The statistical model:
\(y_t = \beta_0 + \beta_1 * (Elevation_s)_t + \beta_2 * Slope_t + (b_s)_t + \epsilon_t\)
Where:
Let’s define the parameters:
nstand = 5
nplot = 4
b0 = -1
b1 = .005
b2 = .1
sds = 2
sd = 1
Simulate other variables:
set.seed(16)
stand = rep(LETTERS[1:nstand], each = nplot)
standeff = rep( rnorm(nstand, 0, sds), each = nplot)
ploteff = rnorm(nstand*nplot, 0, sd)
Simulate elevation and slope:
elevation = rep( runif(nstand, 1000, 1500), each = nplot)
slope = runif(nstand*nplot, 2, 75)
Simulate response variable:
resp2 = b0 + b1*elevation + b2*slope + standeff + ploteff
Your tasks (complete each task in its’ own code chunk, make sure to use echo=TRUE so I can see your code):
library(lme4)
## Loading required package: Matrix
library(Matrix)
fit1 <- lmer(resp2 ~ 1 + elevation + slope + (1|stand))
fit1
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
## REML criterion at convergence: 81.9874
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 1.099
## Residual 1.165
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## -21.31463 0.02060 0.09511
Compared to initial parameters: b0 = -1, b1 = .005, b2 = .1 and extimated parameters we have are: b0 = -21.314628, b1 = 0.020600, b2 = 0.095105, b2 is similar but b0 and b1 are different.
sim_fun <- function(nstand = 5, nplot = 4, b0 = -1, b1 = 0.005, b2 = 0.1, sds = 2, sd = 1) {
stand <- rep(LETTERS[1:nstand], each = nplot)
standeff <- rep(rnorm(nstand, 0, sds), each = nplot)
ploteff <- rnorm(nstand * nplot, 0, sd)
elevation <- rep(runif(nstand, 1000, 1500), each = nplot)
slope <- runif(nstand * nplot, 2, 75)
resp2 <- b0 + b1 * elevation + b2 * slope + standeff + ploteff
dat <- data.frame(resp2, elevation, slope, stand)
lmer(resp2 ~ 1 + elevation + slope + (1|stand), data = dat)
}
sim_fun()
## Linear mixed model fit by REML ['lmerMod']
## Formula: resp2 ~ 1 + elevation + slope + (1 | stand)
## Data: dat
## REML criterion at convergence: 80.9781
## Random effects:
## Groups Name Std.Dev.
## stand (Intercept) 2.3573
## Residual 0.9754
## Number of obs: 20, groups: stand, 5
## Fixed Effects:
## (Intercept) elevation slope
## 10.584601 -0.005464 0.086839
library(purrr)
sim_model <- rerun(1000, sim_fun())
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00350336
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.0045514
## (tol = 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00363544
## (tol = 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00439561
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00239513
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00219495
## (tol = 0.002, component 1)
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00322495
## (tol = 0.002, component 1)
## boundary (singular) fit: see ?isSingular
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(broom)
variances <- sim_model %>% map_dfr(tidy, effects = "ran_pars", scales = "vcov")
variances[1:6,]
library(ggplot2)
## Registered S3 methods overwritten by 'ggplot2':
## method from
## [.quosures rlang
## c.quosures rlang
## print.quosures rlang
stand_sims <- c(50, 100, 150) %>%
set_names() %>%
map(~replicate(1000, sim_fun(nstand = .x)))
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.0021739
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.0129268
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00210547
## (tol = 0.002, component 1)
## Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl =
## control$checkConv, : Model failed to converge with max|grad| = 0.00257168
## (tol = 0.002, component 1)
vars <- stand_sims %>%
modify_depth(2, ~tidy(.x, effects = "ran_pars", scales = "vcov")) %>%
map_dfr(bind_rows, .id = "id") %>%
filter(group == "stand")
library(labeling)
ggplot(vars, aes(x = estimate)) +
geom_density(fill = "pink", alpha = .25) +
facet_wrap(~id) +
geom_vline(xintercept = 4)
library(furrr)
## Loading required package: future
coeffest <- sim_model %>%
future_map(tidy, effects = "fixed") %>%
bind_rows()
coeffest %>%
dplyr::filter(term %in% c("elevation", "slope")) %>%
group_by(term) %>%
mutate(x = 1 : 1000) %>%
ungroup() %>%
mutate(real_value = ifelse(term == "elevation", 0.005, 0.1)) %>%
ggplot(aes(x = x, y = estimate)) +
geom_line() +
facet_wrap(~term) +
geom_hline(aes(yintercept = real_value, color = term), linetype = 3, size = 2) +
labs(x="1000-value estimation", y="mean value")
After running simulation model with large amount of times, the mean value of elevation and slop are very close to the initial parameters.