The following is a replica of the findings of Green and Winik, 2010.
library(haven)
## Warning: package 'haven' was built under R version 3.5.3
library(foreign)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.3
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
data<-read.dta("C:/Users/PCMcC/Documents/Causal Inference/Homeworks/Assignment 4/GreenWinik_Criminology_2010_LimitedAnonymizedDataset.2.dta")
names(data)
## [1] "pickupdate" "birthyear" "gender"
## [4] "race" "disposition" "dispdate"
## [7] "sentdate" "felonycharges" "highestcharge"
## [10] "nondrug" "drug1" "drug2"
## [13] "incarc" "suspend" "probat"
## [16] "priorarr" "priorfelarr" "priordrugarr"
## [19] "priorfeldrugarr" "priorcon" "priorfelcon"
## [22] "priordrugcon" "priorfeldrugcon" "laterarr"
## [25] "laterarrdate" "laterfelarr" "laterfelarrdate"
## [28] "laterdrugarr" "laterdrugarrdate" "laterfeldrugarr"
## [31] "laterfeldrugarrdate" "latercon" "latercondate"
## [34] "laterfelcon" "laterfelcondate" "laterdrugcon"
## [37] "laterdrugcondate" "laterfeldrugcon" "laterfeldrugcondate"
## [40] "probrevoke" "probrevokedate" "codef"
## [43] "clusterid" "ccn" "datacoder"
## [46] "cutoffdate1" "cutoffdate2" "cutoffdate3"
## [49] "toserve" "fullreleasetorecid" "female"
## [52] "nonblack" "pickupdatecode" "age"
## [55] "agesq" "incjudge" "calendar1"
## [58] "calendar2" "calendar3" "calendar4"
## [61] "calendar5" "calendar6" "calendar7"
## [64] "calendar8" "calendar9" "calendar"
## [67] "incarcerate" "marijuana" "cocaine"
## [70] "crack" "heroin" "pcp"
## [73] "otherdrug" "pwid" "dist"
## [76] "conviction" "probatnonzero" "probsuspend"
#Filtering Data
data2<-filter(data, incjudge==1)
data2<-as.data.frame(data2)
#Probation Level
data2$genproblevel<-ifelse (data2$probat==0,1,0)
data2$probatlevel1<-ifelse (data2$probat==1:12,1,0)
## Warning in data2$probat == 1:12: longer object length is not a multiple of
## shorter object length
data2$probatlevel2<-ifelse (data2$probat==13:24,1,0)
## Warning in data2$probat == 13:24: longer object length is not a multiple of
## shorter object length
data2$probatlevel3<-ifelse (data2$probat==25:36,1,0)
## Warning in data2$probat == 25:36: longer object length is not a multiple of
## shorter object length
data2$probatlevel4<-ifelse (data2$probat>=37, 1,0)
#Prison Level
data2$genprisonlevel<-ifelse (data2$toserve==0,1,0)
data2$prisonlevel1<-ifelse (data2$toserve==1:12,1,0)
## Warning in data2$toserve == 1:12: longer object length is not a multiple of
## shorter object length
data2$prisonlevel2<-ifelse (data2$toserve==13:24,1,0)
## Warning in data2$toserve == 13:24: longer object length is not a multiple
## of shorter object length
data2$prisonlevel3<-ifelse (data2$toserve==25:36,1,0)
## Warning in data2$toserve == 25:36: longer object length is not a multiple
## of shorter object length
data2$prisonlevel4<-ifelse (data2$toserve>=37,1,0)
table(data2$genproblevel, data2$genprisonlevel)
##
## 0 1
## 0 124 312
## 1 295 272
tablex<-aggregate(cbind(age, agesq, female, nonblack, priorarr, priordrugarr, priorfelarr, priorfeldrugarr, priorcon, priordrugcon, priorfelcon, priorfeldrugcon, pwid ,dist ,marijuana ,cocaine, crack ,heroin ,pcp ,otherdrug ,nondrug) ~ calendar, data = data2, mean,na.rm = TRUE)
table2<-(round(tablex, digits=2))
print(table2)
## calendar age agesq female nonblack priorarr priordrugarr priorfelarr
## 1 1 31.92 1149.57 0.13 0.04 0.81 0.68 0.63
## 2 2 35.12 1370.64 0.07 0.04 0.87 0.74 0.73
## 3 3 33.18 1234.21 0.08 0.02 0.86 0.75 0.70
## 4 4 32.79 1190.19 0.10 0.03 0.83 0.72 0.74
## 5 5 33.75 1262.22 0.09 0.01 0.87 0.80 0.76
## 6 6 32.18 1157.95 0.09 0.02 0.82 0.65 0.68
## 7 7 32.33 1172.59 0.10 0.02 0.79 0.66 0.71
## 8 8 34.22 1301.33 0.09 0.01 0.91 0.74 0.73
## 9 9 32.35 1156.91 0.12 0.03 0.94 0.75 0.79
## priorfeldrugarr priorcon priordrugcon priorfelcon priorfeldrugcon pwid
## 1 0.54 0.60 0.50 0.43 0.35 0.49
## 2 0.59 0.70 0.54 0.59 0.45 0.40
## 3 0.59 0.64 0.53 0.55 0.47 0.49
## 4 0.57 0.71 0.58 0.54 0.44 0.41
## 5 0.59 0.72 0.66 0.59 0.50 0.56
## 6 0.48 0.68 0.55 0.51 0.40 0.51
## 7 0.46 0.62 0.48 0.50 0.35 0.52
## 8 0.57 0.67 0.54 0.55 0.44 0.43
## 9 0.56 0.71 0.57 0.59 0.44 0.39
## dist marijuana cocaine crack heroin pcp otherdrug nondrug
## 1 0.60 0.22 0.39 0.15 0.24 0.07 0.05 0.11
## 2 0.69 0.17 0.38 0.15 0.31 0.07 0.00 0.09
## 3 0.62 0.17 0.46 0.19 0.30 0.04 0.03 0.18
## 4 0.69 0.17 0.40 0.19 0.26 0.02 0.04 0.13
## 5 0.53 0.23 0.34 0.21 0.30 0.06 0.03 0.13
## 6 0.59 0.18 0.41 0.24 0.29 0.01 0.02 0.11
## 7 0.54 0.17 0.44 0.25 0.16 0.06 0.05 0.16
## 8 0.62 0.18 0.33 0.22 0.29 0.04 0.03 0.12
## 9 0.67 0.21 0.44 0.19 0.23 0.04 0.04 0.15
tablexy<-aggregate(cbind( incarcerate, toserve, probat, probatnonzero, laterarr) ~ calendar, data = data2, mean,na.rm = TRUE)
table3<-(round(tablexy, digits=2))
print(table3)
## calendar incarcerate toserve probat probatnonzero laterarr
## 1 1 0.34 5.12 12.46 0.50 0.48
## 2 2 0.25 7.63 11.46 0.57 0.46
## 3 3 0.65 11.92 11.69 0.42 0.58
## 4 4 0.56 7.79 6.83 0.31 0.49
## 5 5 0.34 5.82 13.69 0.43 0.56
## 6 6 0.48 5.07 14.88 0.60 0.58
## 7 7 0.43 5.55 6.36 0.29 0.50
## 8 8 0.23 5.49 8.74 0.48 0.44
## 9 9 0.45 7.12 7.05 0.33 0.65
#incarcerate
reg1<-lm(incarcerate~calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9, data=data2)
summary(reg1)$fstatistic
## value numdf dendf
## 9.795386 8.000000 994.000000
reg2<-lm(incarcerate~calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 + age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug, data=data2)
summary(reg2)$fstatistic
## value numdf dendf
## 8.44161 29.00000 973.00000
#to serve
reg3<-lm(toserve~calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9, data=data2)
summary(reg3)$fstatistic
## value numdf dendf
## 3.187805 8.000000 994.000000
reg4<-lm(toserve~calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 + age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug, data=data2)
summary(reg4)$fstatistic
## value numdf dendf
## 4.602083 29.000000 973.000000
#probatnonzero
reg5<-lm(probatnonzero~calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9, data=data2)
summary(reg5)$fstatistic
## value numdf dendf
## 5.648596 8.000000 994.000000
reg6<-lm(probatnonzero~calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 + age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug, data=data2)
summary(reg6)$fstatistic
## value numdf dendf
## 5.20496 29.00000 973.00000
#probat
reg7<-lm(probat~calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9, data=data2)
summary(reg5)$fstatistic
## value numdf dendf
## 5.648596 8.000000 994.000000
reg8<-lm(probat~calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 + age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug, data=data2)
summary(reg6)$fstatistic
## value numdf dendf
## 5.20496 29.00000 973.00000
library(AER)
## Warning: package 'AER' was built under R version 3.5.3
## Loading required package: car
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
## recode
## Loading required package: lmtest
## Loading required package: zoo
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Loading required package: sandwich
## Loading required package: survival
#toserve
iv1 = ivreg((laterarr==1) ~ toserve | calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 , data = data2)
summary(iv1)
##
## Call:
## ivreg(formula = (laterarr == 1) ~ toserve | calendar1 + calendar2 +
## calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +
## calendar9, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9078 -0.4713 0.3372 0.5287 0.5287
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.471286 0.057247 8.233 5.68e-16 ***
## toserve 0.007981 0.007933 1.006 0.315
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5239 on 1001 degrees of freedom
## Multiple R-Squared: -0.0986, Adjusted R-squared: -0.0997
## Wald test: 1.012 on 1 and 1001 DF, p-value: 0.3147
ic1 = ivreg((laterarr==1) ~ toserve + age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug | age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug + calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 , data = data2)
summary(ic1)
##
## Call:
## ivreg(formula = (laterarr == 1) ~ toserve + age + agesq + female +
## nonblack + priorarr + priordrugarr + priorfelarr + priorfeldrugarr +
## priorcon + priordrugcon + priorfelcon + priorfeldrugcon +
## pwid + dist + marijuana + cocaine + crack + heroin + pcp +
## otherdrug + nondrug | age + agesq + female + nonblack + priorarr +
## priordrugarr + priorfelarr + priorfeldrugarr + priorcon +
## priordrugcon + priorfelcon + priorfeldrugcon + pwid + dist +
## marijuana + cocaine + crack + heroin + pcp + otherdrug +
## nondrug + calendar1 + calendar2 + calendar3 + calendar4 +
## calendar5 + calendar7 + calendar8 + calendar9, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.8860 -0.4825 0.2041 0.4608 0.9049
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0123798 0.1904306 5.316 1.31e-07 ***
## toserve 0.0086508 0.0082367 1.050 0.2938
## age -0.0254644 0.0100055 -2.545 0.0111 *
## agesq 0.0002126 0.0001324 1.605 0.1088
## female -0.0012192 0.0636057 -0.019 0.9847
## nonblack -0.2190621 0.1093432 -2.003 0.0454 *
## priorarr -0.0600934 0.0771971 -0.778 0.4365
## priordrugarr 0.0073863 0.0692132 0.107 0.9150
## priorfelarr 0.1044293 0.0711928 1.467 0.1427
## priorfeldrugarr -0.1004298 0.0728534 -1.379 0.1684
## priorcon 0.0204244 0.0757842 0.270 0.7876
## priordrugcon 0.0405106 0.0775742 0.522 0.6016
## priorfelcon -0.1001847 0.0769295 -1.302 0.1931
## priorfeldrugcon 0.0555271 0.0849087 0.654 0.5133
## pwid 0.0113328 0.0618777 0.183 0.8547
## dist 0.0109205 0.0653119 0.167 0.8672
## marijuana 0.1000156 0.0576449 1.735 0.0830 .
## cocaine -0.0001741 0.0584119 -0.003 0.9976
## crack 0.0399155 0.0655350 0.609 0.5426
## heroin 0.0837925 0.0624773 1.341 0.1802
## pcp 0.0817318 0.0968362 0.844 0.3989
## otherdrug -0.0402090 0.1071726 -0.375 0.7076
## nondrug 0.0014532 0.0501801 0.029 0.9769
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.514 on 980 degrees of freedom
## Multiple R-Squared: -0.03562, Adjusted R-squared: -0.05887
## Wald test: 3.142 on 22 and 980 DF, p-value: 1.645e-06
#probat
iv2 = ivreg((laterarr==1) ~ probat | calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 , data = data2)
summary(iv2)
##
## Call:
## ivreg(formula = (laterarr == 1) ~ probat | calendar1 + calendar2 +
## calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +
## calendar9, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6350 -0.5039 0.4174 0.4961 0.4961
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.503897 0.056997 8.841 <2e-16 ***
## probat 0.002186 0.005315 0.411 0.681
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4992 on 1001 degrees of freedom
## Multiple R-Squared: 0.002492, Adjusted R-squared: 0.001496
## Wald test: 0.1691 on 1 and 1001 DF, p-value: 0.681
ic2 = ivreg((laterarr==1) ~ probat + age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug | age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug + calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 , data = data2)
summary(ic2)
##
## Call:
## ivreg(formula = (laterarr == 1) ~ probat + age + agesq + female +
## nonblack + priorarr + priordrugarr + priorfelarr + priorfeldrugarr +
## priorcon + priordrugcon + priorfelcon + priorfeldrugcon +
## pwid + dist + marijuana + cocaine + crack + heroin + pcp +
## otherdrug + nondrug | age + agesq + female + nonblack + priorarr +
## priordrugarr + priorfelarr + priorfeldrugarr + priorcon +
## priordrugcon + priorfelcon + priorfeldrugcon + pwid + dist +
## marijuana + cocaine + crack + heroin + pcp + otherdrug +
## nondrug + calendar1 + calendar2 + calendar3 + calendar4 +
## calendar5 + calendar7 + calendar8 + calendar9, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.7976 -0.4752 0.2322 0.4431 0.8624
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0147071 0.1961545 5.173 2.79e-07 ***
## probat 0.0012358 0.0051850 0.238 0.8117
## age -0.0252338 0.0101412 -2.488 0.0130 *
## agesq 0.0002094 0.0001334 1.570 0.1168
## female -0.0318686 0.0555817 -0.573 0.5665
## nonblack -0.1910977 0.1050883 -1.818 0.0693 .
## priorarr -0.0697442 0.0726339 -0.960 0.3372
## priordrugarr 0.0029892 0.0653524 0.046 0.9635
## priorfelarr 0.1368515 0.0673954 2.031 0.0426 *
## priorfeldrugarr -0.1191658 0.0680028 -1.752 0.0800 .
## priorcon 0.0309100 0.0711503 0.434 0.6641
## priordrugcon 0.0562407 0.0719406 0.782 0.4345
## priorfelcon -0.0825914 0.0716554 -1.153 0.2493
## priorfeldrugcon 0.0875194 0.0804564 1.088 0.2770
## pwid 0.0145487 0.0590992 0.246 0.8056
## dist 0.0225452 0.0682875 0.330 0.7414
## marijuana 0.0866665 0.0588066 1.474 0.1409
## cocaine -0.0036400 0.0599389 -0.061 0.9516
## crack 0.0311841 0.0681925 0.457 0.6476
## heroin 0.0753797 0.0628826 1.199 0.2309
## pcp 0.1109518 0.0877993 1.264 0.2066
## otherdrug -0.0577620 0.1027145 -0.562 0.5740
## nondrug 0.0113237 0.0470993 0.240 0.8101
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4863 on 980 degrees of freedom
## Multiple R-Squared: 0.07314, Adjusted R-squared: 0.05233
## Wald test: 3.457 on 22 and 980 DF, p-value: 1.536e-07
#toserve and probat
iv3 = ivreg((laterarr==1) ~ probat +toserve | calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 , data = data2)
summary(iv3)
##
## Call:
## ivreg(formula = (laterarr == 1) ~ probat + toserve | calendar1 +
## calendar2 + calendar3 + calendar4 + calendar5 + calendar7 +
## calendar8 + calendar9, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9238 -0.5048 0.3491 0.4952 0.5569
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.443064 0.083754 5.290 1.5e-07 ***
## probat 0.002574 0.005583 0.461 0.645
## toserve 0.008226 0.007940 1.036 0.300
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5231 on 1000 degrees of freedom
## Multiple R-Squared: -0.09437, Adjusted R-squared: -0.09656
## Wald test: 0.6138 on 2 and 1000 DF, p-value: 0.5415
ic3 = ivreg((laterarr==1) ~ probat + toserve+ age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug | age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug + calendar1 + calendar2 + calendar3 + calendar4 + calendar5 + calendar7 + calendar8 +calendar9 , data = data2)
summary(ic3)
##
## Call:
## ivreg(formula = (laterarr == 1) ~ probat + toserve + age + agesq +
## female + nonblack + priorarr + priordrugarr + priorfelarr +
## priorfeldrugarr + priorcon + priordrugcon + priorfelcon +
## priorfeldrugcon + pwid + dist + marijuana + cocaine + crack +
## heroin + pcp + otherdrug + nondrug | age + agesq + female +
## nonblack + priorarr + priordrugarr + priorfelarr + priorfeldrugarr +
## priorcon + priordrugcon + priorfelcon + priorfeldrugcon +
## pwid + dist + marijuana + cocaine + crack + heroin + pcp +
## otherdrug + nondrug + calendar1 + calendar2 + calendar3 +
## calendar4 + calendar5 + calendar7 + calendar8 + calendar9,
## data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.9026 -0.4783 0.2097 0.4626 0.9182
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9860869 0.2090100 4.718 2.73e-06 ***
## probat 0.0016750 0.0054947 0.305 0.7606
## toserve 0.0088388 0.0082577 1.070 0.2847
## age -0.0242595 0.0107556 -2.256 0.0243 *
## agesq 0.0001974 0.0001414 1.396 0.1629
## female -0.0040103 0.0642458 -0.062 0.9502
## nonblack -0.2108590 0.1125796 -1.873 0.0614 .
## priorarr -0.0607938 0.0772123 -0.787 0.4313
## priordrugarr 0.0077784 0.0692081 0.112 0.9105
## priorfelarr 0.1116499 0.0750131 1.488 0.1370
## priorfeldrugarr -0.1031926 0.0733972 -1.406 0.1601
## priorcon 0.0208340 0.0757774 0.275 0.7834
## priordrugcon 0.0390094 0.0777113 0.502 0.6158
## priorfelcon -0.1051171 0.0785941 -1.337 0.1814
## priorfeldrugcon 0.0627369 0.0881210 0.712 0.4767
## pwid 0.0081431 0.0627411 0.130 0.8968
## dist -0.0005208 0.0753138 -0.007 0.9945
## marijuana 0.0927199 0.0624025 1.486 0.1376
## cocaine -0.0077443 0.0634583 -0.122 0.9029
## crack 0.0307665 0.0720657 0.427 0.6695
## heroin 0.0768647 0.0664678 1.156 0.2478
## pcp 0.0769635 0.0980678 0.785 0.4328
## otherdrug -0.0464154 0.1090633 -0.426 0.6705
## nondrug 0.0029006 0.0503920 0.058 0.9541
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.5139 on 979 degrees of freedom
## Multiple R-Squared: -0.03405, Adjusted R-squared: -0.05835
## Wald test: 3.011 on 23 and 979 DF, p-value: 2.819e-06
#toserve
reg9<-lm(laterarr~toserve, data=data2)
summary(reg9)
##
## Call:
## lm(formula = laterarr ~ toserve, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.5601 -0.5601 0.4399 0.4399 0.6737
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.560067 0.017669 31.698 < 2e-16 ***
## toserve -0.004870 0.001187 -4.103 4.42e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4957 on 1001 degrees of freedom
## Multiple R-squared: 0.01654, Adjusted R-squared: 0.01555
## F-statistic: 16.83 on 1 and 1001 DF, p-value: 4.417e-05
reg10<-lm(laterarr~toserve+ age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug , data=data2)
summary(reg10)
##
## Call:
## lm(formula = laterarr ~ toserve + age + agesq + female + nonblack +
## priorarr + priordrugarr + priorfelarr + priorfeldrugarr +
## priorcon + priordrugcon + priorfelcon + priorfeldrugcon +
## pwid + dist + marijuana + cocaine + crack + heroin + pcp +
## otherdrug + nondrug, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8095 -0.4715 0.2293 0.4350 0.8204
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0474995 0.1773836 5.905 4.85e-09 ***
## toserve -0.0055579 0.0012145 -4.576 5.34e-06 ***
## age -0.0265286 0.0093549 -2.836 0.00467 **
## agesq 0.0002254 0.0001239 1.820 0.06904 .
## female -0.0474369 0.0541816 -0.876 0.38151
## nonblack -0.1836394 0.1006475 -1.825 0.06837 .
## priorarr -0.0748591 0.0718775 -1.041 0.29791
## priordrugarr -0.0001894 0.0647061 -0.003 0.99767
## priorfelarr 0.1482301 0.0624147 2.375 0.01774 *
## priorfeldrugarr -0.1274226 0.0666907 -1.911 0.05634 .
## priorcon 0.0368865 0.0704377 0.524 0.60062
## priordrugcon 0.0677295 0.0711845 0.951 0.34160
## priorfelcon -0.0658616 0.0696714 -0.945 0.34473
## priorfeldrugcon 0.0986459 0.0761008 1.296 0.19519
## pwid 0.0203356 0.0577608 0.352 0.72486
## dist 0.0433576 0.0586543 0.739 0.45996
## marijuana 0.0871372 0.0535538 1.627 0.10404
## cocaine 0.0032515 0.0546848 0.059 0.95260
## crack 0.0367121 0.0613640 0.598 0.54980
## heroin 0.0784551 0.0584538 1.342 0.17985
## pcp 0.1346543 0.0861550 1.563 0.11839
## otherdrug -0.0611825 0.0997589 -0.613 0.53982
## nondrug 0.0156832 0.0463813 0.338 0.73533
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4815 on 980 degrees of freedom
## Multiple R-squared: 0.0913, Adjusted R-squared: 0.0709
## F-statistic: 4.475 on 22 and 980 DF, p-value: 5.22e-11
#probat
reg11<-lm(laterarr~probat, data=data2)
summary(reg11)
##
## Call:
## lm(formula = laterarr ~ probat, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6214 -0.5067 0.4245 0.4933 0.4933
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.506724 0.020008 25.326 <2e-16 ***
## probat 0.001911 0.001196 1.598 0.11
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4992 on 1001 degrees of freedom
## Multiple R-squared: 0.002545, Adjusted R-squared: 0.001548
## F-statistic: 2.554 on 1 and 1001 DF, p-value: 0.1103
reg12<-lm(laterarr~probat+ age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug , data=data2)
summary(reg12)
##
## Call:
## lm(formula = laterarr ~ probat + age + agesq + female + nonblack +
## priorarr + priordrugarr + priorfelarr + priorfeldrugarr +
## priorcon + priordrugcon + priorfelcon + priorfeldrugcon +
## pwid + dist + marijuana + cocaine + crack + heroin + pcp +
## otherdrug + nondrug, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8009 -0.4750 0.2315 0.4445 0.8638
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0119151 0.1801007 5.619 2.51e-08 ***
## probat 0.0014168 0.0012175 1.164 0.24483
## age -0.0251051 0.0094870 -2.646 0.00827 **
## agesq 0.0002078 0.0001256 1.655 0.09831 .
## female -0.0322364 0.0546301 -0.590 0.55527
## nonblack -0.1901603 0.1017963 -1.868 0.06205 .
## priorarr -0.0698410 0.0725830 -0.962 0.33618
## priordrugarr 0.0030208 0.0653458 0.046 0.96314
## priorfelarr 0.1376947 0.0631760 2.180 0.02953 *
## priorfeldrugarr -0.1195031 0.0673509 -1.774 0.07632 .
## priorcon 0.0309778 0.0711245 0.436 0.66326
## priordrugcon 0.0561173 0.0718578 0.781 0.43502
## priorfelcon -0.0830754 0.0703763 -1.180 0.23811
## priorfeldrugcon 0.0883605 0.0769744 1.148 0.25128
## pwid 0.0142168 0.0583719 0.244 0.80763
## dist 0.0213548 0.0597095 0.358 0.72069
## marijuana 0.0858595 0.0543459 1.580 0.11446
## cocaine -0.0044534 0.0554973 -0.080 0.93606
## crack 0.0301905 0.0623319 0.484 0.62825
## heroin 0.0746232 0.0592513 1.259 0.20817
## pcp 0.1105120 0.0869409 1.271 0.20399
## otherdrug -0.0584629 0.1008436 -0.580 0.56222
## nondrug 0.0115005 0.0468409 0.246 0.80610
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4863 on 980 degrees of freedom
## Multiple R-squared: 0.07316, Adjusted R-squared: 0.05235
## F-statistic: 3.516 on 22 and 980 DF, p-value: 9.789e-08
#to serve and probat
reg13<-lm(laterarr~probat+toserve, data=data2)
summary(reg13)
##
## Call:
## lm(formula = laterarr ~ probat + toserve, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6030 -0.5495 0.4184 0.4505 0.6749
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.549533 0.022781 24.123 < 2e-16 ***
## probat 0.000892 0.001217 0.733 0.463813
## toserve -0.004676 0.001217 -3.843 0.000129 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4958 on 1000 degrees of freedom
## Multiple R-squared: 0.01706, Adjusted R-squared: 0.0151
## F-statistic: 8.68 on 2 and 1000 DF, p-value: 0.000183
reg14<-lm(laterarr~probat+toserve+ age+ agesq+ female+ nonblack+ priorarr+ priordrugarr+ priorfelarr+priorfeldrugarr+ priorcon+ priordrugcon+ priorfelcon+ priorfeldrugcon+ pwid +dist +marijuana +cocaine+crack +heroin + pcp + otherdrug + nondrug , data=data2)
summary(reg14)
##
## Call:
## lm(formula = laterarr ~ probat + toserve + age + agesq + female +
## nonblack + priorarr + priordrugarr + priorfelarr + priorfeldrugarr +
## priorcon + priordrugcon + priorfelcon + priorfeldrugcon +
## pwid + dist + marijuana + cocaine + crack + heroin + pcp +
## otherdrug + nondrug, data = data2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.8145 -0.4726 0.2300 0.4351 0.8232
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0421059 0.1785440 5.837 7.24e-09 ***
## probat 0.0003390 0.0012304 0.275 0.78300
## toserve -0.0054904 0.0012396 -4.429 1.05e-05 ***
## age -0.0262826 0.0094019 -2.795 0.00528 **
## agesq 0.0002224 0.0001244 1.787 0.07423 .
## female -0.0479058 0.0542339 -0.883 0.37728
## nonblack -0.1820529 0.1008595 -1.805 0.07138 .
## priorarr -0.0749702 0.0719125 -1.043 0.29743
## priordrugarr -0.0000943 0.0647375 -0.001 0.99884
## priorfelarr 0.1496004 0.0626419 2.388 0.01712 *
## priorfeldrugarr -0.1279256 0.0667472 -1.917 0.05558 .
## priorcon 0.0369352 0.0704711 0.524 0.60031
## priordrugcon 0.0673692 0.0712301 0.946 0.34449
## priorfelcon -0.0669310 0.0698123 -0.959 0.33793
## priorfeldrugcon 0.1000154 0.0762988 1.311 0.19022
## pwid 0.0196714 0.0578383 0.340 0.73385
## dist 0.0409750 0.0593159 0.691 0.48986
## marijuana 0.0856875 0.0538369 1.592 0.11179
## cocaine 0.0017124 0.0549951 0.031 0.97517
## crack 0.0348673 0.0617571 0.565 0.57248
## heroin 0.0770642 0.0586989 1.313 0.18953
## pcp 0.1335795 0.0862839 1.548 0.12191
## otherdrug -0.0623949 0.0999030 -0.625 0.53241
## nondrug 0.0159466 0.0464131 0.344 0.73124
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4817 on 979 degrees of freedom
## Multiple R-squared: 0.09137, Adjusted R-squared: 0.07002
## F-statistic: 4.28 on 23 and 979 DF, p-value: 1.098e-10