Anna Trier
Gapminder\TotalPopulation.csv data …I spent my two hours trying to understand the material and concept of narrow and wide. I am still very confused and this is as far as I got
Totpop = fetchData("Gapminder/TotalPopulation.csv")
## Retrieving from
## http://www.mosaic-web.org/go/datasets/Gapminder/TotalPopulation.csv
nrow(Totpop)
## [1] 260
How many countries altogether?
There are 260 rows so thus 260 countries
How many years altogether?
names(Totpop)
## [1] "Total.population" "X1700" "X1730"
## [4] "X1750" "X1785" "X1786"
## [7] "X1787" "X1788" "X1789"
## [10] "X1790" "X1791" "X1792"
## [13] "X1793" "X1794" "X1795"
## [16] "X1796" "X1797" "X1798"
## [19] "X1799" "X1800" "X1801"
## [22] "X1802" "X1803" "X1804"
## [25] "X1805" "X1806" "X1807"
## [28] "X1808" "X1809" "X1810"
## [31] "X1811" "X1812" "X1813"
## [34] "X1814" "X1815" "X1816"
## [37] "X1817" "X1818" "X1819"
## [40] "X1820" "X1821" "X1822"
## [43] "X1823" "X1824" "X1825"
## [46] "X1826" "X1827" "X1828"
## [49] "X1829" "X1830" "X1831"
## [52] "X1832" "X1833" "X1834"
## [55] "X1835" "X1836" "X1837"
## [58] "X1838" "X1839" "X1840"
## [61] "X1841" "X1842" "X1843"
## [64] "X1844" "X1845" "X1846"
## [67] "X1847" "X1848" "X1849"
## [70] "X1850" "X1851" "X1852"
## [73] "X1853" "X1854" "X1855"
## [76] "X1856" "X1857" "X1858"
## [79] "X1859" "X1860" "X1861"
## [82] "X1862" "X1863" "X1864"
## [85] "X1865" "X1866" "X1867"
## [88] "X1868" "X1869" "X1870"
## [91] "X1871" "X1872" "X1873"
## [94] "X1874" "X1875" "X1876"
## [97] "X1877" "X1878" "X1879"
## [100] "X1880" "X1881" "X1882"
## [103] "X1883" "X1884" "X1885"
## [106] "X1886" "X1887" "X1888"
## [109] "X1889" "X1890" "X1891"
## [112] "X1892" "X1893" "X1894"
## [115] "X1895" "X1896" "X1897"
## [118] "X1898" "X1899" "X1900"
## [121] "X1901" "X1902" "X1903"
## [124] "X1904" "X1905" "X1906"
## [127] "X1907" "X1908" "X1909"
## [130] "X1910" "X1911" "X1912"
## [133] "X1913" "X1914" "X1915"
## [136] "X1916" "X1917" "X1918"
## [139] "X1919" "X1920" "X1921"
## [142] "X1922" "X1923" "X1924"
## [145] "X1925" "X1926" "X1927"
## [148] "X1928" "X1929" "X1930"
## [151] "X1931" "X1932" "X1933"
## [154] "X1934" "X1935" "X1936"
## [157] "X1937" "X1938" "X1939"
## [160] "X1940" "X1941" "X1942"
## [163] "X1943" "X1944" "X1945"
## [166] "X1946" "X1947" "X1948"
## [169] "X1949" "X1950" "X1951"
## [172] "X1952" "X1953" "X1954"
## [175] "X1955" "X1956" "X1957"
## [178] "X1958" "X1959" "X1960"
## [181] "X1961" "X1962" "X1963"
## [184] "X1964" "X1965" "X1966"
## [187] "X1967" "X1968" "X1969"
## [190] "X1970" "X1971" "X1972"
## [193] "X1973" "X1974" "X1975"
## [196] "X1976" "X1977" "X1978"
## [199] "X1979" "X1980" "X1981"
## [202] "X1982" "X1983" "X1984"
## [205] "X1985" "X1986" "X1987"
## [208] "X1988" "X1989" "X1990"
## [211] "X1991" "X1992" "X1993"
## [214] "X1994" "X1995" "X1996"
## [217] "X1997" "X1998" "X1999"
## [220] "X2000" "X2001" "X2002"
## [223] "X2003" "X2004" "X2005"
## [226] "X2006" "X2007" "X2008"
## [229] "X2009" "X2010" "X2011"
## [232] "X2012" "X2013"
There are 232 years
Gapminder\LandArea.csv data …groupBy() with an operation of min(LandArea) != max(LandArea)Use subset() and join() to create a new data frame that has the country's population in 1990 as one variable and the population in 2010 as another variable.
transform() and cut() to create a prewar variable indicating whether data are from before World War II. Use levels: “pre” and “post”transform() and cut() to create a decade variable coded as “1980s”, “1990s”, “2000s” subset(), transform() and ntiles() to divide up countries into 5 categories according to their GDP in 2010.
groupBy() to find the range of GDP in each of the categories. Hint: max() and min()groupBy(), transform() and ntiles() to divide up countries into 5 categories according to how much their GDP has grown from 1990 to 2010.groupBy(), transform() and ntiles() to divide up countries into 5 categories according to how much their population has grown from 1990 to 2010.cut() to divide countries up into those that have shrank in population from 1990 to 2010, those that grew by less than 1%, less than 5%, less than 10%, and so on.In each R chunk, include the commands needed to pre-process the data, e.g., groupBy, join, and transform. Then, use mWorldMap() to generate a map command interactively. Then add the map command to your R chunk. Don't use mWorldMap() in this document.
min(Year)