231522e+01      1    500
## 48  15 05 12         1498616 2.938463e+04      2 467000
## 49  15 05 13          245060 4.084333e+03      1 244200
## 50  15 05 14             902 9.204082e+00      1     40
## 51  15 05 15          332663 8.990892e+03      1 332303
## 52  15 05 16              64 5.818182e+00      3     18
## 53  15 06 01         7259390 1.581566e+04      0 388516
## 54  15 06 02              58 4.461538e+00      1     10
## 55  15 06 03             178 7.416667e+00      1     32
## 56  15 06 04         6916882 4.044960e+04      2 999998
## 57  15 06 05         6946150 2.651202e+04      1 850000
## 58  15 06 06            1293 8.979167e+00      1     50
## 59  15 06 07             149 9.312500e+00      1     30
## 60  15 06 08              10 5.000000e+00      4      6
## 61  15 06 09              10 5.000000e+00      4      6
## 62  15 06 11             158 4.647059e+00      2     15
## 63  15 06 12              34 8.500000e+00      5     14
## 64  15 07 01             206 7.357143e+00      1     60
## 65  15 07 02             528 1.466667e+01      1    100
## 66  15 07 03               7 3.500000e+00      3      4
## 67  15 07 04              21 3.500000e+00      2      5
## 68  15 07 05               6 6.000000e+00      6      6
## 69  15 07 06              31 6.200000e+00      3     12
## 70  15 07 08              48 4.363636e+00      2     14
## 71  15 07 09              25 4.166667e+00      1      7
## 72  15 07 11             315 4.921875e+00      1     15
## 73  15 07 12               3 3.000000e+00      3      3
## 74  15 07 13              78 6.000000e+00      1     15
## 75  15 07 14              67 1.116667e+01      2     30
## 76  15 07 15             234 1.017391e+01      2     50
## 77  15 07 16             270 1.421053e+01      1     60
## 78  15 07 17             236 1.388235e+01      2     50
## 79  15 07 18             100 5.263158e+00      1     18
## 80  15 07 19               6 6.000000e+00      6      6
## 81  15 07 20               4 4.000000e+00      4      4
## 82  15 07 21               4 4.000000e+00      4      4
## 83  15 07 22             120 5.714286e+00      1     16
## 84  15 07 23             177 5.900000e+00      1     20
## 85  15 07 24              11 3.666667e+00      2      5
## 86  15 07 25               6 6.000000e+00      6      6
## 87  15 07 26               1 1.000000e+00      1      1
## 88  15 07 27              96 1.200000e+01      2     40
## 89  15 07 28             371 9.512821e+00      1     24
## 90  15 07 29              20 5.000000e+00      2     10
## 91  15 07 30              13 6.500000e+00      1     12
## 92  15 07 31              72 8.000000e+00      1     20
## 93  15 07 32              45 9.000000e+00      2     13
## 94  15 08 01         6856587 7.881134e+04      1 475000
## 95  15 08 02             667 7.847059e+00      1     40
## 96  15 08 03            2039 5.097500e+02      6   2000
## 97  15 08 04             120 5.714286e+00      1     21
## 98  15 08 05          430651 2.266584e+04      1 429000
## 99  15 08 06          707903 1.361352e+04      1 207000
## 100 15 08 07             293 6.369565e+00      1     60
## 101 15 08 08             130 5.200000e+00      1     16
## 102 15 08 09             100 5.000000e+00      1     20
## 103 15 08 10            3888 3.240000e+01      1   2500
## 104 15 08 11         2465459 1.867772e+04      1 620000
## 105 15 08 12         5330535 2.422970e+04      1 407176
## 106 15 09 01             513 5.288660e+00      1     33
## 107 15 09 02               5 5.000000e+00      5      5
## 108 15 09 03             115 5.750000e+00      1     15
## 109 15 09 04              10 3.333333e+00      2      5
## 110 15 09 05              55 4.230769e+00      1      7
## 111 15 10 01              96 4.800000e+00      1     24
## 112 15 10 02             121 6.368421e+00      2     15
## 113 15 10 03              30 3.750000e+00      1     10
## 114 15 10 04              60 4.285714e+00      1     10
## 115 15 10 05              25 3.125000e+00      1      6
## 116 15 10 06             111 4.826087e+00      1     15
## 117 15 10 07              30 5.000000e+00      2      8
## 118 15 10 08             208 5.073171e+00      1     30
## 119 15 10 09              78 7.800000e+00      2     20
## 120 15 10 10             116 8.285714e+00      1     27
## 121 15 10 11              22 2.444444e+00      1      4
## 122 15 10 12              10 2.000000e+00      1      4
## 123 15 10 13              29 4.142857e+00      1     10
## 124 15 10 15              14 4.666667e+00      1     12
## 125 15 10 16              73 4.055556e+00      2      7
## 126 15 10 17              25 5.000000e+00      3     10
## 127 15 10 18               7 3.500000e+00      3      4
## 128 15 10 19               4 4.000000e+00      4      4
## 129 15 10 22             110 7.857143e+00      2     18
## 130 15 10 23               3 3.000000e+00      3      3
## 131 15 10 24              60 6.000000e+00      1     15
## 132 15 10 25              32 4.571429e+00      2     10
## 133 15 10 26              20 3.333333e+00      1      6
## 134 15 10 27             126 6.300000e+00      1     20
## 135 15 10 28               4 2.000000e+00      1      3
## 136 15 10 29               6 6.000000e+00      6      6
## 137 15 10 30              12 6.000000e+00      4      8
## 138 15 10 31             158 8.777778e+00      1     20
## 139 15 10 32             184 4.717949e+00      1     20
## 140 15 10 33               4 4.000000e+00      4      4

ancash

Ganado lechero

ancash_vacas <- mutate(ancash_vacas, ubigeo=paste(ancash_vacas$P001,ancash_vacas$P002,ancash_vacas$P003))
Tancash_vacas <- group_by(ancash_vacas, ubigeo)
vacas <- data.frame(summarize(Tancash_vacas, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
vacas
##       ubigeo SuperficieTotal     Media Minimo Maximo
## 1   02 01 01            1376  2.191083      1     24
## 2   02 01 02             639  3.227273      1     15
## 3   02 01 03             343  4.182927      1     20
## 4   02 01 04             343  2.766129      1     14
## 5   02 01 05            1897  2.383166      1    300
## 6   02 01 06             446  2.218905      1      9
## 7   02 01 07             422  3.149254      1     20
## 8   02 01 08             296  2.368000      1     10
## 9   02 01 09             465  2.924528      1     25
## 10  02 01 10             478  2.265403      1      8
## 11  02 01 11            1093  2.239754      1     10
## 12  02 01 12             378  1.928571      1     20
## 13  02 02 01             451  2.854430      1     50
## 14  02 02 02             440  2.391304      1     17
## 15  02 02 03              63  1.431818      1      3
## 16  02 02 04             458  1.892562      1     15
## 17  02 02 05             231  2.431579      1      9
## 18  02 03 01             208  1.434483      1      5
## 19  02 03 02             261  2.211864      1     30
## 20  02 03 03              86  1.592593      1      8
## 21  02 03 04             249  1.976190      1     23
## 22  02 03 05             371  1.460630      1      7
## 23  02 03 06             221  2.600000      1     25
## 24  02 04 01             940  2.338308      1     14
## 25  02 04 02             511  1.557927      1     11
## 26  02 05 01            1134  4.447059      1     25
## 27  02 05 02              20  3.333333      1      8
## 28  02 05 03             249  2.964286      1     13
## 29  02 05 04            1110  5.967742      1     30
## 30  02 05 05             635  3.713450      1     20
## 31  02 05 06             214  2.853333      1      9
## 32  02 05 07               8  2.666667      1      5
## 33  02 05 08            1971  6.198113      1     45
## 34  02 05 09            1440  5.829960      1     30
## 35  02 05 10             537  4.401639      1     21
## 36  02 05 11              93  3.720000      1     13
## 37  02 05 12             253  4.080645      1     15
## 38  02 05 13             982  6.819444      1    135
## 39  02 05 14             229  3.469697      1     14
## 40  02 05 15             343  4.083333      1     12
## 41  02 06 01            1091  2.090038      1    180
## 42  02 06 02             141  2.104478      1     18
## 43  02 06 03             166  1.551402      1      9
## 44  02 06 04             164  1.726316      1      6
## 45  02 06 05              13  1.444444      1      3
## 46  02 06 06             539  1.967153      1     20
## 47  02 06 07             217  1.682171      1     15
## 48  02 06 08             101  1.262500      1      5
## 49  02 06 09             246  1.473054      1     11
## 50  02 06 10              89  1.648148      1     10
## 51  02 06 11             448  2.650888      1     10
## 52  02 07 01            1238  1.691257      1     82
## 53  02 07 02             408  1.805310      1     12
## 54  02 07 03             728  1.453094      1     10
## 55  02 08 01             349  2.311258      1     15
## 56  02 08 02              78  1.560000      1     10
## 57  02 08 03             110  2.619048      1      8
## 58  02 08 04             367  2.184524      1     10
## 59  02 09 01             610  2.811060      1     22
## 60  02 09 02             304  3.494253      1     30
## 61  02 09 03             180  3.103448      1     15
## 62  02 09 04            1994  4.691765      1     40
## 63  02 09 05             161  2.639344      1     15
## 64  02 09 06             203  2.569620      1      8
## 65  02 09 07             125  2.272727      1      9
## 66  02 10 01            1202  2.119929      1     30
## 67  02 10 02             175  1.861702      1     30
## 68  02 10 03             332  1.765957      1      8
## 69  02 10 04             583  2.259690      1     20
## 70  02 10 05             245  1.788321      1      7
## 71  02 10 06             212  2.617284      1     14
## 72  02 10 07             435  1.883117      1     10
## 73  02 10 08             368  1.727700      1     10
## 74  02 10 09              64  1.523810      1      6
## 75  02 10 10             713  5.527132      1    384
## 76  02 10 11             162  1.486239      1      6
## 77  02 10 12              20  2.000000      1      7
## 78  02 10 13             143  2.508772      1      9
## 79  02 10 14            1302  3.321429      1    100
## 80  02 10 15             257  1.875912      1      8
## 81  02 10 16             161  2.824561      1     18
## 82  02 11 01             268  3.228916      1     40
## 83  02 11 02             394  3.030769      1     13
## 84  02 11 03              45  2.500000      1      8
## 85  02 11 04             262  2.847826      1      9
## 86  02 11 05             634  4.116883      1     23
## 87  02 12 01             370  1.737089      1     10
## 88  02 12 02              92  2.875000      1     15
## 89  02 12 03             763  2.577703      1     15
## 90  02 12 04             374  2.066298      1      9
## 91  02 12 05             466  2.505376      1     14
## 92  02 12 06            1854  2.449141      1     20
## 93  02 12 07             677  1.655257      1     21
## 94  02 12 08             488  1.621262      1     15
## 95  02 12 09             471  2.012821      1      9
## 96  02 12 10             397  3.675926      1     15
## 97  02 13 01             596  1.712644      1      9
## 98  02 13 02             986  1.635158      1      8
## 99  02 13 03             450  2.393617      1     12
## 100 02 13 04             465  1.937500      1     10
## 101 02 13 05             398  1.800905      1      5
## 102 02 13 06             874  1.677543      1     10
## 103 02 13 07             376  1.634783      1     17
## 104 02 13 08             284  1.786164      1     10
## 105 02 14 01            1072  6.056497      1     40
## 106 02 14 02             289  6.148936      1     20
## 107 02 14 03             187  3.740000      1      7
## 108 02 14 04             137  4.892857      1     30
## 109 02 14 05             326 10.516129      1     40
## 110 02 14 06             900  4.545455      1     16
## 111 02 14 07              50  2.631579      1      6
## 112 02 14 08             470  5.595238      1    146
## 113 02 14 09             330  6.875000      1     40
## 114 02 14 10             267  4.377049      1     12
## 115 02 15 01            1104  3.172414      1     30
## 116 02 15 02             608  3.070707      1     20
## 117 02 15 03            2070  4.394904      0     35
## 118 02 15 04              70  1.320755      1      4
## 119 02 15 05             703  4.750000      1     25
## 120 02 15 06             276  3.325301      1     20
## 121 02 15 07             164  1.782609      1      8
## 122 02 15 08             551  2.135659      1     20
## 123 02 15 09             708  3.323944      1     22
## 124 02 15 10             204  1.871560      1     10
## 125 02 15 11             798  2.162602      1      8
## 126 02 16 01            2579  2.115669      1     30
## 127 02 16 02             525  1.557864      1      8
## 128 02 16 03            1065  1.871705      1     12
## 129 02 16 04             575  1.903974      1      9
## 130 02 17 01             691  2.531136      1     15
## 131 02 17 02            2126  6.216374      1    100
## 132 02 17 03             987 10.846154      1     50
## 133 02 17 04             320  3.298969      1     30
## 134 02 17 05             226  3.323529      1     15
## 135 02 17 06             741  4.602484      1     30
## 136 02 17 07            1034  6.228916      1     30
## 137 02 17 08             896  7.225806      1     80
## 138 02 17 09             377  3.927083      1     13
## 139 02 17 10             571  4.198529      1     25
## 140 02 18 01            2218  3.340361      1     35
## 141 02 18 02            1383  3.019651      1     20
## 142 02 18 04            1324  2.718686      1     21
## 143 02 18 05             245  2.578947      1      9
## 144 02 18 06              92  2.705882      1     15
## 145 02 18 07              56  1.750000      1      5
## 146 02 18 08             521  5.920455      1     20
## 147 02 18 09             509  3.416107      1     25
## 148 02 19 01             317  2.264286      1     15
## 149 02 19 02             453  3.040268      1     12
## 150 02 19 03             239  2.685393      1     14
## 151 02 19 04             307  1.774566      1     10
## 152 02 19 05             706  5.515625      1     40
## 153 02 19 06            1548  2.632653      1     30
## 154 02 19 07             761  2.439103      1     10
## 155 02 19 08             867  2.675926      1     21
## 156 02 19 09            1783  2.486750      1     21
## 157 02 19 10             406  2.103627      1     12
## 158 02 20 01             952  1.621806      1     25
## 159 02 20 02             253  1.781690      1      9
## 160 02 20 03             717  1.707143      1     74
## 161 02 20 04              60  1.428571      1      5
## 162 02 20 05             734  1.699074      1     10
## 163 02 20 06             235  1.477987      1     10
## 164 02 20 07             480  2.105263      1     10
## 165 02 20 08             796  1.796840      1     64

Papas

ancash_papas <- mutate(ancash_papas, ubigeo=paste(ancash_papas$P001,ancash_papas$P002,ancash_papas$P003))
Tancash_papas <- group_by(ancash_papas, ubigeo)
papas <- data.frame(summarize(Tancash_papas, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
papas
##       ubigeo SuperficieTotal       Media Minimo  Maximo
## 1   02 01 01       1014.4250  0.46490605 0.0005 300.000
## 2   02 01 02         54.6500  0.27325000 0.1000   4.000
## 3   02 01 03         26.3800  0.82437500 0.0100  20.000
## 4   02 01 04         63.7600  0.26238683 0.0600   1.000
## 5   02 01 05        692.4056  0.16466245 0.0007  50.000
## 6   02 01 06         93.1768  0.11915192 0.0005   2.000
## 7   02 01 07         62.4700  0.45598540 0.0400   2.000
## 8   02 01 08       1341.5968  2.03272242 0.0030 400.000
## 9   02 01 09         29.4600  0.26781818 0.1000   1.000
## 10  02 01 10        128.4200  0.44590278 0.0100   3.000
## 11  02 01 11        509.6745  0.84383195 0.0100 248.000
## 12  02 01 12        125.3625  0.12399852 0.0010   2.000
## 13  02 02 01         78.9225  0.36708140 0.0025   8.000
## 14  02 02 02         45.8814  0.30792886 0.0500   1.500
## 15  02 02 03         12.2500  0.36029412 0.2500   0.750
## 16  02 02 04        171.8500  0.35071429 0.0200   3.000
## 17  02 02 05         23.9750  0.41336207 0.1000   1.000
## 18  02 03 01         70.0625  0.46093750 0.0625   4.000
## 19  02 03 02         24.6250  0.29668675 0.0625   1.000
## 20  02 03 03         82.4750  0.35095745 0.0625   2.000
## 21  02 03 04         73.5950  0.31997826 0.0325   3.000
## 22  02 03 05        494.6300  0.46928843 0.0625   3.500
## 23  02 03 06        211.2225  0.29336458 0.0600   2.000
## 24  02 04 01        696.3537  0.67607155 0.0004 200.000
## 25  02 04 02        239.2977  0.22553977 0.0080   3.000
## 26  02 05 01         34.3699  0.19418023 0.0050   2.000
## 27  02 05 03          4.4000  0.15714286 0.0050   0.500
## 28  02 05 04         19.1512  0.10698994 0.0100   2.000
## 29  02 05 05         27.0500  0.28473684 0.0100   3.000
## 30  02 05 06          9.8300  0.42739130 0.0300   0.900
## 31  02 05 08        243.4700  0.62912145 0.0500   7.500
## 32  02 05 09       2106.1200  8.00806084 0.0030 200.000
## 33  02 05 10         20.0520  0.21331915 0.0120   1.000
## 34  02 05 11        301.0102  5.37518214 0.0050 300.000
## 35  02 05 12       1367.8076 59.46989565 0.0200 400.000
## 36  02 05 13        508.5340  5.13670707 0.0020 300.000
## 37  02 05 14         12.8960  0.32240000 0.0100   2.000
## 38  02 05 15         27.3900  0.37013514 0.0100   3.000
## 39  02 06 01       1616.8324  0.96068473 0.0001 250.000
## 40  02 06 02        249.3480  1.14379817 0.0020 200.000
## 41  02 06 03         38.7695  0.07832222 0.0010   1.250
## 42  02 06 04        102.2208  0.34651119 0.0020   4.000
## 43  02 06 05          3.0381  0.04161781 0.0020   0.500
## 44  02 06 06        397.9488  0.34246885 0.0004 200.000
## 45  02 06 07         39.0337  0.09567083 0.0020   1.000
## 46  02 06 08         86.9510  0.12601594 0.0015   4.500
## 47  02 06 09        681.4634  0.53743170 0.0003 300.000
## 48  02 06 10          9.2961  0.08687944 0.0010   0.500
## 49  02 06 11         22.1971  0.08221148 0.0020   2.000
## 50  02 07 01        674.3041  0.25264297 0.0100   5.000
## 51  02 07 02        234.7875  0.42304054 0.0250   2.500
## 52  02 07 03        843.8725  0.45937534 0.0100 150.000
## 53  02 08 04          4.0000  0.30769231 0.0500   1.000
## 54  02 09 01         69.3750  0.29149160 0.0625   6.000
## 55  02 09 02         23.8750  0.39139344 0.1250   1.000
## 56  02 09 03          7.6875  0.26508621 0.1250   1.000
## 57  02 09 04        329.3300  1.00712538 0.0100 200.000
## 58  02 09 05         16.2750  0.49318182 0.1250   1.000
## 59  02 09 06         13.0500  0.21048387 0.0600   0.750
## 60  02 09 07          8.8750  0.22756410 0.1250   0.750
## 61  02 10 01        259.6480  0.22211121 0.0030   2.000
## 62  02 10 02        590.1250  1.50927110 0.0625 500.000
## 63  02 10 03        197.1450  0.20096330 0.0250   2.750
## 64  02 10 04        552.2125  0.24652344 0.0050   4.000
## 65  02 10 05         38.0425  0.08806134 0.0050   1.500
## 66  02 10 06         38.9375  0.26669521 0.0625   7.000
## 67  02 10 07        352.6875  0.32565789 0.0625   2.000
## 68  02 10 08        259.0225  0.27467922 0.0625   2.000
## 69  02 10 09         59.0975  0.22385417 0.0200   1.500
## 70  02 10 10         45.3125  0.24361559 0.0625   1.750
## 71  02 10 11        239.0250  0.29692547 0.0375   3.000
## 72  02 10 12          4.4027  0.23172105 0.0625   0.625
## 73  02 10 13        103.9450  1.02915842 0.0500  50.000
## 74  02 10 14       1028.3265  0.26192728 0.0020  10.000
## 75  02 10 15        255.2250  0.29201945 0.0500   3.750
## 76  02 10 16         50.2700  0.28562500 0.0625   2.000
## 77  02 11 02         54.2575  0.49777523 0.0010  30.000
## 78  02 11 04         24.6650  0.34256944 0.0250   1.000
## 79  02 11 05         24.3300  0.22321101 0.0500   1.500
## 80  02 12 01        105.3939  0.20911488 0.0020   3.000
## 81  02 12 02          3.0413  0.20275333 0.0100   2.000
## 82  02 12 03        110.3500  0.89715447 0.1200  70.000
## 83  02 12 04        266.9913  2.36275487 0.0030 250.000
## 84  02 12 05         14.5611  0.18431772 0.0040   1.500
## 85  02 12 06        673.9832  0.65626407 0.0150   5.000
## 86  02 12 07        805.5022  0.50948906 0.0003 500.000
## 87  02 12 08       1567.5640  4.00911509 0.0020 300.000
## 88  02 12 09         15.0375  0.13795872 0.0500   0.500
## 89  02 12 10         49.8200  0.34597222 0.0300   2.000
## 90  02 13 01        136.2925  0.20464339 0.0150   1.500
## 91  02 13 02        372.9729  0.26358509 0.0020   3.000
## 92  02 13 03         76.0425  0.39400259 0.0625   1.000
## 93  02 13 04        144.0625  0.31942905 0.0625   2.000
## 94  02 13 05         72.9500  0.28385214 0.0625   2.000
## 95  02 13 06        447.1000  0.31419536 0.0150   5.000
## 96  02 13 07        191.9250  0.26582410 0.0125   3.000
## 97  02 13 08         27.7700  0.13099057 0.0100   0.500
## 98  02 14 01         18.9900  0.70333333 0.0400   4.000
## 99  02 14 02          4.2500  0.32692308 0.2500   1.000
## 100 02 14 03          8.2500  0.37500000 0.1000   1.500
## 101 02 14 04          0.0700  0.01400000 0.0030   0.032
## 102 02 14 05          4.0000  4.00000000 4.0000   4.000
## 103 02 14 06        464.7900  3.29638298 0.0050 200.000
## 104 02 14 07          1.7600  0.35200000 0.0300   1.000
## 105 02 14 08          8.9010  0.52358824 0.0010   3.500
## 106 02 14 09          3.2500  0.54166667 0.2500   1.000
## 107 02 14 10       1012.0300 24.68365854 0.0250 250.000
## 108 02 15 01         96.0605  0.37819094 0.0030  10.000
## 109 02 15 02         16.5200  0.24294118 0.0500   1.000
## 110 02 15 03        237.9500  0.25313830 0.0100   4.000
## 111 02 15 04         11.6705  0.25934444 0.0030   0.500
## 112 02 15 05         26.8500  0.31964286 0.0500   1.000
## 113 02 15 06         34.3728  0.22465882 0.0008   2.000
## 114 02 15 07         15.4175  0.22344203 0.0625   1.000
## 115 02 15 08         27.5225  0.21009542 0.0175   1.000
## 116 02 15 09        112.7900  0.20432971 0.0100   2.000
## 117 02 15 10          7.6675  0.28398148 0.0625   1.000
## 118 02 15 11         78.0225  0.23571752 0.0300   2.130
## 119 02 16 01       1359.2914  0.41760104 0.0010 300.000
## 120 02 16 02        319.3268  0.46822111 0.0010 100.000
## 121 02 16 03        248.0484  0.24129222 0.0010   2.000
## 122 02 16 04        191.6453  0.26506957 0.0001   2.000
## 123 02 17 01        210.8625  0.27781621 0.0015   4.000
## 124 02 17 02         19.8752  0.14095887 0.0015   3.000
## 125 02 17 03         14.9250  0.29264706 0.0150   1.000
## 126 02 17 04         29.7300  0.34172414 0.1300   1.000
## 127 02 17 05          7.5755  0.22956061 0.0261   2.500
## 128 02 17 06         27.1526  0.26108269 0.0006   2.000
## 129 02 17 07         73.6620  0.46621519 0.0020   3.000
## 130 02 17 08          2.0000  0.33333333 0.1200   0.750
## 131 02 17 09         58.3750  0.65589888 0.0625   3.000
## 132 02 17 10         32.0116  0.29101455 0.0030   2.000
## 133 02 18 01         10.3300  1.03300000 0.0300   3.000
## 134 02 18 02        128.7900  0.39506135 0.0400   2.000
## 135 02 18 04         72.6450  0.27517045 0.0300   2.000
## 136 02 18 05          0.5000  0.50000000 0.5000   0.500
## 137 02 18 06          0.5000  0.50000000 0.5000   0.500
## 138 02 18 07          2.0000  2.00000000 2.0000   2.000
## 139 02 18 09          2.0000  0.40000000 0.2500   0.500
## 140 02 19 01        230.9190  0.47030346 0.0025   4.500
## 141 02 19 02         87.2663  0.40030413 0.0001  10.000
## 142 02 19 03        209.1500  1.91880734 0.2500   9.000
## 143 02 19 04        218.6493  0.23235845 0.0010   4.000
## 144 02 19 05         70.6117  0.47710608 0.0100   2.500
## 145 02 19 06        338.8700  0.30337511 0.0100   2.900
## 146 02 19 07        105.1200  0.35040000 0.0200   2.500
## 147 02 19 08        261.4601  0.29115824 0.0050   2.000
## 148 02 19 09        610.6100  0.39987557 0.0100   6.000
## 149 02 19 10         97.6960  0.25050256 0.0020   3.000
## 150 02 20 01       1266.3262  0.57875969 0.0015 250.000
## 151 02 20 02        542.7180  1.56854913 0.0020 200.000
## 152 02 20 03        192.0030  0.12886107 0.0016   4.000
## 153 02 20 04        108.0765  2.57325000 0.0050 100.000
## 154 02 20 05        357.2400  0.25737752 0.0100   2.000
## 155 02 20 06         63.6709  0.11209665 0.0050   1.000
## 156 02 20 07         66.7058  0.12586000 0.0058   2.000
## 157 02 20 08        795.7435  0.57620818 0.0040 200.000

Cítricos

ancash_narmand <- mutate(ancash_narmand, ubigeo=paste(ancash_narmand$P001,ancash_narmand$P002,ancash_narmand$P003))
Tancash_narmand <- group_by(ancash_narmand, ubigeo)
citricos <- data.frame(summarize(Tancash_narmand, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
citricos
##      ubigeo SuperficieTotal    Media Minimo Maximo
## 1  02 06 04          0.1200 0.060000 0.0400 0.0800
## 2  02 06 07          0.0120 0.012000 0.0120 0.0120
## 3  02 07 01          0.1375 0.068750 0.0125 0.1250
## 4  02 10 09          0.4375 0.437500 0.4375 0.4375
## 5  02 10 10          0.5000 0.500000 0.5000 0.5000
## 6  02 12 10          0.0300 0.015000 0.0100 0.0200
## 7  02 15 03          0.0100 0.010000 0.0100 0.0100
## 8  02 15 08          0.0100 0.010000 0.0100 0.0100
## 9  02 15 10          0.5000 0.500000 0.5000 0.5000
## 10 02 17 05          0.1000 0.100000 0.1000 0.1000
## 11 02 17 06          0.6000 0.600000 0.6000 0.6000
## 12 02 18 01          0.2500 0.250000 0.2500 0.2500
## 13 02 18 06          1.0000 1.000000 1.0000 1.0000
## 14 02 18 09         14.9000 2.128571 0.5000 4.9000

Pollos

ancash_pollos <- mutate(ancash_pollos, ubigeo=paste(ancash_pollos$P001,ancash_pollos$P002,ancash_pollos$P003))
Tancash_pollos <- group_by(ancash_pollos, ubigeo)
pollos <- data.frame(summarize(Tancash_pollos, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
pollos
##       ubigeo SuperficieTotal       Media Minimo Maximo
## 1   02 01 01            1916    4.950904      1     30
## 2   02 01 04             113    6.277778      1     17
## 3   02 01 05            3968    5.126615      1     50
## 4   02 01 06             697    4.840278      1     20
## 5   02 01 07              51    5.100000      2      8
## 6   02 01 08              90    3.600000      1     10
## 7   02 01 10             327    6.055556      1     20
## 8   02 01 11              47    3.916667      1     12
## 9   02 01 12             754    6.732143      1     22
## 10  02 02 01             316    5.180328      1     12
## 11  02 02 02              70    3.684211      1      7
## 12  02 02 04             376    5.150685      1     30
## 13  02 02 05              10    3.333333      3      4
## 14  02 03 01             361    5.730159      1     15
## 15  02 03 02             135    4.090909      1     10
## 16  02 03 03              10    5.000000      4      6
## 17  02 03 04              61    7.625000      4     12
## 18  02 03 05              75    3.260870      1      8
## 19  02 03 06               2    2.000000      2      2
## 20  02 04 01             474    3.853659      1     31
## 21  02 04 02             172    4.300000      1     18
## 22  02 05 01             440    4.680851      1     25
## 23  02 05 02              25   12.500000      5     20
## 24  02 05 03              70    7.777778      2     12
## 25  02 05 04              34    4.250000      2      8
## 26  02 05 05              69    5.307692      1     15
## 27  02 05 06              29    9.666667      4     18
## 28  02 05 07              42    6.000000      2     10
## 29  02 05 08              52    4.727273      2      8
## 30  02 05 09             250    5.434783      1     20
## 31  02 05 10             228    4.750000      1     30
## 32  02 05 11              72    4.235294      1     14
## 33  02 05 12             109    4.192308      1     10
## 34  02 05 13              46    4.181818      2      9
## 35  02 05 14             101    5.050000      2     10
## 36  02 05 15              86    5.058824      2     14
## 37  02 06 01            1407    5.742857      1     28
## 38  02 06 02             856    6.635659      1     20
## 39  02 06 03            1036    6.556962      1     30
## 40  02 06 04            1046    5.909605      1     35
## 41  02 06 05             312    4.952381      1     15
## 42  02 06 06            1305    5.904977      1     30
## 43  02 06 07             552    4.312500      1     35
## 44  02 06 08               5    5.000000      5      5
## 45  02 06 09              58    4.461538      1     10
## 46  02 06 10             489    6.698630      1     30
## 47  02 06 11              36    5.142857      1     12
## 48  02 07 01             180    3.333333      1     12
## 49  02 07 02              11    5.500000      3      8
## 50  02 07 03              26    2.363636      1      6
## 51  02 08 01          551590 4881.327434      1 550200
## 52  02 08 02              87    5.800000      1     20
## 53  02 08 03             649   12.980000      2     40
## 54  02 08 04            1881   10.627119      1     90
## 55  02 09 01             827    6.563492      1     30
## 56  02 09 03             101    5.315789      2     10
## 57  02 09 04             125    4.464286      1     12
## 58  02 09 05              38    9.500000      3     20
## 59  02 09 07             119    7.933333      2     20
## 60  02 10 01              14    2.000000      1      4
## 61  02 10 02               2    2.000000      2      2
## 62  02 10 03              25    5.000000      1     11
## 63  02 10 04             635    4.123377      1     15
## 64  02 10 05              28    3.111111      1      6
## 65  02 10 07              24    4.800000      2     12
## 66  02 10 08             222    7.928571      1     27
## 67  02 10 09              24    4.000000      1      6
## 68  02 10 10              11    2.750000      1      5
## 69  02 10 11              11    5.500000      1     10
## 70  02 10 12              12    6.000000      2     10
## 71  02 10 14            1049    4.229839      1     80
## 72  02 10 16               2    2.000000      2      2
## 73  02 11 01            2246   11.118812      1     50
## 74  02 11 02             982    7.732283      1     60
## 75  02 11 03             262    7.081081      1     49
## 76  02 11 04             499    7.796875      1     30
## 77  02 11 05             165    4.125000      1     10
## 78  02 12 01             238    7.437500      1     45
## 79  02 12 02              99   16.500000      2     50
## 80  02 12 03             830    5.646259      1     22
## 81  02 12 04             553    6.076923      1     22
## 82  02 12 05              32    5.333333      2      8
## 83  02 12 06              80    3.333333      1     10
## 84  02 12 07             276    4.312500      1     18
## 85  02 12 08             221    4.911111      1     20
## 86  02 12 09              74    4.625000      3      7
## 87  02 12 10             290    8.529412      2     26
## 88  02 13 01             252    4.344828      1     18
## 89  02 13 02             229    3.271429      0     25
## 90  02 13 03              69    3.631579      1      8
## 91  02 13 04              16    8.000000      4     12
## 92  02 13 05              47    5.875000      1     12
## 93  02 13 06             249    5.081633      1     20
## 94  02 13 07               4    4.000000      4      4
## 95  02 13 08              20   10.000000      5     15
## 96  02 14 01               8    4.000000      3      5
## 97  02 14 02              10   10.000000     10     10
## 98  02 14 03              61    4.692308      1     12
## 99  02 14 04              92    3.833333      1     18
## 100 02 14 05            4044  674.000000      2   4000
## 101 02 14 06             126    6.631579      1     30
## 102 02 14 07              51    5.666667      2      9
## 103 02 14 08               2    2.000000      2      2
## 104 02 14 09              73    9.125000      4     12
## 105 02 15 01             526    6.493827      1     30
## 106 02 15 02             625    9.920635      1     60
## 107 02 15 03             330    4.074074      1     15
## 108 02 15 04              68    5.230769      1     18
## 109 02 15 05             293    5.232143      1     25
## 110 02 15 06              38    2.714286      1      6
## 111 02 15 07             232    5.155556      2     24
## 112 02 15 08             620    5.438596      1     28
## 113 02 15 09             304    4.000000      1     10
## 114 02 15 10             357    8.302326      1     30
## 115 02 15 11              40    3.636364      1      9
## 116 02 16 01             245    3.602941      0     10
## 117 02 16 02             201    4.102041      1     20
## 118 02 16 03            1029    5.813559      1     20
## 119 02 16 04             246    3.153846      0     25
## 120 02 17 01              30    5.000000      0     10
## 121 02 17 02              16    2.285714      1      4
## 122 02 17 03               4    2.000000      0      4
## 123 02 17 05               5    2.500000      2      3
## 124 02 17 06              66    4.125000      1     12
## 125 02 17 07              29    5.800000      2     13
## 126 02 17 08            1129    7.680272      1     30
## 127 02 17 09              13    2.600000      2      3
## 128 02 17 10             249    4.698113      0     11
## 129 02 18 01            9719   12.993316      1    200
## 130 02 18 02            1118    8.534351      1     52
## 131 02 18 04             383    6.719298      1     24
## 132 02 18 05           71244  800.494382      2  65000
## 133 02 18 06          813900 8567.368421      2 800000
## 134 02 18 07             311   15.550000      2    150
## 135 02 18 08            1795   26.014493      1    700
## 136 02 18 09            2121   14.627586      1    100
## 137 02 19 01             152   12.666667      4     60
## 138 02 19 02             225    6.818182      2     15
## 139 02 19 04              50    2.631579      0      6
## 140 02 19 05             254    7.470588      2     22
## 141 02 19 06             390    5.270270      1     20
## 142 02 19 07             300    4.109589      1     14
## 143 02 19 08              89    6.357143      1     12
## 144 02 19 09             491    5.168421      1     20
## 145 02 19 10              62    5.166667      2     10
## 146 02 20 01            2695    7.656250      1    500
## 147 02 20 02             104    2.971429      1     10
## 148 02 20 03            1467    5.354015      1     30
## 149 02 20 04             124    6.200000      1     23
## 150 02 20 05             557    3.978571      1     30
## 151 02 20 06             632    7.022222      1     30
## 152 02 20 07             542    5.827957      2     24
## 153 02 20 08             278    2.438596      1     10

ica

Ganado lechero

ica_vacas <- mutate(ica_vacas, ubigeo=paste(ica_vacas$P001,ica_vacas$P002,ica_vacas$P003))
Tica_vacas <- group_by(ica_vacas, ubigeo)
vacas <- data.frame(summarize(Tica_vacas, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
vacas
##      ubigeo SuperficieTotal     Media Minimo Maximo
## 1  11 01 01             303  3.189474      1     17
## 2  11 01 02             134  3.941176      1     30
## 3  11 01 03             289  5.780000      1     60
## 4  11 01 04             166  2.441176      1     12
## 5  11 01 05             267  8.612903      1    150
## 6  11 01 06              20  1.818182      1      5
## 7  11 01 07             221  7.129032      1    167
## 8  11 01 08             167  7.260870      1     68
## 9  11 01 09              89  3.296296      1     12
## 10 11 01 10             206 10.300000      1    150
## 11 11 01 11             607  3.096939      1     85
## 12 11 01 12             150  5.555556      2     20
## 13 11 01 13              28  1.647059      1      5
## 14 11 01 14             228  2.814815      1     19
## 15 11 02 01             146  4.709677      1     20
## 16 11 02 02             439  5.701299      1    120
## 17 11 02 03             346  4.435897      1     12
## 18 11 02 04             914 14.507937      1    596
## 19 11 02 05             190  3.518519      1     15
## 20 11 02 06             590  4.370370      1     30
## 21 11 02 07              98  5.157895      1     15
## 22 11 02 08             630  4.666667      1     16
## 23 11 02 09            1131  4.812766      1     25
## 24 11 02 10             112  8.000000      2     50
## 25 11 02 11              45  3.461538      1      7
## 26 11 03 01             500  3.703704      1     38
## 27 11 03 02              67  2.161290      1      6
## 28 11 03 03             256  4.571429      1     14
## 29 11 03 05             200  2.941176      1     15
## 30 11 04 01             116  3.135135      1     13
## 31 11 04 02              64  3.047619      1     14
## 32 11 04 03             333  5.741379      1     43
## 33 11 04 04              26  1.733333      1      4
## 34 11 04 05             280  5.384615      1     30
## 35 11 05 01             127  3.097561      1     11
## 36 11 05 02             294  4.900000      1     25
## 37 11 05 03             471  4.131579      1     95
## 38 11 05 04            1577  3.893827      1     30
## 39 11 05 05               4  1.000000      1      1
## 40 11 05 06            1426 12.084746      1    472
## 41 11 05 07             218  4.844444      1     20
## 42 11 05 08             154  4.529412      1     13

Papas

ica_papas <- mutate(ica_papas, ubigeo=paste(ica_papas$P001,ica_papas$P002,ica_papas$P003))
Tica_papas <- group_by(ica_papas, ubigeo)
papas <- data.frame(summarize(Tica_papas, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
papas
##      ubigeo SuperficieTotal      Media Minimo Maximo
## 1  11 01 01           3.000  3.0000000   3.00   3.00
## 2  11 01 02          60.030  3.5311765   0.04   9.20
## 3  11 01 08           4.960  1.6533333   0.01   4.80
## 4  11 01 09          43.400  3.6166667   1.00   9.00
## 5  11 01 10           7.500  1.8750000   1.00   3.00
## 6  11 01 11           3.950  1.9750000   1.25   2.70
## 7  11 01 12           0.960  0.2400000   0.02   0.71
## 8  11 01 14          31.718  0.3079417   0.01   1.50
## 9  11 02 03          38.220  0.2749640   0.02   1.00
## 10 11 02 04           4.000  4.0000000   4.00   4.00
## 11 11 02 05           4.000  4.0000000   4.00   4.00
## 12 11 02 08           9.500  0.1862745   0.05   0.50
## 13 11 02 09          49.175  0.2092553   0.01   2.00
## 14 11 03 01          51.950  2.7342105   1.00  12.00
## 15 11 03 02           6.500  6.5000000   6.50   6.50
## 16 11 03 03           5.000  2.5000000   1.00   4.00
## 17 11 03 05          61.250  4.7115385   0.50  12.00
## 18 11 04 01           9.000  1.0000000   0.50   1.20
## 19 11 04 02           2.500  1.2500000   0.50   2.00
## 20 11 04 03           5.000  5.0000000   5.00   5.00
## 21 11 04 05          15.500  0.4843750   0.15   1.50
## 22 11 05 02         306.250 38.2812500   0.25 300.00
## 23 11 05 03           4.850  1.2125000   0.10   3.00
## 24 11 05 04           4.420  4.4200000   4.42   4.42
## 25 11 05 05           0.200  0.2000000   0.20   0.20

Cítricos

ica_narmand <- mutate(ica_narmand, ubigeo=paste(ica_narmand$P001,ica_narmand$P002,ica_narmand$P003))
Tica_narmand <- group_by(ica_narmand, ubigeo)
citricos <- data.frame(summarize(Tica_narmand, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
citricos
##      ubigeo SuperficieTotal     Media Minimo Maximo
## 1  11 01 01            2.60  1.300000   0.10   2.50
## 2  11 01 03            0.02  0.020000   0.02   0.02
## 3  11 01 05           68.30 34.150000   1.10  67.20
## 4  11 01 07            0.02  0.020000   0.02   0.02
## 5  11 01 08          216.73 19.702727   0.50  90.00
## 6  11 01 13            0.05  0.025000   0.02   0.03
## 7  11 02 02          597.40 49.783333   0.90 300.00
## 8  11 02 04          526.21 15.476765   0.26  93.00
## 9  11 02 05          821.22 20.029756   1.00 179.52
## 10 11 02 06           29.85  9.950000   0.10  29.00
## 11 11 02 10           89.04 22.260000   0.04  50.00
## 12 11 02 11           16.33  5.443333   3.93   7.40
## 13 11 03 01            0.50  0.500000   0.50   0.50
## 14 11 03 05           27.00 27.000000  27.00  27.00
## 15 11 04 01           65.35 13.070000   0.25  36.00
## 16 11 04 02            2.00  2.000000   2.00   2.00
## 17 11 05 02            6.50  6.500000   6.50   6.50
## 18 11 05 03           11.00  3.666667   1.00   5.00
## 19 11 05 05            4.50  4.500000   4.50   4.50
## 20 11 05 06            3.75  3.750000   3.75   3.75
## 21 11 05 07            1.00  1.000000   1.00   1.00

Pollos

ica_pollos <- mutate(ica_pollos, ubigeo=paste(ica_pollos$P001,ica_pollos$P002,ica_pollos$P003))
Tica_pollos <- group_by(ica_pollos, ubigeo)
pollos <- data.frame(summarize(Tica_pollos, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
pollos
##      ubigeo SuperficieTotal        Media Minimo Maximo
## 1  11 01 01          365048  3016.925620      1 299690
## 2  11 01 02             334    13.360000      2     50
## 3  11 01 03            1113     7.623288      1     50
## 4  11 01 04           71788   396.618785      1  70000
## 5  11 01 05             434     7.614035      1     40
## 6  11 01 06             172     8.190476      2     20
## 7  11 01 07            1501     7.357843      1    100
## 8  11 01 08          136612  1050.861538      1 104000
## 9  11 01 09             666     9.514286      1     50
## 10 11 01 10            1407    11.628099      1     80
## 11 11 01 11            2969     9.485623      1    130
## 12 11 01 12            1483    18.772152      1    400
## 13 11 01 13            1320     9.361702      1     60
## 14 11 01 14             219     7.551724      1     20
## 15 11 02 01           22132  2459.111111      1  18000
## 16 11 02 02           21072   540.307692      1  20090
## 17 11 02 04            5068    46.925926      1   2000
## 18 11 02 05            1875    11.645963      1    200
## 19 11 02 06          299932  2205.382353      0  40000
## 20 11 02 07          242650 18665.384615      6 119957
## 21 11 02 08               2     2.000000      2      2
## 22 11 02 09               4     4.000000      4      4
## 23 11 02 10           63013   388.969136      1  60000
## 24 11 02 11            7807   169.717391      2   2500
## 25 11 03 01             725    12.288136      2    100
## 26 11 03 02             249     9.576923      1     28
## 27 11 03 03             811    11.109589      2     50
## 28 11 03 05            1080     9.642857      1     50
## 29 11 04 01            1605    26.750000      1    800
## 30 11 04 02             380    11.176471      2     50
## 31 11 04 03             486     8.237288      1     30
## 32 11 04 04              50    50.000000     50     50
## 33 11 04 05             299     9.645161      1     40
## 34 11 05 01             350    11.666667      4     28
## 35 11 05 02              65    13.000000      3     30
## 36 11 05 03             753     8.755814      1     50
## 37 11 05 04            2096     9.794393      1     61
## 38 11 05 05           60264  4635.692308      4  40000
## 39 11 05 06          227621  2995.013158      1  80000
## 40 11 05 07          606370 14789.512195      2 205000
## 41 11 05 08              51     8.500000      3     17

junin

Ganado lechero

junin_vacas <- mutate(junin_vacas, ubigeo=paste(junin_vacas$P001,junin_vacas$P002,junin_vacas$P003))
Tjunin_vacas <- group_by(junin_vacas, ubigeo)
vacas <- data.frame(summarize(Tjunin_vacas, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
vacas
##       ubigeo SuperficieTotal     Media Minimo Maximo
## 1   12 01 01            1109  4.453815      1     45
## 2   12 01 04               8  1.600000      1      2
## 3   12 01 05             140  1.772152      1     11
## 4   12 01 06             243  2.150442      1     16
## 5   12 01 07             186  2.113636      1     13
## 6   12 01 08             639  3.530387      1     64
## 7   12 01 11              70  2.500000      1     10
## 8   12 01 12             162  1.653061      1      5
## 9   12 01 13              51  1.307692      1      4
## 10  12 01 14             973  2.756374      1     32
## 11  12 01 16              10  1.000000      1      1
## 12  12 01 17             251  2.510000      1     34
## 13  12 01 19             244  2.301887      1     80
## 14  12 01 20             467  3.335714      1     25
## 15  12 01 21             233  1.751880      1     12
## 16  12 01 22             102  1.924528      1      5
## 17  12 01 24            1931  2.571238      1     27
## 18  12 01 25              51  1.700000      1      6
## 19  12 01 26             134  1.696203      1     15
## 20  12 01 27             110  1.641791      1     11
## 21  12 01 28             277  3.794521      1     40
## 22  12 01 29             521  4.102362      1    100
## 23  12 01 30             155  1.890244      1     10
## 24  12 01 32              60  1.666667      1      4
## 25  12 01 33             394  1.576000      1     15
## 26  12 01 34             632  2.332103      1     23
## 27  12 01 35            3218  2.755137      1     46
## 28  12 01 36              31  1.409091      1      4
## 29  12 02 01             680  3.300971      1     20
## 30  12 02 02             100  1.265823      1      4
## 31  12 02 03            1639  2.727121      1     20
## 32  12 02 04             759  4.216667      1     35
## 33  12 02 05             225  2.122642      1     13
## 34  12 02 06            1924  2.796512      1     15
## 35  12 02 07             467  2.245192      1      8
## 36  12 02 08             155  1.597938      1      8
## 37  12 02 09             176  2.146341      1      7
## 38  12 02 10            2631  4.407035      1     38
## 39  12 02 11             444  2.611765      1     15
## 40  12 02 12             749  3.671569      1     68
## 41  12 02 13            1019  3.041791      1     30
## 42  12 02 14            4032  3.334988      1     35
## 43  12 02 15             559  2.852041      1     14
## 44  12 03 01             138  4.451613      1     17
## 45  12 03 02             347  3.212963      1     20
## 46  12 03 03             249  6.073171      1     70
## 47  12 03 04              58  2.320000      1      8
## 48  12 03 05             112  3.111111      1     25
## 49  12 03 06              89  2.870968      1     12
## 50  12 04 01             193  2.443038      1      7
## 51  12 04 02             907  1.628366      1     11
## 52  12 04 03            1496  2.700361      1     17
## 53  12 04 04             150  1.923077      1      5
## 54  12 04 05            1708 10.948718      1   1100
## 55  12 04 06             169  2.086420      1     10
## 56  12 04 07             863  3.452000      1    113
## 57  12 04 08             379  2.325153      1     20
## 58  12 04 09             121  1.890625      1     11
## 59  12 04 10             547  2.604762      1     24
## 60  12 04 11             272  1.581395      1      7
## 61  12 04 12             155  1.761364      1      7
## 62  12 04 13             319  2.511811      1     14
## 63  12 04 14             307  2.558333      1     10
## 64  12 04 15             166  1.537037      1      7
## 65  12 04 16             404  1.779736      1      7
## 66  12 04 17             180  1.636364      1      6
## 67  12 04 18             623  2.522267      1     11
## 68  12 04 19             135  3.461538      1     18
## 69  12 04 20             351  2.140244      1      8
## 70  12 04 21             301  2.090278      1     15
## 71  12 04 22             165  1.617647      1     10
## 72  12 04 23             391  1.898058      1     21
## 73  12 04 24             217  2.009259      1      7
## 74  12 04 25             160  1.632653      1      7
## 75  12 04 26            1310  3.579235      1     40
## 76  12 04 27             488  2.726257      1     25
## 77  12 04 28             961  3.585821      1    113
## 78  12 04 29             337  2.717742      1     13
## 79  12 04 30              98  2.000000      1      6
## 80  12 04 31            1930  3.265651      1     30
## 81  12 04 32             173  1.679612      1      6
## 82  12 04 33             651  2.806034      1     29
## 83  12 04 34              76  1.652174      1      4
## 84  12 05 01            3710  9.611399      1    320
## 85  12 05 02             333  5.550000      1     24
## 86  12 05 03            3190 10.598007      1    300
## 87  12 05 04            1067  3.966543      1     70
## 88  12 06 01             501  4.318966      1     60
## 89  12 06 02             166  2.441176      1     11
## 90  12 06 03             529  3.550336      1     28
## 91  12 06 05             477  2.981250      1     50
## 92  12 06 07             426  3.435484      1     30
## 93  12 06 08             544  4.771930      1     85
## 94  12 06 99            1207  3.094872      1     30
## 95  12 07 01             844  2.226913      1     45
## 96  12 07 02             385  1.558704      0      9
## 97  12 07 03             309  2.491935      1     15
## 98  12 07 04            2183  2.675245      1     45
## 99  12 07 05             128  1.753425      1      4
## 100 12 07 06             782  3.370690      1     30
## 101 12 07 07             766  8.417582      1    560
## 102 12 07 08            1023  4.506608      1    118
## 103 12 07 09             840  2.234043      1     15
## 104 12 08 01             311  5.759259      1     35
## 105 12 08 02             599  5.650943      1     30
## 106 12 08 03             130  3.714286      1      8
## 107 12 08 04            2446 33.506849      1   1982
## 108 12 08 05              30  4.285714      2     10
## 109 12 08 06             764  6.314050      1     80
## 110 12 08 07            1487 13.897196      1    400
## 111 12 08 08              45  4.090909      1     12
## 112 12 08 09             291  4.770492      1     70
## 113 12 08 10             478  6.638889      1     98
## 114 12 09 01            1268  2.051780      1     15
## 115 12 09 02             819  1.481013      1      5
## 116 12 09 03             470  1.821705      1     23
## 117 12 09 04             897  2.270886      1     30
## 118 12 09 05             427  1.648649      1     12
## 119 12 09 06             497  1.988000      1     27
## 120 12 09 07            1274  2.211806      1     15
## 121 12 09 08             271  1.489011      1      6
## 122 12 09 09            3301  4.292588      1     75

Papas

junin_papas <- mutate(junin_papas, ubigeo=paste(junin_papas$P001,junin_papas$P002,junin_papas$P003))
Tjunin_papas <- group_by(junin_papas, ubigeo)
papas <- data.frame(summarize(Tjunin_papas, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
papas
##       ubigeo SuperficieTotal        Media   Minimo   Maximo
## 1   12 01 01        208.2931   0.71825207   0.0020 150.0000
## 2   12 01 04          6.9830   0.14547917   0.0060   0.6600
## 3   12 01 05         24.4453   0.07591708   0.0015   1.0000
## 4   12 01 06        324.1202   1.78088022   0.0025 200.0000
## 5   12 01 07         21.6031   0.28055974   0.0050   4.0000
## 6   12 01 08          6.6623   0.02787573   0.0020   1.5000
## 7   12 01 11        103.3350   0.44540948   0.0010  40.0000
## 8   12 01 12        265.6747   0.61498773   0.0010  66.0000
## 9   12 01 13        193.6285   0.21538209   0.0040   3.0000
## 10  12 01 14        253.0639   0.36255573   0.0015  30.0000
## 11  12 01 16        291.5820   0.42753959   0.0010 150.0000
## 12  12 01 17         21.3496   0.07707437   0.0020   1.5000
## 13  12 01 19         47.1681   0.24695340   0.0020  20.0000
## 14  12 01 20         15.7420   0.06531950   0.0015   5.0000
## 15  12 01 21        198.6577   0.38057031   0.0004 150.0000
## 16  12 01 22         59.2002   0.11003755   0.0030   1.5000
## 17  12 01 24        831.9233   0.91722525   0.0020 300.0000
## 18  12 01 25         16.4219   0.11986788   0.0050   2.3000
## 19  12 01 26        497.3597   0.59139084   0.0010 142.0000
## 20  12 01 27         35.7400   0.34699029   0.0900   6.0000
## 21  12 01 28         28.6275   0.09940104   0.0030   1.0000
## 22  12 01 29        833.0359   6.77264959   0.0020 400.0000
## 23  12 01 30         31.7976   0.27177436   0.0080   2.0000
## 24  12 01 32        425.4069   5.06436786   0.0021 211.0000
## 25  12 01 33        171.8806   0.14077035   0.0020   7.0000
## 26  12 01 34        305.6740   0.48986218   0.0020   7.0000
## 27  12 01 35        267.0197   0.26622104   0.0040   3.4650
## 28  12 01 36         23.8137   0.08444574   0.0005   1.0000
## 29  12 02 01         45.8522   0.36977581   0.0050   3.0000
## 30  12 02 02         57.6441   0.14818535   0.0014   2.1650
## 31  12 02 03        420.4885   0.36788145   0.0010   5.0000
## 32  12 02 04        132.2759   0.20929731   0.0010  60.0000
## 33  12 02 05        222.0630   0.25177211   0.0200   7.0000
## 34  12 02 06       1440.4049   0.58648408   0.0065 693.0000
## 35  12 02 07        130.6013   0.26928103   0.0040   4.5000
## 36  12 02 08         39.5309   0.19864774   0.0025  16.5000
## 37  12 02 09        136.1557   0.33127908   0.0080   5.0000
## 38  12 02 10        102.9426   0.39291069   0.0010   5.5000
## 39  12 02 11         56.7068   0.51551636   0.0040   5.0000
## 40  12 02 12         50.9339   0.25986684   0.0020   2.0000
## 41  12 02 13        264.4044   0.39880000   0.0020   5.0000
## 42  12 02 14         78.5401   0.13024892   0.0035   3.0000
## 43  12 02 15         24.3999   0.16486419   0.0050   2.0000
## 44  12 03 01          0.2500   0.25000000   0.2500   0.2500
## 45  12 03 02          0.5000   0.50000000   0.5000   0.5000
## 46  12 03 03        197.0000 197.00000000 197.0000 197.0000
## 47  12 03 04          0.1500   0.15000000   0.1500   0.1500
## 48  12 03 05          2.5000   0.50000000   0.2500   1.0000
## 49  12 03 06          0.5300   0.17666667   0.1200   0.2500
## 50  12 04 01        393.6705   3.45325000   0.0030 320.0000
## 51  12 04 02        778.3211   0.40921193   0.0020 100.0000
## 52  12 04 03       1274.1144   1.39705526   0.0025 200.0000
## 53  12 04 04         21.8128   0.14738378   0.0020   2.0000
## 54  12 04 05        110.5168   1.64950448   0.0030 100.0000
## 55  12 04 06         50.6544   0.24709463   0.0050   3.0000
## 56  12 04 07         56.2311   0.20447673   0.0020  15.0000
## 57  12 04 08         43.5501   0.15017276   0.0040   1.3300
## 58  12 04 09         65.1120   0.34450794   0.0100  20.2100
## 59  12 04 10         65.0199   0.37802267   0.0050   2.0000
## 60  12 04 11        119.4690   0.30322081   0.0495   2.0000
## 61  12 04 12         24.4080   0.10342373   0.0016   2.0000
## 62  12 04 13        121.5773   0.31910052   0.0006   4.0000
## 63  12 04 14         22.5219   0.13649636   0.0010   1.0000
## 64  12 04 15         23.6932   0.16228219   0.0035   4.0000
## 65  12 04 16         62.3645   0.12779611   0.0025   3.6000
## 66  12 04 17         46.2221   0.14310248   0.0050   2.0000
## 67  12 04 18         71.6744   0.08837781   0.0020   3.0000
## 68  12 04 19          3.5800   0.44750000   0.1000   2.0000
## 69  12 04 20        137.4726   0.74713370   0.0030 100.0000
## 70  12 04 21         85.8026   0.17058171   0.0020   2.2098
## 71  12 04 22         53.1478   0.20760859   0.0018   4.0000
## 72  12 04 23        390.0421   0.75443346   0.0014 100.0000
## 73  12 04 24         46.7823   0.36548672   0.0020   7.0000
## 74  12 04 25         55.8980   0.25179279   0.0002   3.0000
## 75  12 04 26        161.2588   0.52527296   0.0008  15.0000
## 76  12 04 27        162.8925   0.24831174   0.0100  12.0000
## 77  12 04 28        106.9521   0.37136146   0.0100  15.0000
## 78  12 04 29        100.5931   0.63666519   0.0004  75.0000
## 79  12 04 30         53.2309   0.30592471   0.0005   6.0000
## 80  12 04 31        410.1896   0.38086314   0.0010  15.0000
## 81  12 04 32         64.7046   0.25079302   0.0009   4.0000
## 82  12 04 33         89.6999   0.22039287   0.0010  10.0000
## 83  12 04 34        282.9220   0.99620423   0.0060  10.0000
## 84  12 05 01         29.5025   0.27572430   0.0300   2.0000
## 85  12 05 02        843.2980   0.89522081   0.0400   4.5000
## 86  12 05 03         40.9375   0.47054598   0.0300   2.0000
## 87  12 05 04      19137.0850   2.98039013   0.0100  90.0000
## 88  12 06 03         86.8600   0.87737374   0.0200   5.0000
## 89  12 06 05         94.9550   0.39237603   0.0500   6.0000
## 90  12 06 99         45.9500   0.56728395   0.1000   1.5000
## 91  12 07 01        325.9052   0.28143800   0.0040  70.0000
## 92  12 07 02        235.4290   0.33680830   0.0050   6.7600
## 93  12 07 03        122.2128   0.25095031   0.0064   4.0000
## 94  12 07 04       3597.1200   1.04143602   0.0100 400.0000
## 95  12 07 05         25.3400   0.08121795   0.0200   1.0000
## 96  12 07 06        940.0128   0.94473648   0.0100  60.0000
## 97  12 07 07        113.4160   0.13172590   0.0160   2.4000
## 98  12 07 08       3525.4657   1.22369514   0.0050 200.0000
## 99  12 07 09       1598.9250   0.59728241   0.0200   9.6000
## 100 12 08 01          7.3554   0.03211965   0.0008   1.0000
## 101 12 08 02         29.8300   0.20572414   0.0100   1.6000
## 102 12 08 03          0.2350   0.01807692   0.0050   0.0500
## 103 12 08 06         18.8085   0.36879412   0.0009   9.0000
## 104 12 08 08          3.2086   0.03525934   0.0030   0.5000
## 105 12 08 10          0.0150   0.00750000   0.0050   0.0100
## 106 12 09 01        300.7812   0.26665000   0.0010   6.0000
## 107 12 09 02        260.9759   0.12510829   0.0010  33.0000
## 108 12 09 03        100.2792   0.15993493   0.0020   2.5000
## 109 12 09 04        150.7699   0.23266960   0.0010   4.0000
## 110 12 09 05        108.5378   0.13061107   0.0030   4.3000
## 111 12 09 06        626.2835   0.92372198   0.0003 500.0000
## 112 12 09 07         31.3637   0.08453827   0.0008   5.0000
## 113 12 09 08        106.6294   0.16229741   0.0085   2.0000
## 114 12 09 09       1055.5584   1.78908203   0.0020 200.0000

Cítricos

junin_narmand <- mutate(junin_narmand, ubigeo=paste(junin_narmand$P001,junin_narmand$P002,junin_narmand$P003))
Tjunin_narmand <- group_by(junin_narmand, ubigeo)
citricos <- data.frame(summarize(Tjunin_narmand, SuperficieTotal= sum(P025), 
          Media=mean(P025), 
          Minimo=min(P025), 
          Maximo=max(P025)))
citricos
##      ubigeo SuperficieTotal     Media Minimo Maximo
## 1  12 03 01         57.9400 1.3795238  0.150   6.00
## 2  12 03 02         80.1500 1.2722222  0.250   4.00
## 3  12 03 03         47.7300 1.4463636  0.220   8.00
## 4  12 03 04         14.5500 1.4550000  0.250   6.00
## 5  12 03 05        237.2073 1.2753081  0.062   9.75
## 6  12 03 06          1.2700 0.4233333  0.020   0.75
## 7  12 06 01          5.0000 1.2500000  0.500   3.00
## 8  12 06 02          9.3000 1.5500000  0.500   3.50
## 9  12 06 07         13.4500 1.9214286  0.200   4.75
## 10 12 06 99         33.5900 1.2440741  0.250   5.00

Pollos

junin_pollos <- mutate(junin_pollos, ubigeo=paste(junin_pollos$P001,junin_pollos$P002,junin_pollos$P003))
Tjunin_pollos <- group_by(junin_pollos, ubigeo)
pollos <- data.frame(summarize(Tjunin_pollos, SuperficieTotal= sum(P067_03), 
          Media=mean(P067_03), 
          Minimo=min(P067_03), 
          Maximo=max(P067_03)))
pollos
##       ubigeo SuperficieTotal      Media Minimo Maximo
## 1   12 01 01             332   7.720930      1     30
## 2   12 01 04               4   4.000000      4      4
## 3   12 01 06              62   4.769231      3     13
## 4   12 01 07             599   8.808824      1     50
## 5   12 01 08             106   3.655172      1     10
## 6   12 01 11             317   5.981132      2     12
## 7   12 01 12             222   6.000000      1     32
## 8   12 01 13             331   3.987952      1     46
## 9   12 01 14            3928  12.275000      1   1500
## 10  12 01 16             752   6.064516      1     30
## 11  12 01 17             709   5.672000      1     24
## 12  12 01 19            1300   8.125000      1     40
## 13  12 01 20             133   3.694444      1     10
## 14  12 01 21             934   7.915254      1     60
## 15  12 01 22             202   4.926829      1     20
## 16  12 01 24             847   5.841379      1     40
## 17  12 01 25             311  10.032258      1     50
## 18  12 01 26             847   5.535948      1     33
## 19  12 01 28             168   8.400000      2     20
## 20  12 01 29             351   7.312500      1     36
## 21  12 01 30             336   6.000000      1     20
## 22  12 01 32             122   3.812500      1     12
## 23  12 01 33            1964   7.328358      1     60
## 24  12 01 34            1411  13.833333      1    300
## 25  12 01 35            1056   6.812903      1     80
## 26  12 01 36             928   8.592593      1     47
## 27  12 02 01             547   7.197368      1     50
## 28  12 02 02             305   5.083333      2     18
## 29  12 02 03             257   4.355932      1     14
## 30  12 02 04             544   4.945455      1     40
## 31  12 02 05             263   4.174603      1     24
## 32  12 02 06             453   3.511628      1     30
## 33  12 02 07             476   4.068376      1     20
## 34  12 02 08             643   5.741071      1     24
## 35  12 02 09             320   7.804878      1     45
## 36  12 02 10             626   7.364706      1     48
## 37  12 02 11             406  10.410256      1     52
## 38  12 02 12             696   6.105263      1     28
## 39  12 02 13             859   6.763780      1     30
## 40  12 02 14            1555   5.654545      1     39
## 41  12 02 15             284   5.259259      1     30
## 42  12 03 01           81915 112.675378      1  75000
## 43  12 03 02            5004  11.295711      1    100
## 44  12 03 03            4739  11.730198      1    100
## 45  12 03 04            8748 138.857143      2   8000
## 46  12 03 05           28338 111.566929      1  25000
## 47  12 03 06            1139  10.449541      1     50
## 48  12 04 01             711   9.115385      1     52
## 49  12 04 02            4638   7.730000      1     36
## 50  12 04 03            2874   7.543307      1     60
## 51  12 04 04             448   8.960000      1     35
## 52  12 04 05             281   6.244444      2     25
## 53  12 04 06             474   8.172414      1     66
## 54  12 04 07             760   6.080000      1     66
## 55  12 04 08             829   8.290000      1     50
## 56  12 04 09             693  10.500000      1     40
## 57  12 04 10             826  10.589744      1     40
## 58  12 04 11             585   5.679612      2     24
## 59  12 04 12             317   5.660714      2     18
## 60  12 04 13            2876  10.893939      1     62
## 61  12 04 14             151   7.947368      2     24
## 62  12 04 15              24   4.000000      1      6
## 63  12 04 16             545   5.450000      1     25
## 64  12 04 17              81   3.681818      1      7
## 65  12 04 18             336   6.339623      1     18
## 66  12 04 19             264  11.000000      2     40
## 67  12 04 20             371   6.625000      1     25
## 68  12 04 21            2218  11.552083      1     48
## 69  12 04 22             506   6.170732      1     24
## 70  12 04 23             608   6.831461      2     30
## 71  12 04 24             936  10.064516      2     40
## 72  12 04 25             277   9.233333      3     29
## 73  12 04 26             596   6.696629      1     24
## 74  12 04 27             944   7.044776      1     50
## 75  12 04 28             661   7.184783      1     50
## 76  12 04 29             437   7.283333      1     24
## 77  12 04 30             794   8.921348      1     60
## 78  12 04 31            1622   7.440367      1     28
## 79  12 04 32              16   5.333333      4      8
## 80  12 04 33             729   6.942857      1     30
## 81  12 04 34             152   8.941176      2     22
## 82  12 05 01              32   4.000000      1      8
## 83  12 05 02              92   3.680000      1     10
## 84  12 05 03              57   3.352941      1      8
## 85  12 05 04             364   5.687500      1    100
## 86  12 06 01           56370 103.241758      1  50000
## 87  12 06 02               8   2.666667      1      4
## 88  12 06 03              39   4.875000      1     15
## 89  12 06 05            2531  10.205645      1     50
## 90  12 06 07          121122 467.652510      1 118000
## 91  12 06 08             747  11.857143      1    100
## 92  12 06 99           33145  48.671072      1  25000
## 93  12 07 01            1026   4.862559      1     30
## 94  12 07 02            1318   5.608511      0     40
## 95  12 07 03             261   4.745455      1     15
## 96  12 07 04             877   4.385000      1     30
## 97  12 07 05             307   4.514706      1     15
## 98  12 07 06              40   5.714286      1     12
## 99  12 07 07              78   3.900000      2     12
## 100 12 07 08               3   3.000000      3      3
## 101 12 07 09             782   4.227027      1     15
## 102 12 08 01              36   5.142857      2     16
## 103 12 08 02               2   2.000000      2      2
## 104 12 08 03              19   6.333333      3     10
## 105 12 08 04               3   3.000000      3      3
## 106 12 08 05              45   7.500000      3     15
## 107 12 08 06             248  22.545455      2    100
## 108 12 08 07               5   2.500000      2      3
## 109 12 08 09               2   2.000000      2      2
## 110 12 08 10              27   5.400000      1     12
## 111 12 09 01            1104   5.359223      1     25
## 112 12 09 02            1327   4.656140      1     20
## 113 12 09 03             976   6.379085      1     40
## 114 12 09 04            1294   6.919786      1     24
## 115 12 09 05            1730   6.947791      1     30
## 116 12 09 06             736   5.492537      1     33
## 117 12 09 07             275   3.481013      1     12
## 118 12 09 08            1018   8.209677      1     50
## 119 12 09 09             490   4.579439      1     30
#Lima
df_lima_vacas <-data.frame(table(Tlima_vacas$ubigeo))
colnames(df_lima_vacas) <- c("Ubigeo","Freq")
df_lima_papas <-data.frame(table(Tlima_papas$ubigeo))
colnames(df_lima_papas) <- c("Ubigeo","Freq")
df_lima_narmand <-data.frame(table(Tlima_narmand$ubigeo))
colnames(df_lima_narmand) <- c("Ubigeo","Freq")
df_lima_pollos <-data.frame(table(Tlima_pollos$ubigeo))
colnames(df_lima_pollos) <- c("Ubigeo","Freq")
a1<-merge.data.frame(df_lima_vacas,df_lima_papas,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
a2<-merge.data.frame(df_lima_narmand,df_lima_pollos,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
lima<-merge.data.frame(a1,a2,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
#cajamarca
df_cajamarca_vacas <-data.frame(table(Tcajamarca_vacas$ubigeo))
colnames(df_cajamarca_vacas) <- c("Ubigeo","Freq")
df_cajamarca_papas <-data.frame(table(Tcajamarca_papas$ubigeo))
colnames(df_cajamarca_papas) <- c("Ubigeo","Freq")
df_cajamarca_narmand <-data.frame(table(Tcajamarca_narmand$ubigeo))
colnames(df_cajamarca_narmand) <- c("Ubigeo","Freq")
df_cajamarca_pollos <-data.frame(table(Tcajamarca_pollos$ubigeo))
colnames(df_cajamarca_pollos) <- c("Ubigeo","Freq")
a1<-merge.data.frame(df_cajamarca_vacas,df_cajamarca_papas,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
a2<-merge.data.frame(df_cajamarca_narmand,df_cajamarca_pollos,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
cajamarca<-merge.data.frame(a1,a2,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
#lalibertad
df_lalibertad_vacas <-data.frame(table(Tlalibertad_vacas$ubigeo))
colnames(df_lalibertad_vacas) <- c("Ubigeo","Freq")
df_lalibertad_papas <-data.frame(table(Tlalibertad_papas$ubigeo))
colnames(df_lalibertad_papas) <- c("Ubigeo","Freq")
df_lalibertad_narmand <-data.frame(table(Tlalibertad_narmand$ubigeo))
colnames(df_lalibertad_narmand) <- c("Ubigeo","Freq")
df_lalibertad_pollos <-data.frame(table(Tlalibertad_pollos$ubigeo))
colnames(df_lalibertad_pollos) <- c("Ubigeo","Freq")
a1<-merge.data.frame(df_lalibertad_vacas,df_lalibertad_papas,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
a2<-merge.data.frame(df_lalibertad_narmand,df_lalibertad_pollos,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
lalibertad<-merge.data.frame(a1,a2,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
#ancash
df_ancash_vacas <-data.frame(table(Tancash_vacas$ubigeo))
colnames(df_ancash_vacas) <- c("Ubigeo","Freq")
df_ancash_papas <-data.frame(table(Tancash_papas$ubigeo))
colnames(df_ancash_papas) <- c("Ubigeo","Freq")
df_ancash_narmand <-data.frame(table(Tancash_narmand$ubigeo))
colnames(df_ancash_narmand) <- c("Ubigeo","Freq")
df_ancash_pollos <-data.frame(table(Tancash_pollos$ubigeo))
colnames(df_ancash_pollos) <- c("Ubigeo","Freq")
a1<-merge.data.frame(df_ancash_vacas,df_ancash_papas,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
a2<-merge.data.frame(df_ancash_narmand,df_ancash_pollos,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
ancash<-merge.data.frame(a1,a2,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
#ica
df_ica_vacas <-data.frame(table(Tica_vacas$ubigeo))
colnames(df_ica_vacas) <- c("Ubigeo","Freq")
df_ica_papas <-data.frame(table(Tica_papas$ubigeo))
colnames(df_ica_papas) <- c("Ubigeo","Freq")
df_ica_narmand <-data.frame(table(Tica_narmand$ubigeo))
colnames(df_ica_narmand) <- c("Ubigeo","Freq")
df_ica_pollos <-data.frame(table(Tica_pollos$ubigeo))
colnames(df_ica_pollos) <- c("Ubigeo","Freq")
a1<-merge.data.frame(df_ica_vacas,df_ica_papas,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
a2<-merge.data.frame(df_ica_narmand,df_ica_pollos,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
ica<-merge.data.frame(a1,a2,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
#junin
df_junin_vacas <-data.frame(table(Tjunin_vacas$ubigeo))
colnames(df_junin_vacas) <- c("Ubigeo","Freq")
df_junin_papas <-data.frame(table(Tjunin_papas$ubigeo))
colnames(df_junin_papas) <- c("Ubigeo","Freq")
df_junin_narmand <-data.frame(table(Tjunin_narmand$ubigeo))
colnames(df_junin_narmand) <- c("Ubigeo","Freq")
df_junin_pollos <-data.frame(table(Tjunin_pollos$ubigeo))
colnames(df_junin_pollos) <- c("Ubigeo","Freq")
a1<-merge.data.frame(df_junin_vacas,df_junin_papas,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
a2<-merge.data.frame(df_junin_narmand,df_junin_pollos,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)
junin<-merge.data.frame(a1,a2,by.x="Ubigeo",by.y="Ubigeo",all=TRUE)

Reportes de bases de datos de nro.de productores por distrito

#Bases de datos por distritos
library(DT)
datatable(cajamarca, colnames = c("Ubigeo","Ganado lechero","Papa","Cítricos","Pollos"), extensions = 'Buttons', options = list(pageLength = 25, dom='Bfrtip', buttons=c('copy','csv','pdf')), filter = 'top', caption = "Nro. productores por distrito, cajamarca")
library(DT)
datatable(lalibertad, colnames = c("Ubigeo","Ganado lechero","Papa","Cítricos","Pollos"), extensions = 'Buttons', options = list(pageLength = 25, dom='Bfrtip', buttons=c('copy','csv','pdf')), filter = 'top', caption = "Nro. productores por distrito, lalibertad")
library(DT)
datatable(lima, colnames = c("Ubigeo","Ganado lechero","Papa","Cítricos","Pollos"), extensions = 'Buttons', options = list(pageLength = 25, dom='Bfrtip', buttons=c('copy','csv','pdf')), filter = 'top', caption = "Nro. productores por distrito, Lima")
library(DT)
datatable(ancash, colnames = c("Ubigeo","Ganado lechero","Papa","Cítricos","Pollos"), extensions = 'Buttons', options = list(pageLength = 25, dom='Bfrtip', buttons=c('copy','csv','pdf')), filter = 'top', caption = "Nro. productores por distrito, ancash")
library(DT)
datatable(ica, colnames = c("Ubigeo","Ganado lechero","Papa","Cítricos","Pollos"), extensions = 'Buttons', options = list(pageLength = 25, dom='Bfrtip', buttons=c('copy','csv','pdf')), filter = 'top', caption = "Nro. productores por distrito, ica")
library(DT)
datatable(junin, colnames = c("Ubigeo","Ganado lechero","Papa","Cítricos","Pollos"), extensions = 'Buttons', options = list(pageLength = 25, dom='Bfrtip', buttons=c('copy','csv','pdf')), filter = 'top', caption = "Nro. productores por distrito, junin")

Determinación de la muestra

Se verifican la participación de productores por departamento.

El criterio consistirá en la participación de unidades agropecuarias. La tabla a continuación muestra los resultados.

#Reportes generales
prop.table(Nro_productores, 2)
##             Ganado lechero       Papas    Cítricos     Pollos
## Cajamarca       0.52818570 0.340554206 0.002622091 0.55015539
## La Libertad     0.13342626 0.156149308 0.002622091 0.18766731
## Lima            0.06680591 0.035344272 0.819403474 0.05442475
## Ancash          0.14972101 0.258841025 0.007538512 0.07611773
## Ica             0.01233758 0.002200962 0.042936742 0.02492384
## Junín           0.10952354 0.206910227 0.124877089 0.10671098

Con dicha participación, definimos la distribución del tamaño de muestra entre departamentos con cada producto. Considerar escenarios.

Escenario 1

Tomar una muestra de 145 ccpp por cada producto

round(prop.table(Nro_productores, 2)*145)
##             Ganado lechero Papas Cítricos Pollos
## Cajamarca               77    49        0     80
## La Libertad             19    23        0     27
## Lima                    10     5      119      8
## Ancash                  22    38        1     11
## Ica                      2     0        6      4
## Junín                   16    30       18     15

Escenario 2

Tomar la muestra de 145 ccpp y dividirlo en partes iguales para cada producto

round(prop.table(Nro_productores, 2)*(145/4))
##             Ganado lechero Papas Cítricos Pollos
## Cajamarca               19    12        0     20
## La Libertad              5     6        0      7
## Lima                     2     1       30      2
## Ancash                   5     9        0      3
## Ica                      0     0        2      1
## Junín                    4     8        5      4

Escenario 3

Tomar la muestra de 145 ccpp y dividirla en partes proporcionales para cada producto

colSums(Nro_productores)
## Ganado lechero          Papas       Cítricos         Pollos 
##         231731         302595           3051         129996
colSums(Nro_productores)/sum(colSums(Nro_productores))*100
## Ganado lechero          Papas       Cítricos         Pollos 
##     34.7228611     45.3412110      0.4571656     19.4787623

Con ello, la muestra final para cada producto en el escenario 3 sería:

part <- round(145*colSums(Nro_productores)/sum(colSums(Nro_productores)))
part
## Ganado lechero          Papas       Cítricos         Pollos 
##             50             66              1             28
a <- prop.table(Nro_productores,2)
print("Muestra Ganado lechero")
## [1] "Muestra Ganado lechero"
cbind(round(a[,1]*part[1]))
##             [,1]
## Cajamarca     26
## La Libertad    7
## Lima           3
## Ancash         7
## Ica            1
## Junín          5
print("Muestra Papas")
## [1] "Muestra Papas"
cbind(round(a[,2]*part[2]))
##             [,1]
## Cajamarca     22
## La Libertad   10
## Lima           2
## Ancash        17
## Ica            0
## Junín         14
print("Muestra Cítricos")
## [1] "Muestra Cítricos"
cbind(round(a[,3]*part[3]))
##             [,1]
## Cajamarca      0
## La Libertad    0
## Lima           1
## Ancash         0
## Ica            0
## Junín          0
print("Muestra Pollos")
## [1] "Muestra Pollos"
cbind(round(a[,4]*part[4]))
##             [,1]
## Cajamarca     15
## La Libertad    5
## Lima           2
## Ancash         2
## Ica            1
## Junín          3