Grading the professor

Many college courses conclude by giving students the opportunity to evaluate the course and the instructor anonymously. However, the use of these student evaluations as an indicator of course quality and teaching effectiveness is often criticized because these measures may reflect the influence of non-teaching related characteristics, such as the physical appearance of the instructor. The article titled, “Beauty in the classroom: instructors’ pulchritude and putative pedagogical productivity” (Hamermesh and Parker, 2005) found that instructors who are viewed to be better looking receive higher instructional ratings. (Daniel S. Hamermesh, Amy Parker, Beauty in the classroom: instructors pulchritude and putative pedagogical productivity, Economics of Education Review, Volume 24, Issue 4, August 2005, Pages 369-376, ISSN 0272-7757, 10.1016/j.econedurev.2004.07.013. http://www.sciencedirect.com/science/article/pii/S0272775704001165.)

In this lab we will analyze the data from this study in order to learn what goes into a positive professor evaluation.

The data

The data were gathered from end of semester student evaluations for a large sample of professors from the University of Texas at Austin. In addition, six students rated the professors’ physical appearance. (This is aslightly modified version of the original data set that was released as part of the replication data for Data Analysis Using Regression and Multilevel/Hierarchical Models (Gelman and Hill, 2007).) The result is a data frame where each row contains a different course and columns represent variables about the courses and professors.

variable description
score average professor evaluation score: (1) very unsatisfactory - (5) excellent.
rank rank of professor: teaching, tenure track, tenured.
ethnicity ethnicity of professor: not minority, minority.
gender gender of professor: female, male.
language language of school where professor received education: english or non-english.
age age of professor.
cls_perc_eval percent of students in class who completed evaluation.
cls_did_eval number of students in class who completed evaluation.
cls_students total number of students in class.
cls_level class level: lower, upper.
cls_profs number of professors teaching sections in course in sample: single, multiple.
cls_credits number of credits of class: one credit (lab, PE, etc.), multi credit.
bty_f1lower beauty rating of professor from lower level female: (1) lowest - (10) highest.
bty_f1upper beauty rating of professor from upper level female: (1) lowest - (10) highest.
bty_f2upper beauty rating of professor from second upper level female: (1) lowest - (10) highest.
bty_m1lower beauty rating of professor from lower level male: (1) lowest - (10) highest.
bty_m1upper beauty rating of professor from upper level male: (1) lowest - (10) highest.
bty_m2upper beauty rating of professor from second upper level male: (1) lowest - (10) highest.
bty_avg average beauty rating of professor.
pic_outfit outfit of professor in picture: not formal, formal.
pic_color color of professor’s picture: color, black & white.

Exploring the data

  1. Is this an observational study or an experiment? The original research question posed in the paper is whether beauty leads directly to the differences in course evaluations. Given the study design, is it possible to answer this question as it is phrased? If not, rephrase the question.

(Alexander Ng)
This is an observational study. The study design does not allow this question to be answered because it seeks to establish a causal relationship between beauty and course evaluations. I rephrase the question as: Is beauty associated with differences in course evaluations? More narrowly, is greater beauty associated with higher course evaluations on average?

  1. Describe the distribution of score. Is the distribution skewed? What does that tell you about how students rate courses? Is this what you expected to see? Why, or why not?

(Alexander Ng)
The distribution of course evaluations is left skewed. Median scores are high (4.3) and greater than mean score of 4.175. Interesting, no course scored the lowest possible score of 1.0 while some scored the highest possible of 5.0. Students generally liked their professors more than I expected. I expected more negative scores and a lower median score.

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.300   3.800   4.300   4.175   4.600   5.000

  1. Excluding score, select two other variables and describe their relationship using an appropriate visualization (scatterplot, side-by-side boxplots, or mosaic plot).

(Alexander Ng)

If we compare average beauty score to class percentage completing the evaluation, we see a statistically significent trend. Higher levels of completing the survey is associated with higher beauty rating. The p-value is small indicating statistic significance of the regression. The adjusted R-squared is low indicating a measurable tendency but significant variation around the trend.

## 
## Call:
## lm(formula = evals$bty_avg ~ evals$cls_perc_eval, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.7153 -1.2138 -0.1994  1.0002  3.9876 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         3.381014   0.320063   10.56  < 2e-16 ***
## evals$cls_perc_eval 0.013931   0.004196    3.32  0.00097 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.511 on 461 degrees of freedom
## Multiple R-squared:  0.02336,    Adjusted R-squared:  0.02124 
## F-statistic: 11.02 on 1 and 461 DF,  p-value: 0.0009704

Simple linear regression

The fundamental phenomenon suggested by the study is that better looking teachers are evaluated more favorably. Let’s create a scatterplot to see if this appears to be the case:

Before we draw conclusions about the trend, compare the number of observations in the data frame with the approximate number of points on the scatterplot. Is anything awry?

  1. Replot the scatterplot, but this time use the function jitter() on the \(y\)- or the \(x\)-coordinate. (Use ?jitter to learn more.) What was misleading about the initial scatterplot?

(Alexander Ng)

We used a jitter function to both the \(x\) and \(y\) coordinate. This clarifies that many observations are obscured because they coincide with coordinates of other observations.

  1. Let’s see if the apparent trend in the plot is something more than natural variation. Fit a linear model called m_bty to predict average professor score by average beauty rating and add the line to your plot using abline(m_bty). Write out the equation for the linear model and interpret the slope. Is average beauty score a statistically significant predictor? Does it appear to be a practically significant predictor?

(Alexander Ng)

## 
## Call:
## lm(formula = score ~ bty_avg, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.9246 -0.3690  0.1420  0.3977  0.9309 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.88034    0.07614   50.96  < 2e-16 ***
## bty_avg      0.06664    0.01629    4.09 5.08e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5348 on 461 degrees of freedom
## Multiple R-squared:  0.03502,    Adjusted R-squared:  0.03293 
## F-statistic: 16.73 on 1 and 461 DF,  p-value: 5.083e-05

The equation of the regression is \[score = 0.06664 bty_avg + 3.88034\] We inteprete the slope to mean that for a 1 unit increase in the beauty average for a professor, the class score increases by 0.06664 units. While the p-value of the coefficient of bty_avg is small (p < 0.001 ) and thus the predictor is statistically significant at the 99.9% level, the magnitude of the slope is small. Due to the high level of variation, reflected in the low adjusted R-squared, the predictor is not practically significant.

  1. Use residual plots to evaluate whether the conditions of least squares regression are reasonable. Provide plots and comments for each one (see the Simple Regression Lab for a reminder of how to make these).

(Alexander Ng)

Based on the 5 diagnostic plots above: we see linearity is satisfied from the residual-vs-fitted plot. Normality of residuals (in the histogram) is not satisfied because the histogram of residuals is left skewed. Constant variability is satisifed in the scale-location plot. Independence of observations seems reasonable.

Multiple linear regression

The data set contains several variables on the beauty score of the professor: individual ratings from each of the six students who were asked to score the physical appearance of the professors and the average of these six scores. Let’s take a look at the relationship between one of these scores and the average beauty score.

## [1] 0.8439112

As expected the relationship is quite strong - after all, the average score is calculated using the individual scores. We can actually take a look at the relationships between all beauty variables (columns 13 through 19) using the following command:

These variables are collinear (correlated), and adding more than one of these variables to the model would not add much value to the model. In this application and with these highly-correlated predictors, it is reasonable to use the average beauty score as the single representative of these variables.

In order to see if beauty is still a significant predictor of professor score after we’ve accounted for the gender of the professor, we can add the gender term into the model.

## 
## Call:
## lm(formula = score ~ bty_avg + gender, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.3625  0.1055  0.4213  0.9314 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  3.74734    0.08466  44.266  < 2e-16 ***
## bty_avg      0.07416    0.01625   4.563 6.48e-06 ***
## gendermale   0.17239    0.05022   3.433 0.000652 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5287 on 460 degrees of freedom
## Multiple R-squared:  0.05912,    Adjusted R-squared:  0.05503 
## F-statistic: 14.45 on 2 and 460 DF,  p-value: 8.177e-07
  1. P-values and parameter estimates should only be trusted if the conditions for the regression are reasonable. Verify that the conditions for this model are reasonable using diagnostic plots.

(Alexander Ng)

The conditions for the regression model are still satisfied after reviewing the above diagnostic plots. Linearity of fit is evident in the evenness of the residual vs. fitted plot. Normality of residuals is not satisfied but is rather left skewed. Whether the non-normality is too extreme is a matter of debate. Constant variation is reasonable according to the scale-location plot. Independence of observations appears to be reasonable.

  1. Is bty_avg still a significant predictor of score? Has the addition of gender to the model changed the parameter estimate for bty_avg?

(Alexander Ng)
bty_avg is still a significant predictor of the m_bty_gen model. Its p-value is still less than 0.001 even with the addition of gender as a predictor. The addition of gender to the model changed the parameter for bty_avg from 0.06664 to 0.07416. This slight increase in the coefficient is offset by a decrease in the intercept.

Note that the estimate for gender is now called gendermale. You’ll see this name change whenever you introduce a categorical variable. The reason is that R recodes gender from having the values of female and male to being an indicator variable called gendermale that takes a value of \(0\) for females and a value of \(1\) for males. (Such variables are often referred to as “dummy” variables.)

As a result, for females, the parameter estimate is multiplied by zero, leaving the intercept and slope form familiar from simple regression.

\[ \begin{aligned} \widehat{score} &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg + \hat{\beta}_2 \times (0) \\ &= \hat{\beta}_0 + \hat{\beta}_1 \times bty\_avg\end{aligned} \]

We can plot this line and the line corresponding to males with the following custom function.

  1. What is the equation of the line corresponding to males? (Hint: For males, the parameter estimate is multiplied by 1.) For two professors who received the same beauty rating, which gender tends to have the higher course evaluation score?

(Alexander Ng)

The equation of the line corresponding to males from the model m_bty_gen is:

\[ \begin{aligned} score &= 3.74734 + 0.07416 \times bty\_avg + 0.17239 \times (1) \\ &= 3.91973 + 0.07416 \times bty\_avg\end{aligned} \]

The decision to call the indicator variable gendermale instead ofgenderfemale has no deeper meaning. R simply codes the category that comes first alphabetically as a \(0\). (You can change the reference level of a categorical variable, which is the level that is coded as a 0, using therelevel function. Use ?relevel to learn more.)

  1. Create a new model called m_bty_rank with gender removed and rank added in. How does R appear to handle categorical variables that have more than two levels? Note that the rank variable has three levels: teaching, tenure track, tenured.

(Alexander Ng)

When a categorical variable has K observed values, R creates K-1 dummy variables which can be individually binary variables attaining the value of 0 or 1. When j-th dummy variable is 1, this means the j-th category is the observed value for the categorical variables. Either all the K-1 dummy variables attain the value of 0 or at most one variable attains the value of 1.

## 
## Call:
## lm(formula = score ~ bty_avg + rank, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.8713 -0.3642  0.1489  0.4103  0.9525 
## 
## Coefficients:
##                  Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       3.98155    0.09078  43.860  < 2e-16 ***
## bty_avg           0.06783    0.01655   4.098 4.92e-05 ***
## ranktenure track -0.16070    0.07395  -2.173   0.0303 *  
## ranktenured      -0.12623    0.06266  -2.014   0.0445 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5328 on 459 degrees of freedom
## Multiple R-squared:  0.04652,    Adjusted R-squared:  0.04029 
## F-statistic: 7.465 on 3 and 459 DF,  p-value: 6.88e-05

The interpretation of the coefficients in multiple regression is slightly different from that of simple regression. The estimate for bty_avg reflects how much higher a group of professors is expected to score if they have a beauty rating that is one point higher while holding all other variables constant. In this case, that translates into considering only professors of the same rank with bty_avg scores that are one point apart.

The search for the best model

We will start with a full model that predicts professor score based on rank, ethnicity, gender, language of the university where they got their degree, age, proportion of students that filled out evaluations, class size, course level, number of professors, number of credits, average beauty rating, outfit, and picture color.

  1. Which variable would you expect to have the highest p-value in this model? Why? Hint: Think about which variable would you expect to not have any association with the professor score.

Let’s run the model…

## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14

The variable with the largest p-value is cls_prof which is a variable representing the number of professors teaching sections of the class. This predictor has a p-value of 77.8%. The number of other professors should have no bearing on the assessment of the current professor.

  1. Check your suspicions from the previous exercise. Include the model output in your response.

My suspicions are confirmed by the summary statistics of the full model below.

## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_profs + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.77397 -0.32432  0.09067  0.35183  0.95036 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0952141  0.2905277  14.096  < 2e-16 ***
## ranktenure track      -0.1475932  0.0820671  -1.798  0.07278 .  
## ranktenured           -0.0973378  0.0663296  -1.467  0.14295    
## ethnicitynot minority  0.1234929  0.0786273   1.571  0.11698    
## gendermale             0.2109481  0.0518230   4.071 5.54e-05 ***
## languagenon-english   -0.2298112  0.1113754  -2.063  0.03965 *  
## age                   -0.0090072  0.0031359  -2.872  0.00427 ** 
## cls_perc_eval          0.0053272  0.0015393   3.461  0.00059 ***
## cls_students           0.0004546  0.0003774   1.205  0.22896    
## cls_levelupper         0.0605140  0.0575617   1.051  0.29369    
## cls_profssingle       -0.0146619  0.0519885  -0.282  0.77806    
## cls_creditsone credit  0.5020432  0.1159388   4.330 1.84e-05 ***
## bty_avg                0.0400333  0.0175064   2.287  0.02267 *  
## pic_outfitnot formal  -0.1126817  0.0738800  -1.525  0.12792    
## pic_colorcolor        -0.2172630  0.0715021  -3.039  0.00252 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.498 on 448 degrees of freedom
## Multiple R-squared:  0.1871, Adjusted R-squared:  0.1617 
## F-statistic: 7.366 on 14 and 448 DF,  p-value: 6.552e-14
  1. Interpret the coefficient associated with the ethnicity variable.

(Alexander Ng)
The ethnicity variable coefficient is interpreted to mean that: assuming all other variables being constant, if the professor is not minority, then score increases by 0.123 points on average.

  1. Drop the variable with the highest p-value and re-fit the model. Did the coefficients and significance of the other explanatory variables change? (One of the things that makes multiple regression interesting is that coefficient estimates depend on the other variables that are included in the model.) If not, what does this say about whether or not the dropped variable was collinear with the other explanatory variables?

After the removal of the cls_profs variable, the significance, sign and magnitude of the coefficients of the remaining predictors did not materially change. Moreover, the adjusted R-squared did not materially increase: 16.17% to 16.34% by the removal of cls_prof. We conclude that the dropped variable was collinear with existing ones.

## 
## Call:
## lm(formula = score ~ rank + ethnicity + gender + language + age + 
##     cls_perc_eval + cls_students + cls_level + cls_credits + 
##     bty_avg + pic_outfit + pic_color, data = evals)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -1.7836 -0.3257  0.0859  0.3513  0.9551 
## 
## Coefficients:
##                         Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            4.0872523  0.2888562  14.150  < 2e-16 ***
## ranktenure track      -0.1476746  0.0819824  -1.801 0.072327 .  
## ranktenured           -0.0973829  0.0662614  -1.470 0.142349    
## ethnicitynot minority  0.1274458  0.0772887   1.649 0.099856 .  
## gendermale             0.2101231  0.0516873   4.065 5.66e-05 ***
## languagenon-english   -0.2282894  0.1111305  -2.054 0.040530 *  
## age                   -0.0089992  0.0031326  -2.873 0.004262 ** 
## cls_perc_eval          0.0052888  0.0015317   3.453 0.000607 ***
## cls_students           0.0004687  0.0003737   1.254 0.210384    
## cls_levelupper         0.0606374  0.0575010   1.055 0.292200    
## cls_creditsone credit  0.5061196  0.1149163   4.404 1.33e-05 ***
## bty_avg                0.0398629  0.0174780   2.281 0.023032 *  
## pic_outfitnot formal  -0.1083227  0.0721711  -1.501 0.134080    
## pic_colorcolor        -0.2190527  0.0711469  -3.079 0.002205 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4974 on 449 degrees of freedom
## Multiple R-squared:  0.187,  Adjusted R-squared:  0.1634 
## F-statistic: 7.943 on 13 and 449 DF,  p-value: 2.336e-14
  1. Using backward-selection and p-value as the selection criterion, determine the best model. You do not need to show all steps in your answer, just the output for the final model. Also, write out the linear model for predicting score based on the final model you settle on.

(Alexander Ng)

In the following model obtained from backward selection, all variables have a p-value smaller than 0.05 and are significant at the 95% confidence level. It contains 8 predictors.

## 
## Call:
## lm(formula = score ~ ethnicity + gender + language + age + cls_perc_eval + 
##     cls_credits + bty_avg + pic_color, data = evals)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.85320 -0.32394  0.09984  0.37930  0.93610 
## 
## Coefficients:
##                        Estimate Std. Error t value Pr(>|t|)    
## (Intercept)            3.771922   0.232053  16.255  < 2e-16 ***
## ethnicitynot minority  0.167872   0.075275   2.230  0.02623 *  
## gendermale             0.207112   0.050135   4.131 4.30e-05 ***
## languagenon-english   -0.206178   0.103639  -1.989  0.04726 *  
## age                   -0.006046   0.002612  -2.315  0.02108 *  
## cls_perc_eval          0.004656   0.001435   3.244  0.00127 ** 
## cls_creditsone credit  0.505306   0.104119   4.853 1.67e-06 ***
## bty_avg                0.051069   0.016934   3.016  0.00271 ** 
## pic_colorcolor        -0.190579   0.067351  -2.830  0.00487 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.4992 on 454 degrees of freedom
## Multiple R-squared:  0.1722, Adjusted R-squared:  0.1576 
## F-statistic:  11.8 on 8 and 454 DF,  p-value: 2.58e-15

The final model has the form:

\[ \begin{aligned} score&=& 3.771922 + 0.167872 \times ethnicity + 0.207112 \times gendermale \\ &-&0.206178 \times non\_english -0.006046 \times age \\ &+ & 0.004656 \times cls\_perc\_eval + 0.505306 \times one\_credit \\ &+ & 0.051069 \times bty\_avg - 0.190579 \times pic\_color \end{aligned} \]

  1. Verify that the conditions for this model are reasonable using diagnostic plots.

(Alexander Ng)
Like the earlier diagnostic plots, we see that: linearity is satisfied by the fitted values in the residual-vs-fitted plot normality of the residuals is not satisfied due to the left skew in the residuals constancy of variation is satisfied in the scale-location plot independence of the observations is assumed

Overall, the conditions for the model are somewhat satisfied except possibly for normality of residuals.

17. The original paper describes how these data were gathered by taking a sample of professors from the University of Texas at Austin and including all courses that they have taught. Considering that each row represents a course, could this new information have an impact on any of the conditions of linear regression?

(Alexander Ng)
This information could have an impact of the independence of the observations. The reason is that if one professor taught 3 courses, the 3 rows of data set pertain to him. They would not really be independent observations but likely to produce the same outcomes. However, to argument in the other direction, the correlation between observations is limited because no professor can teach more than 4 courses in a semester (due to physical capacity limits in practice). Thus, some observations are dependent but most observations are relatively independent.

  1. Based on your final model, describe the characteristics of a professor and course at University of Texas at Austin that would be associated with a high evaluation score.

(Alexander Ng) A high score is associated with a professor at University of Texas at Austin with the following characteristics:

  1. Would you be comfortable generalizing your conclusions to apply to professors generally (at any university)? Why or why not?

(Alexander Ng)
I am not comfortable generalizing the results because they don’t seem to make a lot of sense.

Some of the variables such as the use of a black & white vs. color photo seem spurious. The results are based on conclusions at one university.

A simpler reason to question the application of the results is to argue that the sample is different from the population: University of Texas at Austin is different from other universities.

Moreover, the strength of the conclusions are relatively weak. The R-squared is low and while the model is statistically significant the strength of the associations is not.

The conclusions are also politically unpalatable. Identifying beauty as a significant variable to course evaluations suggest that students are shallow. Moreover, it suggests that professors’ careers would benefit from being more attractive – which is unfair. These implications are contrary to the values of academia.