For this study, R statistical software (1) provided the statistical computations. Data and calculations are posted to RPubs for replication. Statistical packages used for the analysis include lemon (2), psych (3), ggplot2 (4), knitr (5), and scales (6).
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
Stefan McKinnon Edwards (2019). lemon: Freshing Up your ‘ggplot2’ Plots. R package version 0.4.3. https://CRAN.R-project.org/package=lemon
Revelle, W. (2018) psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA, https://CRAN.R-project.org/package=psych Version = 1.8.12.
H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 201
Yihui Xie (2018). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version 1.20.
Hadley Wickham (2018). scales: Scale Functions for Visualization. R package version 1.0.0. https://CRAN.R-project.org/package=scales
Qualtrix provided the data collection source (anonymous) for the IRB-approved study. A total of n=75 valid responses from Frio County residnts provided the basis for our analysis. Scoring or knowledge responses added additional variables to the dataset.
###################Read the Data#########################
mydata=read.csv("C:/Users/lfult/Desktop/Paula/forR.csv")
#NOTE: Variables are reordered for ease in processing.
data.frame(head(mydata))
| ID | YrBorn | Age | NumHH | PerCorrect | YrOGJob | YrPreOGJob | SmellText | TasteText | AppearText | TAP02 | TAP03 | TAP05 | Interviewer | Location | WellTest | Gender | Ethnicity | Race | EdLevel | Income | Health | Job | OGJob | PreOGJob | WIYesMOG | Arthritis | Asthma | Cancer | Diabetes | HeartDis | Hypertension | Mental | Obesity | OralHealth | Handicap | Skin | ArthritisMD | AsthmaMD | CancerMD | DiabetesMD | HeartDisMD | HypertensionMD | MentalMD | ObesityMD | OralHealthMD | HandicapMD | SkinMD | HL1_HlthIns | HL2_PrimHlthInfo | HL3_HelpReadHlth | HL4_ConfHlthForms | HL_5ProbLngMedCond | HL_6ProbUnderstand | H20_WaterSrce | H20_Well. | H20_Cook | H20_DrinkTap | H20_FilterTap | H20_HowFilter | H20_Smell | H20_Taste | H20_Appear | AnyChange | H20_Tested | H20_Concerns | H20_SafeDrink | H20_SafeCook | EHL_TotalColiform | EHL_ColiformNotSafe | EHL_Boil | EHL_Less15mgl | EHL_Nitrates | EHL_WhereCollected |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 1958 | 59 | 3 | 0.667 | NA | NA | rotten egg | better and clearer/before it was yellow | 0 | 0 | smell and color | AS | Agrilife Office at TAB meeting | N | Female | Hispanic | Other | HS | <25K | Good | Disabled/NA | No | No | No | No | Yes | Yes | Yes | No | No | No | No | Yes | No | No | Yes | No | No | No | No | Yes | No | No | No | No | No | Yes | No Answer | Sometimes | Extremely | Sometimes | Never | Purchased Water | No | Purchased | Rarely | Yes | Refrigerator | 1 | 0 | 1 | 1 | No | Yes | Not at All | Quite a Bit | 0 | 1 | 1 | 0 | 1 | 1 | |
| 3 | 1993 | 24 | 3 | 0.667 | NA | NA | copper smell | more yellowish | 0 | 0 | we only use for clothes but yes | MV | Frio County Hospital | N | Female | Hispanic | White | SomeCollege | >75K | Excellent | Registration Clerk | No | No | No | No | Yes | Don’t Know | No | No | No | No | No | Yes | No | Yes | No | Yes | No | No | No | No | No | No | No | No | No | Yes | Family | Sometimes | Extremely | Sometimes | Occasionally | Purchased Water | Yes | City Water | Never | Yes | Refrigerator | 1 | 0 | 1 | 1 | No | Yes | Not at All | A Little Bit | 0 | 0 | 1 | 1 | 1 | 1 | |
| 4 | 1979 | 38 | 4 | 0.833 | NA | NA | bitter smell | cloudy, if sit gets tan color. If add chlorine turns chocolate | 2008/8 years ago | sodium-high, iron-high, all else high normal | feel not safe, bathe and wash clothes only | MV | Frio County Hospital | N | Female | Hispanic | White | CollegeGrad | >75K | Very Good | Radiology Tech-Chief | No | No | Yes | No | Yes | No | No | Yes | No | No | No | Yes | No | Yes | No | No | No | No | No | No | No | No | No | No | No | Yes | Doctor | Always | Quite a Bit | Never | Never | Purchased Water | Yes | Purchased | Never | Never Drink It | No Answer | 1 | 0 | 1 | 1 | Yes | Yes | Not at All | Not at All | 1 | 1 | 1 | 0 | 1 | 1 | |
| 5 | 1980 | 37 | 7 | 1.000 | NA | NA | MV | Frio County Hospital | N | Female | Hispanic | White | HS | >75K | Good | Admin Assistant at health center | No | No | No | No | Yes | Yes | No | No | No | No | No | No | No | Yes | No | No | No | No | No | No | No | Yes | No | No | No | Yes | Doctor | Often | Quite a Bit | Never | Never | Private Well | Yes | Private Well | Always | Yes | Refrigerator / Reverse Osmosis | 0 | 0 | 0 | 0 | No | No | Quite a Bit | Quite a Bit | 1 | 1 | 1 | 1 | 1 | 1 | ||||||
| 6 | 1994 | 23 | 4 | 1.000 | NA | NA | sewage/butane smell-gas smell | tastes like minerals, dirty, yellpw water taste | yellow | MV | Frio County Hospital | N | Female | Other | White | HS | <50K | Very Good | Stay at home mom | No | No | Don’t Know | No | Yes | Yes | Yes | No | No | Yes | Yes | Yes | Yes | Yes | No | No | No | Yes | No | Yes | No | No | No | No | No | Yes | Doctor | Occasionally | Extremely | Never | Never | City Water | No | City Water | Often | Yes | Refrigerator | 1 | 1 | 1 | 1 | No | No Answer | A Little Bit | Quite a Bit | 1 | 1 | 1 | 1 | 1 | 1 | |||
| 7 | 1978 | 39 | 2 | 0.333 | NA | NA | once in awhile it smell bad source, back up sewage | not taste, body reacts when drink too much-bloated | yellow in color | wonder abut but used to it, wait till get better | MV | Frio County Hospital | N | Female | Hispanic | Other | <HS | <35K | Good | Not working | No | No | No | No | Yes | Don’t Know | No | No | No | No | No | Yes | No | No | No | No | No | No | No | No | No | No | No | No | No | No | Internet | Never | Somewhat | Never | Sometimes | Purchased Water | No | City Water | Often | No | No Answer | 1 | 1 | 1 | 1 | No | Yes | A Little Bit | A Little Bit | 0 | 0 | 1 | 0 | 0 | 1 |
#########################################################
There were n=75 valid surveys in this study intended to evaluate knowledge as well as attitudes and perceptions of the population of interest. Participants represented Frio County. All participants were 19 and older. The gender distribution included 47 females and 28 males.
####################Describe#############################
b=data.frame(describe(mydata))
b
| vars | n | mean | sd | median | trimmed | mad | min | max | range | skew | kurtosis | se | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ID | 1 | 75 | 39.9866667 | 22.8174266 | 39.000 | 39.9016393 | 29.6520000 | 1 | 79 | 78 | 0.0229011 | -1.2698894 | 2.6347295 |
| YrBorn | 2 | 75 | 1964.9333333 | 17.5955564 | 1962.000 | 1964.7049180 | 20.7564000 | 1927 | 1998 | 71 | 0.1235448 | -0.9093122 | 2.0317598 |
| Age | 3 | 75 | 52.0666667 | 17.5955564 | 55.000 | 52.2950820 | 20.7564000 | 19 | 90 | 71 | -0.1235448 | -0.9093122 | 2.0317598 |
| NumHH | 4 | 75 | 2.8400000 | 1.7008742 | 2.000 | 2.6229508 | 1.4826000 | 1 | 12 | 11 | 2.3440734 | 9.3956476 | 0.1964000 |
| PerCorrect | 5 | 75 | 0.6355467 | 0.2946860 | 0.667 | 0.6557049 | 0.2475942 | 0 | 1 | 1 | -0.4002208 | -0.9033617 | 0.0340274 |
| YrOGJob | 6 | 3 | 16.3333333 | 20.5020324 | 5.000 | 16.3333333 | 1.4826000 | 4 | 40 | 36 | 0.3838703 | -2.3333333 | 11.8368539 |
| YrPreOGJob | 7 | 6 | 5.6666667 | 7.1180522 | 2.500 | 5.6666667 | 0.7413000 | 2 | 20 | 18 | 1.2835950 | -0.2212315 | 2.9059326 |
| SmellText* | 8 | 75 | 7.6000000 | 9.7869190 | 1.000 | 5.9180328 | 0.0000000 | 1 | 31 | 30 | 1.1566455 | -0.1772439 | 1.1300961 |
| TasteText* | 9 | 75 | 2.4000000 | 3.4248693 | 1.000 | 1.4590164 | 0.0000000 | 1 | 15 | 14 | 2.3809150 | 4.4638143 | 0.3954698 |
| AppearText* | 10 | 75 | 11.5333333 | 12.4665318 | 5.000 | 10.1639344 | 5.9304000 | 1 | 37 | 36 | 0.6919478 | -1.1379675 | 1.4395111 |
| TAP02* | 11 | 75 | 2.6666667 | 3.6180230 | 1.000 | 1.7377049 | 0.0000000 | 1 | 15 | 14 | 2.0806323 | 3.0420593 | 0.4177733 |
| TAP03* | 12 | 75 | 3.0533333 | 4.4566784 | 1.000 | 1.9180328 | 0.0000000 | 1 | 18 | 17 | 2.0646273 | 2.9578383 | 0.5146129 |
| TAP05* | 13 | 75 | 16.0400000 | 15.9199348 | 11.000 | 14.4426230 | 14.8260000 | 1 | 48 | 47 | 0.5651092 | -1.1808724 | 1.8382757 |
| Interviewer* | 14 | 75 | 2.8266667 | 1.3292279 | 3.000 | 2.7049180 | 1.4826000 | 1 | 6 | 5 | 0.8934839 | 0.2395486 | 0.1534860 |
| Location* | 15 | 75 | 10.6533333 | 3.2025890 | 11.000 | 10.9344262 | 2.9652000 | 1 | 15 | 14 | -0.9602038 | 0.5239713 | 0.3698031 |
| WellTest* | 16 | 75 | 1.2400000 | 0.4299591 | 1.000 | 1.1803279 | 0.0000000 | 1 | 2 | 1 | 1.1932917 | -0.5833014 | 0.0496474 |
| Gender* | 17 | 75 | 1.3733333 | 0.4869467 | 1.000 | 1.3442623 | 0.0000000 | 1 | 2 | 1 | 0.5133119 | -1.7594391 | 0.0562278 |
| Ethnicity* | 18 | 75 | 1.4533333 | 0.5993991 | 1.000 | 1.3770492 | 0.0000000 | 1 | 3 | 2 | 0.9197208 | -0.1994322 | 0.0692126 |
| Race* | 19 | 75 | 3.6533333 | 0.6676569 | 4.000 | 3.8032787 | 0.0000000 | 1 | 4 | 3 | -1.9071050 | 3.0458736 | 0.0770944 |
| EdLevel* | 20 | 75 | 3.7466667 | 1.8016009 | 4.000 | 3.8032787 | 2.9652000 | 1 | 6 | 5 | -0.0757893 | -1.4375614 | 0.2080310 |
| Income* | 21 | 75 | 3.3066667 | 1.7318427 | 4.000 | 3.2950820 | 1.4826000 | 1 | 6 | 5 | -0.1164203 | -1.5018969 | 0.1999760 |
| Health* | 22 | 75 | 3.3600000 | 1.7981973 | 3.000 | 3.3278689 | 1.4826000 | 1 | 6 | 5 | 0.4381656 | -1.2369614 | 0.2076379 |
| Job* | 23 | 75 | 29.9200000 | 16.2620101 | 31.000 | 30.2950820 | 19.2738000 | 1 | 55 | 54 | -0.1888548 | -1.2907515 | 1.8777752 |
| OGJob* | 24 | 75 | 1.0400000 | 0.1972788 | 1.000 | 1.0000000 | 0.0000000 | 1 | 2 | 1 | 4.6012719 | 19.4313185 | 0.0227798 |
| PreOGJob* | 25 | 75 | 1.2266667 | 0.6056788 | 1.000 | 1.0491803 | 0.0000000 | 1 | 3 | 2 | 2.3803411 | 3.9817984 | 0.0699378 |
| WIYesMOG* | 26 | 75 | 2.0666667 | 0.6437503 | 2.000 | 2.0819672 | 0.0000000 | 1 | 3 | 2 | -0.0577534 | -0.6329326 | 0.0743339 |
| Arthritis* | 27 | 75 | 2.0133333 | 0.5065339 | 2.000 | 2.0163934 | 0.0000000 | 1 | 3 | 2 | 0.0246585 | 0.8415074 | 0.0584895 |
| Asthma* | 28 | 75 | 2.5466667 | 0.6215354 | 3.000 | 2.6393443 | 0.0000000 | 1 | 3 | 2 | -1.0070540 | -0.0784959 | 0.0717687 |
| Cancer* | 29 | 75 | 2.5333333 | 0.6224045 | 3.000 | 2.6229508 | 0.0000000 | 1 | 3 | 2 | -0.9536077 | -0.1750277 | 0.0718691 |
| Diabetes* | 30 | 75 | 2.1200000 | 0.4920997 | 2.000 | 2.1147541 | 0.0000000 | 1 | 3 | 2 | 0.2706768 | 0.7003744 | 0.0568228 |
| HeartDis* | 31 | 75 | 2.1200000 | 0.5188345 | 2.000 | 2.1311475 | 0.0000000 | 1 | 3 | 2 | 0.1622172 | 0.3944293 | 0.0599098 |
| Hypertension* | 32 | 75 | 2.1866667 | 0.5621708 | 2.000 | 2.2131148 | 0.0000000 | 1 | 3 | 2 | 0.0311929 | -0.2354194 | 0.0649139 |
| Mental* | 33 | 75 | 2.2133333 | 0.5764133 | 2.000 | 2.2459016 | 0.0000000 | 1 | 3 | 2 | -0.0322791 | -0.3999824 | 0.0665585 |
| Obesity* | 34 | 75 | 2.0666667 | 0.4137284 | 2.000 | 2.0327869 | 0.0000000 | 1 | 3 | 2 | 0.4602279 | 2.4648761 | 0.0477732 |
| OralHealth* | 35 | 75 | 2.2933333 | 0.6318855 | 2.000 | 2.3606557 | 0.0000000 | 1 | 3 | 2 | -0.3114849 | -0.7329674 | 0.0729639 |
| Handicap* | 36 | 75 | 2.0666667 | 0.5022472 | 2.000 | 2.0819672 | 0.0000000 | 1 | 3 | 2 | 0.1309669 | 0.8071238 | 0.0579945 |
| Skin* | 37 | 75 | 2.5600000 | 0.5981955 | 3.000 | 2.6393443 | 0.0000000 | 1 | 3 | 2 | -0.9752917 | -0.0977132 | 0.0690737 |
| ArthritisMD* | 38 | 75 | 1.3066667 | 0.4642149 | 1.000 | 1.2622951 | 0.0000000 | 1 | 2 | 1 | 0.8218415 | -1.3419380 | 0.0536029 |
| AsthmaMD* | 39 | 75 | 1.1733333 | 0.3810843 | 1.000 | 1.0983607 | 0.0000000 | 1 | 2 | 1 | 1.6915477 | 0.8735113 | 0.0440038 |
| CancerMD* | 40 | 75 | 1.0800000 | 0.2731201 | 1.000 | 1.0000000 | 0.0000000 | 1 | 2 | 1 | 3.0345623 | 7.3065198 | 0.0315372 |
| DiabetesMD* | 41 | 75 | 1.1466667 | 0.3561556 | 1.000 | 1.0655738 | 0.0000000 | 1 | 2 | 1 | 1.9576959 | 1.8578758 | 0.0411253 |
| HeartDisMD* | 42 | 75 | 1.0933333 | 0.2928579 | 1.000 | 1.0000000 | 0.0000000 | 1 | 2 | 1 | 2.7401986 | 5.5836683 | 0.0338163 |
| HypertensionMD* | 43 | 75 | 1.4266667 | 0.4979236 | 1.000 | 1.4098361 | 0.0000000 | 1 | 2 | 1 | 0.2906291 | -1.9408822 | 0.0574953 |
| MentalMD* | 44 | 75 | 2.0666667 | 0.3001501 | 2.000 | 2.0000000 | 0.0000000 | 1 | 3 | 2 | 1.7970267 | 6.6085547 | 0.0346583 |
| ObesityMD* | 45 | 75 | 1.1466667 | 0.3561556 | 1.000 | 1.0655738 | 0.0000000 | 1 | 2 | 1 | 1.9576959 | 1.8578758 | 0.0411253 |
| OralHealthMD* | 46 | 75 | 1.0933333 | 0.2928579 | 1.000 | 1.0000000 | 0.0000000 | 1 | 2 | 1 | 2.7401986 | 5.5836683 | 0.0338163 |
| HandicapMD* | 47 | 75 | 1.0800000 | 0.2731201 | 1.000 | 1.0000000 | 0.0000000 | 1 | 2 | 1 | 3.0345623 | 7.3065198 | 0.0315372 |
| SkinMD* | 48 | 75 | 1.1200000 | 0.3271499 | 1.000 | 1.0327869 | 0.0000000 | 1 | 2 | 1 | 2.2921198 | 3.2983219 | 0.0377760 |
| HL1_HlthIns* | 49 | 75 | 2.7200000 | 0.6889083 | 3.000 | 2.8852459 | 0.0000000 | 1 | 3 | 2 | -2.0330315 | 2.2201156 | 0.0795483 |
| HL2_PrimHlthInfo* | 50 | 75 | 2.1066667 | 1.7130133 | 1.000 | 1.7868852 | 0.0000000 | 1 | 6 | 5 | 1.1894427 | -0.0643961 | 0.1978017 |
| HL3_HelpReadHlth* | 51 | 75 | 2.8933333 | 1.2900171 | 2.000 | 2.8360656 | 1.4826000 | 1 | 5 | 4 | 0.5682818 | -1.1000647 | 0.1489583 |
| HL4_ConfHlthForms* | 52 | 75 | 3.1466667 | 1.1705085 | 3.000 | 3.1311475 | 1.4826000 | 1 | 5 | 4 | -0.0818669 | -1.2977257 | 0.1351587 |
| HL_5ProbLngMedCond* | 53 | 75 | 2.8400000 | 1.2738535 | 2.000 | 2.7704918 | 1.4826000 | 1 | 5 | 4 | 0.6833815 | -0.9172750 | 0.1470919 |
| HL_6ProbUnderstand* | 54 | 75 | 2.8133333 | 1.1705085 | 2.000 | 2.6721311 | 0.0000000 | 1 | 5 | 4 | 1.0082035 | -0.4908273 | 0.1351587 |
| H20_WaterSrce* | 55 | 75 | 2.3600000 | 0.8324500 | 3.000 | 2.4426230 | 0.0000000 | 1 | 3 | 2 | -0.7368929 | -1.1737364 | 0.0961230 |
| H20_Well.* | 56 | 75 | 1.3333333 | 0.4745790 | 1.000 | 1.2950820 | 0.0000000 | 1 | 2 | 1 | 0.6930119 | -1.5397333 | 0.0547997 |
| H20_Cook* | 57 | 75 | 2.4266667 | 1.6939745 | 1.000 | 2.2950820 | 0.0000000 | 1 | 5 | 4 | 0.4453754 | -1.6358510 | 0.1956033 |
| H20_DrinkTap* | 58 | 75 | 2.3733333 | 1.1000409 | 2.000 | 2.3442623 | 1.4826000 | 1 | 4 | 3 | 0.2584751 | -1.2779474 | 0.1270218 |
| H20_FilterTap* | 59 | 75 | 2.5733333 | 1.2430709 | 2.000 | 2.5901639 | 1.4826000 | 1 | 4 | 3 | 0.0846106 | -1.6742155 | 0.1435375 |
| H20_HowFilter* | 60 | 75 | 3.2000000 | 1.2192155 | 3.000 | 3.1639344 | 0.0000000 | 1 | 7 | 6 | 0.6356397 | 1.5217580 | 0.1407829 |
| H20_Smell | 61 | 75 | 0.3866667 | 0.4902656 | 0.000 | 0.3606557 | 0.0000000 | 0 | 1 | 1 | 0.4561700 | -1.8155858 | 0.0566110 |
| H20_Taste | 62 | 75 | 0.2000000 | 0.4026936 | 0.000 | 0.1311475 | 0.0000000 | 0 | 1 | 1 | 1.4701002 | 0.1639111 | 0.0464991 |
| H20_Appear | 63 | 75 | 0.4666667 | 0.5022472 | 0.000 | 0.4590164 | 0.0000000 | 0 | 1 | 1 | 0.1309669 | -2.0091048 | 0.0579945 |
| AnyChange | 64 | 75 | 0.6133333 | 0.4902656 | 1.000 | 0.6393443 | 0.0000000 | 0 | 1 | 1 | -0.4561700 | -1.8155858 | 0.0566110 |
| H20_Tested* | 65 | 75 | 1.4666667 | 0.8436301 | 1.000 | 1.3442623 | 0.0000000 | 1 | 3 | 2 | 1.2356753 | -0.4531321 | 0.0974140 |
| H20_Concerns* | 66 | 75 | 2.1866667 | 0.9821836 | 3.000 | 2.2295082 | 0.0000000 | 1 | 3 | 2 | -0.3724106 | -1.8717957 | 0.1134128 |
| H20_SafeDrink* | 67 | 75 | 2.4533333 | 1.1424645 | 3.000 | 2.4426230 | 1.4826000 | 1 | 4 | 3 | -0.0746190 | -1.4592173 | 0.1319204 |
| H20_SafeCook* | 68 | 75 | 3.1200000 | 1.6518622 | 4.000 | 3.1475410 | 1.4826000 | 1 | 5 | 4 | -0.0645488 | -1.7249385 | 0.1907406 |
| EHL_TotalColiform | 69 | 75 | 0.4266667 | 0.4979236 | 0.000 | 0.4098361 | 0.0000000 | 0 | 1 | 1 | 0.2906291 | -1.9408822 | 0.0574953 |
| EHL_ColiformNotSafe | 70 | 75 | 0.7866667 | 0.4124198 | 1.000 | 0.8524590 | 0.0000000 | 0 | 1 | 1 | -1.3716337 | -0.1196859 | 0.0476221 |
| EHL_Boil | 71 | 75 | 0.5466667 | 0.5011698 | 1.000 | 0.5573770 | 0.0000000 | 0 | 1 | 1 | -0.1837479 | -1.9922693 | 0.0578701 |
| EHL_Less15mgl | 72 | 75 | 0.5200000 | 0.5029642 | 1.000 | 0.5245902 | 0.0000000 | 0 | 1 | 1 | -0.0784681 | -2.0202484 | 0.0580773 |
| EHL_Nitrates | 73 | 75 | 0.7600000 | 0.4299591 | 1.000 | 0.8196721 | 0.0000000 | 0 | 1 | 1 | -1.1932917 | -0.5833014 | 0.0496474 |
| EHL_WhereCollected | 74 | 75 | 0.7733333 | 0.4214946 | 1.000 | 0.8360656 | 0.0000000 | 0 | 1 | 1 | -1.2796791 | -0.3667808 | 0.0486700 |
#########################################################
One of the research questions was the knowledge performance based on respondent demographics. A histogram of response correctness illustrates that the distribution is negatively skewed. Parsing this variable by country group, by age, and by gender reveals little differentiation.
##############Demographic Plots####################
myf=function(x,labl){
myt=data.frame(table(x, useNA="ifany"))
colnames(myt)=c(labl, "Freq")
myt$Percent=myt$Freq/65
a=ggplot(myt, aes(x=reorder(myt[,1],-Percent), y=Percent))+
geom_bar(stat="identity", fill="lightblue")+
ylab("Percent")+
xlab(labl)+
geom_text(aes(label=Freq), vjust=1.6, color="black", size=3.5)
print(a)
}
mylab=colnames(mydata)
for (i in 16:length(mydata)){
myf(mydata[,i], mylab[i])
}
#########################################################
start=15
z=length(mydata)
a=rep(0,200)
b=rep("",200)
k=1
for (i in 1:58){
j=2
while(j<=58){
mytest=fisher.test(mydata[,i+start],mydata[,j+start], simulate.p.value=TRUE)$p.value
if(mytest<.05 & j!=i)
{
a[k]=mytest
b[k]=paste(mylab[i+start],mylab[j+start])
k=k+1
}
j=j+1
}
}
a=sort(round(a,4))
xtabs=data.frame(a)
colnames(xtabs)=c("p.value")
rownames(xtabs)=b
xtabs
## p.value
## WellTest Gender 0.0000
## WellTest Ethnicity 0.0000
## WellTest Income 0.0000
## WellTest Health 0.0000
## WellTest WIYesMOG 0.0000
## WellTest Asthma 0.0003
## WellTest Diabetes 0.0003
## WellTest CancerMD 0.0004
## WellTest H20_WaterSrce 0.0004
## WellTest H20_Well. 0.0005
## WellTest H20_Cook 0.0005
## WellTest H20_DrinkTap 0.0005
## WellTest H20_FilterTap 0.0005
## WellTest H20_HowFilter 0.0005
## WellTest H20_Appear 0.0005
## WellTest AnyChange 0.0005
## WellTest H20_Tested 0.0005
## WellTest H20_Concerns 0.0005
## WellTest H20_SafeDrink 0.0005
## WellTest H20_SafeCook 0.0005
## WellTest EHL_ColiformNotSafe 0.0005
## Gender Ethnicity 0.0005
## Gender OGJob 0.0005
## Gender PreOGJob 0.0005
## Gender WIYesMOG 0.0005
## Gender CancerMD 0.0005
## Gender HL3_HelpReadHlth 0.0005
## Gender H20_WaterSrce 0.0005
## Gender H20_Appear 0.0005
## Gender H20_SafeCook 0.0005
## Ethnicity Gender 0.0005
## Ethnicity Race 0.0005
## Ethnicity Income 0.0005
## Ethnicity Health 0.0005
## Ethnicity WIYesMOG 0.0005
## Ethnicity Asthma 0.0005
## Ethnicity Diabetes 0.0005
## Ethnicity Mental 0.0005
## Ethnicity CancerMD 0.0005
## Ethnicity HL4_ConfHlthForms 0.0005
## Ethnicity H20_WaterSrce 0.0005
## Ethnicity H20_Well. 0.0005
## Ethnicity H20_Cook 0.0005
## Ethnicity H20_FilterTap 0.0005
## Ethnicity H20_HowFilter 0.0005
## Ethnicity H20_Appear 0.0005
## Ethnicity AnyChange 0.0005
## Ethnicity H20_Tested 0.0005
## Ethnicity H20_Concerns 0.0005
## Ethnicity H20_SafeDrink 0.0005
## Ethnicity H20_SafeCook 0.0005
## Race Ethnicity 0.0005
## Race Income 0.0005
## Race Arthritis 0.0005
## Race Asthma 0.0005
## Race Diabetes 0.0005
## Race Hypertension 0.0005
## Race Mental 0.0005
## Race OralHealth 0.0005
## Race Handicap 0.0005
## Race HL1_HlthIns 0.0005
## Race H20_Cook 0.0005
## Race EHL_Boil 0.0005
## Race EHL_Nitrates 0.0005
## EdLevel Income 0.0005
## EdLevel Job 0.0005
## EdLevel Arthritis 0.0005
## EdLevel Diabetes 0.0005
## EdLevel HeartDisMD 0.0005
## EdLevel HL1_HlthIns 0.0005
## EdLevel HL4_ConfHlthForms 0.0005
## EdLevel HL_5ProbLngMedCond 0.0005
## EdLevel HL_6ProbUnderstand 0.0005
## EdLevel H20_FilterTap 0.0005
## EdLevel H20_Smell 0.0005
## EdLevel EHL_TotalColiform 0.0005
## EdLevel EHL_Boil 0.0005
## EdLevel EHL_Nitrates 0.0005
## Income Ethnicity 0.0005
## Income Race 0.0005
## Income EdLevel 0.0005
## Income Health 0.0005
## Income WIYesMOG 0.0005
## Income Hypertension 0.0005
## Income CancerMD 0.0005
## Income HL1_HlthIns 0.0005
## Income H20_WaterSrce 0.0005
## Income H20_Well. 0.0005
## Income H20_Cook 0.0005
## Income H20_Taste 0.0005
## Income H20_Appear 0.0005
## Income AnyChange 0.0005
## Health Ethnicity 0.0005
## Health Income 0.0005
## Health Skin 0.0005
## Health ArthritisMD 0.0005
## Health ObesityMD 0.0005
## Health H20_Well. 0.0005
## Health H20_Taste 0.0005
## Job EdLevel 0.0005
## Job HL_6ProbUnderstand 0.0005
## OGJob Gender 0.0005
## OGJob PreOGJob 0.0005
## OGJob CancerMD 0.0005
## PreOGJob Gender 0.0005
## PreOGJob OGJob 0.0005
## PreOGJob CancerMD 0.0005
## PreOGJob H20_Taste 0.0005
## WIYesMOG Gender 0.0005
## WIYesMOG Ethnicity 0.0005
## WIYesMOG Income 0.0005
## WIYesMOG Diabetes 0.0005
## WIYesMOG CancerMD 0.0005
## WIYesMOG H20_Well. 0.0005
## WIYesMOG H20_Cook 0.0005
## WIYesMOG H20_HowFilter 0.0005
## WIYesMOG H20_Tested 0.0005
## Arthritis Race 0.0005
## Arthritis Asthma 0.0005
## Arthritis Cancer 0.0005
## Arthritis Diabetes 0.0005
## Arthritis HeartDis 0.0005
## Arthritis Hypertension 0.0005
## Arthritis Mental 0.0005
## Arthritis Obesity 0.0005
## Arthritis OralHealth 0.0005
## Arthritis Handicap 0.0005
## Arthritis Skin 0.0005
## Arthritis ArthritisMD 0.0005
## Arthritis DiabetesMD 0.0005
## Arthritis HeartDisMD 0.0005
## Arthritis HandicapMD 0.0005
## Arthritis SkinMD 0.0005
## Arthritis HL_5ProbLngMedCond 0.0005
## Arthritis H20_SafeCook 0.0005
## Asthma Ethnicity 0.0005
## Asthma Race 0.0005
## Asthma Arthritis 0.0005
## Asthma Cancer 0.0005
## Asthma Diabetes 0.0005
## Asthma HeartDis 0.0005
## Asthma Hypertension 0.0005
## Asthma Mental 0.0005
## Asthma Obesity 0.0005
## Asthma OralHealth 0.0005
## Asthma Handicap 0.0005
## Asthma Skin 0.0005
## Asthma AsthmaMD 0.0005
## Asthma DiabetesMD 0.0005
## Asthma ObesityMD 0.0005
## Asthma HandicapMD 0.0005
## Asthma HL4_ConfHlthForms 0.0005
## Asthma HL_5ProbLngMedCond 0.0005
## Asthma H20_WaterSrce 0.0005
## Asthma H20_Cook 0.0005
## Asthma H20_DrinkTap 0.0005
## Asthma EHL_Boil 0.0005
## Asthma EHL_Less15mgl 0.0005
## Cancer Arthritis 0.0005
## Cancer Asthma 0.0005
## Cancer Diabetes 0.0005
## Cancer HeartDis 0.0005
## Cancer Hypertension 0.0005
## Cancer Mental 0.0005
## Cancer OralHealth 0.0005
## Cancer Handicap 0.0005
## Cancer Skin 0.0005
## Cancer ObesityMD 0.0005
## Cancer HL4_ConfHlthForms 0.0005
## Cancer HL_5ProbLngMedCond 0.0005
## Cancer H20_Taste 0.0005
## Cancer H20_SafeCook 0.0005
## Cancer EHL_Less15mgl 0.0005
## Diabetes Ethnicity 0.0005
## Diabetes Race 0.0005
## Diabetes EdLevel 0.0005
## Diabetes WIYesMOG 0.0005
## Diabetes Arthritis 0.0005
## Diabetes Asthma 0.0005
## Diabetes Cancer 0.0006
## Diabetes HeartDis 0.0006
## Diabetes Hypertension 0.0008
## Diabetes Mental 0.0009
## Diabetes Obesity 0.0009
## Diabetes OralHealth 0.0010
## Diabetes Handicap 0.0010
## Diabetes Skin 0.0010
## Diabetes ArthritisMD 0.0010
## Diabetes DiabetesMD 0.0010
## Diabetes HeartDisMD 0.0010
## Diabetes HandicapMD 0.0010
## Diabetes SkinMD 0.0010
## Diabetes HL_5ProbLngMedCond 0.0010
## Diabetes H20_Well. 0.0010
## Diabetes H20_Smell 0.0010
## Diabetes EHL_ColiformNotSafe 0.0010
## HeartDis Arthritis 0.0010
## HeartDis Asthma 0.0010
## HeartDis Cancer 0.0010
## HeartDis Diabetes 0.0010
## HeartDis Hypertension 0.0010
## HeartDis Mental 0.0010
## HeartDis Obesity 0.0010
## HeartDis OralHealth 0.0010
## HeartDis Handicap 0.0010
## HeartDis Skin 0.0010
## HeartDis DiabetesMD 0.0010
## HeartDis HeartDisMD 0.0010
## HeartDis OralHealthMD 0.0010
## HeartDis HandicapMD 0.0010
## HeartDis SkinMD 0.0010
## HeartDis HL2_PrimHlthInfo 0.0010
## HeartDis HL3_HelpReadHlth 0.0010
## HeartDis H20_Well. 0.0010
## HeartDis H20_FilterTap 0.0010
## Hypertension Race 0.0010
## Hypertension Income 0.0010
## Hypertension Arthritis 0.0010
## Hypertension Asthma 0.0010
## Hypertension Cancer 0.0010
## Hypertension Diabetes 0.0010
## Hypertension HeartDis 0.0010
## Hypertension Mental 0.0010
## Hypertension Obesity 0.0010
## Hypertension OralHealth 0.0010
## Hypertension Handicap 0.0010
## Hypertension Skin 0.0014
## Hypertension ArthritisMD 0.0014
## Hypertension DiabetesMD 0.0015
## Hypertension HeartDisMD 0.0015
## Hypertension OralHealthMD 0.0015
## Hypertension HandicapMD 0.0015
## Hypertension SkinMD 0.0015
## Hypertension HL2_PrimHlthInfo 0.0015
## Hypertension HL_5ProbLngMedCond 0.0015
## Hypertension H20_Smell 0.0015
## Mental Ethnicity 0.0015
## Mental Race 0.0015
## Mental Arthritis 0.0015
## Mental Asthma 0.0015
## Mental Cancer 0.0015
## Mental Diabetes 0.0015
## Mental HeartDis 0.0015
## Mental Hypertension 0.0015
## Mental Obesity 0.0015
## Mental OralHealth 0.0015
## Mental Handicap 0.0015
## Mental Skin 0.0015
## Mental DiabetesMD 0.0015
## Mental MentalMD 0.0015
## Mental HandicapMD 0.0015
## Mental SkinMD 0.0015
## Mental HL2_PrimHlthInfo 0.0015
## Mental HL3_HelpReadHlth 0.0015
## Mental HL4_ConfHlthForms 0.0015
## Mental H20_Well. 0.0015
## Obesity Arthritis 0.0019
## Obesity Asthma 0.0019
## Obesity Diabetes 0.0020
## Obesity HeartDis 0.0020
## Obesity Hypertension 0.0020
## Obesity Mental 0.0020
## Obesity OralHealth 0.0020
## Obesity Handicap 0.0020
## Obesity Skin 0.0020
## Obesity DiabetesMD 0.0020
## Obesity HeartDisMD 0.0020
## Obesity HypertensionMD 0.0020
## Obesity HandicapMD 0.0020
## Obesity SkinMD 0.0020
## Obesity HL3_HelpReadHlth 0.0020
## Obesity HL_5ProbLngMedCond 0.0020
## Obesity HL_6ProbUnderstand 0.0020
## Obesity H20_Well. 0.0020
## Obesity H20_Smell 0.0020
## OralHealth Race 0.0020
## OralHealth Arthritis 0.0020
## OralHealth Asthma 0.0020
## OralHealth Cancer 0.0020
## OralHealth Diabetes 0.0020
## OralHealth HeartDis 0.0020
## OralHealth Hypertension 0.0020
## OralHealth Mental 0.0020
## OralHealth Obesity 0.0024
## OralHealth Handicap 0.0024
## OralHealth Skin 0.0024
## OralHealth HandicapMD 0.0024
## OralHealth H20_WaterSrce 0.0025
## OralHealth H20_DrinkTap 0.0025
## OralHealth EHL_Boil 0.0025
## Handicap Race 0.0025
## Handicap Arthritis 0.0025
## Handicap Asthma 0.0025
## Handicap Cancer 0.0025
## Handicap Diabetes 0.0025
## Handicap HeartDis 0.0025
## Handicap Hypertension 0.0025
## Handicap Mental 0.0025
## Handicap Obesity 0.0026
## Handicap OralHealth 0.0026
## Handicap Skin 0.0028
## Handicap ArthritisMD 0.0028
## Handicap DiabetesMD 0.0028
## Handicap HeartDisMD 0.0028
## Handicap MentalMD 0.0030
## Handicap OralHealthMD 0.0030
## Handicap HandicapMD 0.0030
## Handicap SkinMD 0.0030
## Handicap HL_5ProbLngMedCond 0.0030
## Handicap HL_6ProbUnderstand 0.0030
## Handicap H20_Well. 0.0030
## Handicap H20_DrinkTap 0.0030
## Skin Health 0.0030
## Skin Arthritis 0.0030
## Skin Asthma 0.0030
## Skin Cancer 0.0030
## Skin Diabetes 0.0030
## Skin HeartDis 0.0030
## Skin Hypertension 0.0030
## Skin Mental 0.0030
## Skin Obesity 0.0030
## Skin OralHealth 0.0030
## Skin Handicap 0.0031
## Skin ArthritisMD 0.0031
## Skin DiabetesMD 0.0035
## Skin HeartDisMD 0.0035
## Skin HandicapMD 0.0035
## Skin SkinMD 0.0035
## Skin HL1_HlthIns 0.0035
## Skin HL4_ConfHlthForms 0.0035
## Skin HL_5ProbLngMedCond 0.0035
## Skin H20_DrinkTap 0.0035
## Skin H20_Smell 0.0035
## Skin H20_Taste 0.0035
## Skin EHL_ColiformNotSafe 0.0035
## Skin EHL_Boil 0.0035
## Skin EHL_Nitrates 0.0035
## ArthritisMD Health 0.0035
## ArthritisMD Arthritis 0.0035
## ArthritisMD Diabetes 0.0035
## ArthritisMD Hypertension 0.0040
## ArthritisMD Handicap 0.0040
## ArthritisMD Skin 0.0040
## ArthritisMD DiabetesMD 0.0040
## ArthritisMD HeartDisMD 0.0040
## ArthritisMD OralHealthMD 0.0040
## ArthritisMD HandicapMD 0.0040
## ArthritisMD H20_Smell 0.0040
## AsthmaMD SkinMD 0.0040
## AsthmaMD H20_Smell 0.0040
## CancerMD Gender 0.0040
## CancerMD Ethnicity 0.0045
## CancerMD Income 0.0045
## CancerMD OGJob 0.0045
## CancerMD PreOGJob 0.0045
## CancerMD WIYesMOG 0.0045
## CancerMD H20_WaterSrce 0.0045
## CancerMD H20_Well. 0.0045
## CancerMD H20_Cook 0.0045
## CancerMD H20_Tested 0.0045
## CancerMD H20_SafeDrink 0.0045
## DiabetesMD Arthritis 0.0045
## DiabetesMD Asthma 0.0048
## DiabetesMD Diabetes 0.0048
## DiabetesMD HeartDis 0.0050
## DiabetesMD Hypertension 0.0050
## DiabetesMD Mental 0.0050
## DiabetesMD Obesity 0.0050
## DiabetesMD Handicap 0.0055
## DiabetesMD Skin 0.0055
## DiabetesMD ArthritisMD 0.0055
## DiabetesMD HeartDisMD 0.0055
## DiabetesMD HypertensionMD 0.0055
## DiabetesMD HandicapMD 0.0055
## DiabetesMD SkinMD 0.0055
## DiabetesMD HL_5ProbLngMedCond 0.0055
## DiabetesMD HL_6ProbUnderstand 0.0055
## DiabetesMD EHL_Nitrates 0.0055
## HeartDisMD EdLevel 0.0055
## HeartDisMD Arthritis 0.0060
## HeartDisMD Diabetes 0.0060
## HeartDisMD HeartDis 0.0060
## HeartDisMD Hypertension 0.0060
## HeartDisMD Obesity 0.0060
## HeartDisMD OralHealth 0.0060
## HeartDisMD Handicap 0.0060
## HeartDisMD Skin 0.0060
## HeartDisMD ArthritisMD 0.0065
## HeartDisMD DiabetesMD 0.0065
## HeartDisMD OralHealthMD 0.0065
## HeartDisMD HandicapMD 0.0065
## HeartDisMD SkinMD 0.0065
## HeartDisMD HL_5ProbLngMedCond 0.0065
## HeartDisMD H20_Cook 0.0070
## HeartDisMD H20_Smell 0.0070
## HeartDisMD H20_Taste 0.0070
## HeartDisMD H20_Appear 0.0070
## HeartDisMD AnyChange 0.0070
## HeartDisMD H20_SafeDrink 0.0074
## HeartDisMD H20_SafeCook 0.0074
## HeartDisMD EHL_Boil 0.0075
## HypertensionMD Obesity 0.0075
## HypertensionMD DiabetesMD 0.0075
## HypertensionMD SkinMD 0.0075
## MentalMD Mental 0.0075
## MentalMD Handicap 0.0075
## MentalMD ObesityMD 0.0077
## MentalMD HL_5ProbLngMedCond 0.0077
## MentalMD HL_6ProbUnderstand 0.0080
## MentalMD H20_Cook 0.0080
## MentalMD EHL_Less15mgl 0.0080
## ObesityMD Health 0.0080
## ObesityMD Asthma 0.0085
## ObesityMD Cancer 0.0085
## ObesityMD MentalMD 0.0085
## ObesityMD EHL_Less15mgl 0.0085
## OralHealthMD HeartDis 0.0085
## OralHealthMD Hypertension 0.0085
## OralHealthMD Handicap 0.0085
## OralHealthMD ArthritisMD 0.0085
## OralHealthMD HeartDisMD 0.0085
## OralHealthMD SkinMD 0.0085
## OralHealthMD HL2_PrimHlthInfo 0.0085
## OralHealthMD HL_5ProbLngMedCond 0.0085
## HandicapMD Arthritis 0.0085
## HandicapMD Asthma 0.0085
## HandicapMD Diabetes 0.0085
## HandicapMD HeartDis 0.0085
## HandicapMD Hypertension 0.0090
## HandicapMD Mental 0.0090
## HandicapMD Obesity 0.0090
## HandicapMD OralHealth 0.0090
## HandicapMD Handicap 0.0090
## HandicapMD Skin 0.0090
## HandicapMD ArthritisMD 0.0092
## HandicapMD DiabetesMD 0.0092
## HandicapMD HeartDisMD 0.0095
## HandicapMD SkinMD 0.0095
## HandicapMD HL3_HelpReadHlth 0.0095
## HandicapMD HL_5ProbLngMedCond 0.0095
## HandicapMD H20_Smell 0.0095
## HandicapMD H20_Taste 0.0095
## HandicapMD H20_SafeCook 0.0095
## SkinMD Arthritis 0.0095
## SkinMD Diabetes 0.0095
## SkinMD HeartDis 0.0100
## SkinMD Hypertension 0.0100
## SkinMD Mental 0.0100
## SkinMD Obesity 0.0100
## SkinMD Handicap 0.0100
## SkinMD Skin 0.0100
## SkinMD AsthmaMD 0.0100
## SkinMD DiabetesMD 0.0100
## SkinMD HeartDisMD 0.0100
## SkinMD HypertensionMD 0.0105
## SkinMD OralHealthMD 0.0105
## SkinMD HandicapMD 0.0105
## SkinMD HL_5ProbLngMedCond 0.0105
## SkinMD H20_Concerns 0.0105
## HL1_HlthIns Race 0.0110
## HL1_HlthIns EdLevel 0.0110
## HL1_HlthIns Income 0.0110
## HL1_HlthIns Skin 0.0110
## HL1_HlthIns HL2_PrimHlthInfo 0.0110
## HL1_HlthIns HL4_ConfHlthForms 0.0110
## HL1_HlthIns H20_Cook 0.0112
## HL1_HlthIns H20_SafeCook 0.0112
## HL1_HlthIns EHL_Nitrates 0.0115
## HL2_PrimHlthInfo HeartDis 0.0115
## HL2_PrimHlthInfo Hypertension 0.0118
## HL2_PrimHlthInfo OralHealthMD 0.0118
## HL2_PrimHlthInfo HL1_HlthIns 0.0120
## HL2_PrimHlthInfo HL_5ProbLngMedCond 0.0120
## HL3_HelpReadHlth Gender 0.0120
## HL3_HelpReadHlth HeartDis 0.0120
## HL3_HelpReadHlth Mental 0.0120
## HL3_HelpReadHlth Obesity 0.0120
## HL3_HelpReadHlth HeartDisMD 0.0120
## HL3_HelpReadHlth HandicapMD 0.0120
## HL3_HelpReadHlth HL_5ProbLngMedCond 0.0120
## HL3_HelpReadHlth H20_Taste 0.0125
## HL3_HelpReadHlth EHL_Less15mgl 0.0125
## HL4_ConfHlthForms Ethnicity 0.0125
## HL4_ConfHlthForms EdLevel 0.0125
## HL4_ConfHlthForms Asthma 0.0129
## HL4_ConfHlthForms Cancer 0.0129
## HL4_ConfHlthForms Mental 0.0130
## HL4_ConfHlthForms Skin 0.0130
## HL4_ConfHlthForms HL1_HlthIns 0.0130
## HL4_ConfHlthForms HL_5ProbLngMedCond 0.0130
## HL4_ConfHlthForms HL_6ProbUnderstand 0.0135
## HL4_ConfHlthForms H20_Appear 0.0135
## HL4_ConfHlthForms AnyChange 0.0135
## HL4_ConfHlthForms EHL_Less15mgl 0.0135
## HL4_ConfHlthForms EHL_Nitrates 0.0135
## HL_5ProbLngMedCond EdLevel 0.0135
## HL_5ProbLngMedCond Arthritis 0.0140
## HL_5ProbLngMedCond Asthma 0.0140
## HL_5ProbLngMedCond Cancer 0.0140
## HL_5ProbLngMedCond Diabetes 0.0140
## HL_5ProbLngMedCond Hypertension 0.0140
## HL_5ProbLngMedCond Obesity 0.0140
## HL_5ProbLngMedCond Handicap 0.0140
## HL_5ProbLngMedCond Skin 0.0141
## HL_5ProbLngMedCond DiabetesMD 0.0141
## HL_5ProbLngMedCond HeartDisMD 0.0145
## HL_5ProbLngMedCond HypertensionMD 0.0145
## HL_5ProbLngMedCond MentalMD 0.0150
## HL_5ProbLngMedCond OralHealthMD 0.0150
## HL_5ProbLngMedCond HandicapMD 0.0150
## HL_5ProbLngMedCond SkinMD 0.0150
## HL_5ProbLngMedCond HL2_PrimHlthInfo 0.0150
## HL_5ProbLngMedCond HL3_HelpReadHlth 0.0153
## HL_5ProbLngMedCond HL4_ConfHlthForms 0.0153
## HL_5ProbLngMedCond HL_6ProbUnderstand 0.0155
## HL_5ProbLngMedCond H20_Cook 0.0155
## HL_5ProbLngMedCond H20_Taste 0.0155
## HL_5ProbLngMedCond EHL_TotalColiform 0.0155
## HL_6ProbUnderstand EdLevel 0.0155
## HL_6ProbUnderstand Job 0.0155
## HL_6ProbUnderstand Handicap 0.0156
## HL_6ProbUnderstand DiabetesMD 0.0156
## HL_6ProbUnderstand MentalMD 0.0160
## HL_6ProbUnderstand HL4_ConfHlthForms 0.0160
## HL_6ProbUnderstand HL_5ProbLngMedCond 0.0160
## HL_6ProbUnderstand H20_Taste 0.0160
## H20_WaterSrce Gender 0.0160
## H20_WaterSrce Ethnicity 0.0165
## H20_WaterSrce Asthma 0.0165
## H20_WaterSrce OralHealth 0.0165
## H20_WaterSrce CancerMD 0.0165
## H20_WaterSrce H20_Well. 0.0165
## H20_WaterSrce H20_Cook 0.0165
## H20_WaterSrce H20_DrinkTap 0.0165
## H20_WaterSrce H20_FilterTap 0.0169
## H20_WaterSrce H20_HowFilter 0.0170
## H20_WaterSrce H20_Appear 0.0170
## H20_WaterSrce AnyChange 0.0170
## H20_WaterSrce H20_Tested 0.0170
## H20_WaterSrce H20_Concerns 0.0175
## H20_WaterSrce H20_SafeDrink 0.0175
## H20_WaterSrce H20_SafeCook 0.0175
## H20_WaterSrce EHL_ColiformNotSafe 0.0175
## H20_Well. Ethnicity 0.0180
## H20_Well. Income 0.0180
## H20_Well. Health 0.0180
## H20_Well. WIYesMOG 0.0180
## H20_Well. Diabetes 0.0180
## H20_Well. HeartDis 0.0183
## H20_Well. Mental 0.0183
## H20_Well. Obesity 0.0185
## H20_Well. Handicap 0.0185
## H20_Well. CancerMD 0.0187
## H20_Well. H20_WaterSrce 0.0187
## H20_Well. H20_Cook 0.0190
## H20_Well. H20_DrinkTap 0.0190
## H20_Well. H20_FilterTap 0.0190
## H20_Well. H20_HowFilter 0.0190
## H20_Well. H20_Appear 0.0190
## H20_Well. H20_Tested 0.0195
## H20_Well. H20_Concerns 0.0195
## H20_Well. H20_SafeDrink 0.0195
## H20_Well. EHL_ColiformNotSafe 0.0195
## H20_Cook Ethnicity 0.0195
## H20_Cook Race 0.0195
## H20_Cook Income 0.0195
## H20_Cook WIYesMOG 0.0200
## H20_Cook Asthma 0.0200
## H20_Cook CancerMD 0.0200
## H20_Cook HeartDisMD 0.0205
## H20_Cook MentalMD 0.0205
## H20_Cook HL1_HlthIns 0.0205
## H20_Cook HL_5ProbLngMedCond 0.0205
## H20_Cook H20_WaterSrce 0.0205
## H20_Cook H20_Well. 0.0210
## H20_Cook H20_DrinkTap 0.0210
## H20_Cook H20_FilterTap 0.0210
## H20_Cook H20_HowFilter 0.0210
## H20_Cook H20_Appear 0.0215
## H20_Cook AnyChange 0.0220
## H20_Cook H20_Tested 0.0220
## H20_Cook H20_SafeDrink 0.0220
## H20_Cook H20_SafeCook 0.0225
## H20_Cook EHL_ColiformNotSafe 0.0225
## H20_DrinkTap Asthma 0.0225
## H20_DrinkTap OralHealth 0.0225
## H20_DrinkTap Skin 0.0230
## H20_DrinkTap H20_WaterSrce 0.0230
## H20_DrinkTap H20_Well. 0.0235
## H20_DrinkTap H20_Cook 0.0235
## H20_DrinkTap H20_FilterTap 0.0235
## H20_DrinkTap H20_Smell 0.0235
## H20_DrinkTap H20_Taste 0.0235
## H20_DrinkTap H20_Appear 0.0235
## H20_DrinkTap AnyChange 0.0235
## H20_DrinkTap H20_Tested 0.0240
## H20_DrinkTap H20_Concerns 0.0240
## H20_DrinkTap H20_SafeDrink 0.0245
## H20_DrinkTap H20_SafeCook 0.0250
## H20_DrinkTap EHL_ColiformNotSafe 0.0250
## H20_FilterTap Ethnicity 0.0250
## H20_FilterTap EdLevel 0.0250
## H20_FilterTap HeartDis 0.0255
## H20_FilterTap H20_WaterSrce 0.0255
## H20_FilterTap H20_Well. 0.0260
## H20_FilterTap H20_Cook 0.0260
## H20_FilterTap H20_DrinkTap 0.0260
## H20_FilterTap H20_HowFilter 0.0260
## H20_FilterTap H20_Appear 0.0260
## H20_FilterTap AnyChange 0.0260
## H20_FilterTap H20_SafeDrink 0.0264
## H20_FilterTap H20_SafeCook 0.0264
## H20_FilterTap EHL_Boil 0.0265
## H20_FilterTap EHL_Nitrates 0.0265
## H20_HowFilter Ethnicity 0.0270
## H20_HowFilter WIYesMOG 0.0275
## H20_HowFilter H20_WaterSrce 0.0275
## H20_HowFilter H20_Well. 0.0275
## H20_HowFilter H20_Cook 0.0280
## H20_HowFilter H20_FilterTap 0.0280
## H20_HowFilter H20_Smell 0.0280
## H20_HowFilter H20_Appear 0.0280
## H20_HowFilter AnyChange 0.0280
## H20_HowFilter H20_Concerns 0.0281
## H20_HowFilter H20_SafeDrink 0.0281
## H20_HowFilter EHL_Boil 0.0283
## H20_Smell EdLevel 0.0283
## H20_Smell Diabetes 0.0285
## H20_Smell Hypertension 0.0285
## H20_Smell Obesity 0.0285
## H20_Smell Skin 0.0290
## H20_Smell ArthritisMD 0.0290
## H20_Smell AsthmaMD 0.0290
## H20_Smell HeartDisMD 0.0290
## H20_Smell HandicapMD 0.0295
## H20_Smell H20_DrinkTap 0.0295
## H20_Smell H20_HowFilter 0.0295
## H20_Smell H20_Taste 0.0295
## H20_Smell H20_Appear 0.0295
## H20_Smell AnyChange 0.0295
## H20_Smell H20_Concerns 0.0300
## H20_Smell H20_SafeDrink 0.0300
## H20_Taste Income 0.0300
## H20_Taste Cancer 0.0305
## H20_Taste Skin 0.0305
## H20_Taste HeartDisMD 0.0305
## H20_Taste HandicapMD 0.0305
## H20_Taste HL3_HelpReadHlth 0.0310
## H20_Taste HL_5ProbLngMedCond 0.0310
## H20_Taste HL_6ProbUnderstand 0.0315
## H20_Taste H20_DrinkTap 0.0315
## H20_Taste H20_Smell 0.0315
## H20_Taste H20_Appear 0.0320
## H20_Taste AnyChange 0.0320
## H20_Taste H20_Concerns 0.0325
## H20_Taste H20_SafeDrink 0.0325
## H20_Appear Gender 0.0325
## H20_Appear Ethnicity 0.0325
## H20_Appear HeartDisMD 0.0325
## H20_Appear HL4_ConfHlthForms 0.0325
## H20_Appear H20_WaterSrce 0.0325
## H20_Appear H20_Well. 0.0330
## H20_Appear H20_Cook 0.0330
## H20_Appear H20_DrinkTap 0.0330
## H20_Appear H20_FilterTap 0.0330
## H20_Appear H20_HowFilter 0.0340
## H20_Appear H20_Smell 0.0340
## H20_Appear H20_Taste 0.0345
## H20_Appear AnyChange 0.0345
## H20_Appear H20_Concerns 0.0345
## H20_Appear H20_SafeDrink 0.0350
## H20_Appear H20_SafeCook 0.0355
## AnyChange Ethnicity 0.0355
## AnyChange Income 0.0355
## AnyChange HeartDisMD 0.0355
## AnyChange HL4_ConfHlthForms 0.0355
## AnyChange H20_WaterSrce 0.0360
## AnyChange H20_Cook 0.0360
## AnyChange H20_DrinkTap 0.0365
## AnyChange H20_FilterTap 0.0365
## AnyChange H20_HowFilter 0.0365
## AnyChange H20_Smell 0.0370
## AnyChange H20_Taste 0.0370
## AnyChange H20_Appear 0.0370
## AnyChange H20_Concerns 0.0370
## AnyChange H20_SafeDrink 0.0375
## AnyChange H20_SafeCook 0.0375
## H20_Tested Ethnicity 0.0380
## H20_Tested WIYesMOG 0.0381
## H20_Tested CancerMD 0.0381
## H20_Tested H20_WaterSrce 0.0384
## H20_Tested H20_Well. 0.0384
## H20_Tested H20_Cook 0.0385
## H20_Tested H20_DrinkTap 0.0385
## H20_Tested H20_SafeDrink 0.0388
## H20_Tested EHL_ColiformNotSafe 0.0388
## H20_Concerns Ethnicity 0.0390
## H20_Concerns SkinMD 0.0390
## H20_Concerns H20_WaterSrce 0.0395
## H20_Concerns H20_Well. 0.0395
## H20_Concerns H20_DrinkTap 0.0395
## H20_Concerns H20_HowFilter 0.0400
## H20_Concerns H20_Smell 0.0400
## H20_Concerns H20_Taste 0.0400
## H20_Concerns H20_Appear 0.0400
## H20_Concerns AnyChange 0.0405
## H20_Concerns H20_SafeDrink 0.0405
## H20_Concerns H20_SafeCook 0.0405
## H20_SafeDrink Ethnicity 0.0405
## H20_SafeDrink CancerMD 0.0405
## H20_SafeDrink HeartDisMD 0.0410
## H20_SafeDrink H20_WaterSrce 0.0410
## H20_SafeDrink H20_Well. 0.0410
## H20_SafeDrink H20_Cook 0.0410
## H20_SafeDrink H20_DrinkTap 0.0410
## H20_SafeDrink H20_FilterTap 0.0415
## H20_SafeDrink H20_HowFilter 0.0418
## H20_SafeDrink H20_Smell 0.0418
## H20_SafeDrink H20_Taste 0.0420
## H20_SafeDrink H20_Appear 0.0420
## H20_SafeDrink AnyChange 0.0420
## H20_SafeDrink H20_Tested 0.0420
## H20_SafeDrink H20_Concerns 0.0420
## H20_SafeDrink H20_SafeCook 0.0420
## H20_SafeCook Gender 0.0420
## H20_SafeCook Ethnicity 0.0425
## H20_SafeCook Arthritis 0.0430
## H20_SafeCook Cancer 0.0430
## H20_SafeCook HeartDisMD 0.0430
## H20_SafeCook HandicapMD 0.0431
## H20_SafeCook HL1_HlthIns 0.0431
## H20_SafeCook H20_WaterSrce 0.0435
## H20_SafeCook H20_Cook 0.0435
## H20_SafeCook H20_DrinkTap 0.0435
## H20_SafeCook H20_FilterTap 0.0440
## H20_SafeCook H20_Appear 0.0440
## H20_SafeCook AnyChange 0.0445
## H20_SafeCook H20_Concerns 0.0445
## H20_SafeCook H20_SafeDrink 0.0445
## EHL_TotalColiform EdLevel 0.0445
## EHL_TotalColiform HL_5ProbLngMedCond 0.0450
## EHL_TotalColiform EHL_ColiformNotSafe 0.0450
## EHL_TotalColiform EHL_Boil 0.0450
## EHL_TotalColiform EHL_Less15mgl 0.0455
## EHL_ColiformNotSafe Diabetes 0.0455
## EHL_ColiformNotSafe Skin 0.0455
## EHL_ColiformNotSafe H20_WaterSrce 0.0455
## EHL_ColiformNotSafe H20_Well. 0.0455
## EHL_ColiformNotSafe H20_Cook 0.0455
## EHL_ColiformNotSafe H20_DrinkTap 0.0460
## EHL_ColiformNotSafe H20_Tested 0.0460
## EHL_ColiformNotSafe EHL_TotalColiform 0.0460
## EHL_Boil Race 0.0460
## EHL_Boil EdLevel 0.0465
## EHL_Boil Asthma 0.0465
## EHL_Boil Cancer 0.0470
## EHL_Boil OralHealth 0.0470
## EHL_Boil Skin 0.0470
## EHL_Boil HeartDisMD 0.0475
## EHL_Boil H20_FilterTap 0.0475
## EHL_Boil H20_HowFilter 0.0475
## EHL_Boil EHL_TotalColiform 0.0480
## EHL_Boil EHL_Less15mgl 0.0480
## EHL_Boil EHL_Nitrates 0.0480
## EHL_Less15mgl Asthma 0.0480
## EHL_Less15mgl Cancer 0.0485
## EHL_Less15mgl MentalMD 0.0485
## EHL_Less15mgl ObesityMD 0.0485
## EHL_Less15mgl HL3_HelpReadHlth 0.0485
## EHL_Less15mgl HL4_ConfHlthForms 0.0487
## EHL_Less15mgl EHL_TotalColiform 0.0487
## EHL_Less15mgl EHL_Boil 0.0490
## EHL_Less15mgl EHL_Nitrates 0.0490
## EHL_Nitrates Race 0.0495
## EHL_Nitrates EdLevel 0.0495
## EHL_Nitrates Skin 0.0500
## EHL_Nitrates DiabetesMD 0.0500
## EHL_Nitrates HL1_HlthIns 0.0500
## EHL_Nitrates HL4_ConfHlthForms 0.0500
## EHL_Nitrates H20_FilterTap 0.0500
## EHL_Nitrates EHL_Boil 0.0500
## EHL_Nitrates EHL_Less15mgl 0.0500
##############Plot of Percent Correct####################
z=ggplot(mydata, aes(x=PerCorrect))+
geom_histogram(bins=5, fill="lightblue", color="black")+
ylab("Frequency")+
xlab("Percent Correct")
z
#########################################################
##################Facet Grid by EdLevel#####################
p<-ggplot(mydata, aes(x=PerCorrect))+
geom_histogram(bins=6,color="black", fill="lightblue")+
facet_grid(EdLevel~ .)+
ylab("Counts")+
xlab("Percent Correct")
p
#########################################################
##################Facet by Gender########################
q<-ggplot(mydata, aes(x=PerCorrect))+
geom_histogram(bins=6,color="black", fill="lightblue")+
facet_grid(Gender ~ .)+
ylab("Counts")+
xlab("Percent Correct")
q
#########################################################
Univariate tables..These are parsed for article preparation.
#####################Tables##############################
for (i in 5: length(mydata)){
t=data.frame(table(mydata[,i]))
colnames(t)=c(colnames(mydata[i]), "Freq")
print(t)
}
## PerCorrect Freq
## 1 0 3
## 2 0.167 6
## 3 0.333 10
## 4 0.5 11
## 5 0.667 15
## 6 0.833 13
## 7 1 17
## YrOGJob Freq
## 1 4 1
## 2 5 1
## 3 40 1
## YrPreOGJob Freq
## 1 2 3
## 2 3 1
## 3 5 1
## 4 20 1
## SmellText
## 1
## 2 a little sulfur
## 3 after oil explosion/smell odd
## 4 bad odor
## 5 bitter smell
## 6 chlorine smell
## 7 copper smell
## 8 every so often, bad smell, like rotten eggs
## 9 improved smell/sulfur smell decreased. Well blew out 5 miles away in the past year (SW Pearsall)
## 10 just different/tell you to run it/when they run out of water/when they clean system out
## 11 like bleach
## 12 like death
## 13 more chlorinated
## 14 once in awhile gets sulfur smell
## 15 once in awhile it smell bad source, back up sewage
## 16 rotten egg
## 17 rust
## 18 rusty type smell-metal type
## 19 sewage
## 20 sewage/butane smell-gas smell
## 21 sewage/old water
## 22 sewer
## 23 smell like sewer
## 24 smells like rust/dusty
## 25 smelly/sewer water
## 26 some smell but runs bleach through pipes
## 27 sometimes chlorine
## 28 stink/not sulfur/mineral
## 29 stinks/sewer water
## 30 ugly
## 31 urine
## Freq
## 1 44
## 2 1
## 3 1
## 4 1
## 5 1
## 6 1
## 7 1
## 8 1
## 9 1
## 10 1
## 11 1
## 12 1
## 13 1
## 14 1
## 15 1
## 16 1
## 17 1
## 18 1
## 19 1
## 20 1
## 21 1
## 22 1
## 23 1
## 24 1
## 25 1
## 26 1
## 27 1
## 28 1
## 29 1
## 30 1
## 31 2
## TasteText Freq
## 1 61
## 2 chlorine taste like swimming pool 1
## 3 just bad 1
## 4 just moved so it tastes different 1
## 5 mineral 1
## 6 not bitter or sweet but different 1
## 7 not good 1
## 8 not taste, body reacts when drink too much-bloated 1
## 9 rusty tasting 1
## 10 rusty/metal 1
## 11 salty 1
## 12 taste funny 1
## 13 tastes bad 1
## 14 tastes like minerals, dirty, yellpw water taste 1
## 15 tastes oily 1
## AppearText Freq
## 1 34
## 2 always yellow color 1
## 3 at school it's usually clear 1
## 4 better and clearer/before it was yellow 1
## 5 brown color 2
## 6 brown sometimes 1
## 7 brown, sediment sets at bottom of glass 1
## 8 cloudy 1
## 9 cloudy (air in water) 1
## 10 cloudy color/brown 1
## 11 cloudy, if sit gets tan color. If add chlorine turns chocolate 1
## 12 cloudy/sometimes rusty 1
## 13 dirty/iced tea 1
## 14 discolored/yellow 1
## 15 drty beige looking-not clean 1
## 16 foam when water plants. Residues/chemicals. Calcium minerals 1
## 17 looks fine but orange residue 1
## 18 looks like iced tea 1
## 19 looks yellow 1
## 20 more yellowish 1
## 21 oil in water/rust 1
## 22 oil in water/sweres exploded and changed water 1
## 23 red/orange 1
## 24 rusty 1
## 25 rusty white particles 1
## 26 rusty yellow 1
## 27 sometimes looks brownish 1
## 28 sometimes rusty 1
## 29 when cleaning it out 1
## 30 white materials 1
## 31 yellow 5
## 32 yellow color 1
## 33 yellow in color 1
## 34 yellow then clear then yellow 1
## 35 yellow; tints clothes yellow 1
## 36 yellowish color 1
## 37 yellowish/brownish 1
## TAP02 Freq
## 1 57
## 2 0 2
## 3 1-2 years ago 2
## 4 1 year ago 1
## 5 16-Jun 1
## 6 2 months ago 1
## 7 2 years ago 2
## 8 20 1
## 9 2008/8 years ago 1
## 10 5 years ago 1
## 11 6 months ago 1
## 12 88 2
## 13 about 10 years ago 1
## 14 last 12 months 1
## 15 was done last year 1
## TAP03
## 1
## 2 0
## 3 88
## 4 basic test and test came back good and safe to drink
## 5 did not tell me
## 6 does not remember but nothing bad, a lot of iron
## 7 everything looks good/put chlorine in tank
## 8 everything ok
## 9 good
## 10 had problem with sewer line; was safe to drink
## 11 hardness, installed water softener. It was full of rust/iron
## 12 not sure. Husband had it done
## 13 rust content
## 14 sodium-high, iron-high, all else high normal
## 15 Through Agrilife and tested for nitrates, fecal, and salts conductivity
## 16 through Agrilife and tested for salts, pH, minerals, and hydrocarbons
## 17 Through Agrilife, don't know test or results
## 18 With Agrilife and results came back good
## Freq
## 1 57
## 2 2
## 3 1
## 4 1
## 5 1
## 6 1
## 7 1
## 8 1
## 9 1
## 10 1
## 11 1
## 12 1
## 13 1
## 14 1
## 15 1
## 16 1
## 17 1
## 18 1
## TAP05
## 1
## 2 about city and how they're cleaning it. Test not good
## 3 appearance-white material. Doenst feel it I safe to drink
## 4 appearance/color
## 5 believes it's contaminated. Use onl for laundry except for whites because it changes white clothing brown
## 6 can't drink it and taste bad. Use only for laundry and don't cook with it
## 7 cancer because there is a lot of cancer in the area. Too many chemicals using on crops(pest&herbicides)
## 8 city has problems with pipes, sewer pipes, afraid they leak. Also, fracking, heard waste going into river. Maybe that's causing cancer
## 9 cloudiness, frequent shut down of water. No water in city to where can't use sinks or anything that involves water. Very hard water; stains shower curtains
## 10 color
## 11 color and smell s bad; ruins laundry (discolors clothing)
## 12 color; shouldn't be colored so believes something is wrong
## 13 comes out yellowish
## 14 doesn't know where to go with concerns about tastes and smell
## 15 don't believe that it is safe
## 16 drilling chemicals
## 17 feel not safe, bathe and wash clothes only
## 18 hard water
## 19 high mineral content, stains clothes and clog ups appliances
## 20 I don't really drink it
## 21 it might be bad because of smell
## 22 its up to the city
## 23 might not be clean/filtered
## 24 not fit to drink. Could be contaminated. When wash it stinks
## 25 not safe to drink
## 26 pollutants-lead and H2S
## 27 smell and color
## 28 smell and sometimes it comes rusty
## 29 snce fracking started, some of that stuff getting into my water. Earthquakes, casing breaks. Just don't know. "we can live without oil, but we can't live without drinking water"
## 30 stomach hurts when drink it and don't like the taste
## 31 that city testing inadequate and incomplete or found issue and not addressed. Water report poor print quality. Water report is 3 yrs old and no one cares
## 32 the appearance of water
## 33 the color and not sure if it's safe
## 34 the color. That's why don't drink. Use only for shower, dishes, and laundry
## 35 the smell of it
## 36 too much chlorine in water system
## 37 wants to keep clean and stays good
## 38 water lines in city are old and full of residue as exhibited on washers of sink
## 39 water pressure; water will be off for hours at a time
## 40 we only use for clothes but yes
## 41 what's in it/make sure it's clean
## 42 what's in it? We don't know why it is colored. Heard a lot of kids with cancer. Dirt in sink after cleaning it. Mostly but not all the time. 1
## 43 what am I drinking…metals?
## 44 what might be added into the water like metals, insecticides
## 45 when it's yellow
## 46 wife doesn't like drinking tap; buys own water at store
## 47 wonder abut but used to it, wait till get better
## 48 yellow color
## Freq
## 1 28
## 2 1
## 3 1
## 4 1
## 5 1
## 6 1
## 7 1
## 8 1
## 9 1
## 10 1
## 11 1
## 12 1
## 13 1
## 14 1
## 15 1
## 16 1
## 17 1
## 18 1
## 19 1
## 20 1
## 21 1
## 22 1
## 23 1
## 24 1
## 25 1
## 26 1
## 27 1
## 28 1
## 29 1
## 30 1
## 31 1
## 32 1
## 33 1
## 34 1
## 35 1
## 36 1
## 37 1
## 38 1
## 39 1
## 40 1
## 41 1
## 42 1
## 43 1
## 44 1
## 45 1
## 46 1
## 47 1
## 48 1
## Interviewer Freq
## 1 AM 9
## 2 AS 25
## 3 CM 27
## 4 KM 3
## 5 MV 6
## 6 PSG 5
## Location Freq
## 1 Agrilife Office 1
## 2 Agrilife Office at TAB meeting 1
## 3 Dilley Auto Shop 1
## 4 Dilley Beverage Barn 1
## 5 Dilley City Hall 1
## 6 Dilley High School 7
## 7 Dilley Police Station 1
## 8 Dilley Public Library 2
## 9 Frio County Hospital 5
## 10 Frio County Market 2
## 11 Frio County Market Day 25
## 12 Fro County Market Day 2
## 13 Home 17
## 14 Pearsall Rehab Cente 1
## 15 Pearsall Rehab Center 8
## WellTest Freq
## 1 N 57
## 2 Y 18
## Gender Freq
## 1 Female 47
## 2 Male 28
## Ethnicity Freq
## 1 Hispanic 45
## 2 Other 26
## 3 Unknown 4
## Race Freq
## 1 American Indian 1
## 2 No response 5
## 3 Other 13
## 4 White 56
## EdLevel Freq
## 1 <HS 9
## 2 CollegeGrad 18
## 3 GED 3
## 4 HS 19
## 5 PostHSTech 5
## 6 SomeCollege 21
## Income Freq
## 1 <25K 19
## 2 <35K 9
## 3 <50K 9
## 4 <75K 11
## 5 >75K 22
## 6 No answer 5
## Health Freq
## 1 Excellent 11
## 2 Fair 16
## 3 Good 25
## 4 No answer 1
## 5 Poor 2
## 6 Very Good 20
## Job Freq
## 1 Account Specialist 2
## 2 Admin Assistant at health center 1
## 3 Administration Assistant to Chief of Police 1
## 4 Advocate 1
## 5 Auto parts employee 1
## 6 Banker 1
## 7 Clerical/Legal Assistant 1
## 8 Cook at a restaurant 1
## 9 Custodian 2
## 10 Diesel Mechanic 1
## 11 Dietary Food Director 1
## 12 Disabled 3
## 13 Disabled/NA 1
## 14 District Conservationist with USDA and RCS 1
## 15 Extension Agent-Agriculture 1
## 16 Farmer/Rancher 1
## 17 Field Supervisor 1
## 18 Finance 1
## 19 Finance Secretary 1
## 20 Former Truck Driver 1
## 21 General Clerk 1
## 22 GEO South Texas 1
## 23 HEB Cashier 1
## 24 High School Teacher 3
## 25 High School Teacher/Coach 1
## 26 Housekeeping at hospital 1
## 27 Housewife 2
## 28 Insurance Agent 1
## 29 Insurance Service Representative 1
## 30 Library Assistant 1
## 31 Library Director 1
## 32 Not working 1
## 33 Oil Fields/Maintenance 1
## 34 Owner of furniture store 1
## 35 Pastor 1
## 36 Phlebotomist 1
## 37 Principal 1
## 38 Radiology Tech-Chief 1
## 39 Ranch Manager 1
## 40 Rancher 1
## 41 Registration Clerk 1
## 42 Retailer 1
## 43 Retired 10
## 44 Retired Teacher 1
## 45 Rope Manufacturer 1
## 46 Run Store/Owner Operator 1
## 47 Secondary student services/Teacher 1
## 48 Self-employed 2
## 49 Self-employed/Rancher 1
## 50 Stay at home mom 1
## 51 Stay at home parent 1
## 52 Store Manager 1
## 53 Student 3
## 54 Teacher 2
## 55 Unemployed 1
## OGJob Freq
## 1 No 72
## 2 Yes 3
## PreOGJob Freq
## 1 No 65
## 2 OGJob 3
## 3 Yes 7
## WIYesMOG Freq
## 1 Don't Know 13
## 2 No 44
## 3 Yes 18
## Arthritis Freq
## 1 Don't Know 9
## 2 No 56
## 3 Yes 10
## Asthma Freq
## 1 Don't Know 5
## 2 No 24
## 3 Yes 46
## Cancer Freq
## 1 Don't Know 5
## 2 No 25
## 3 Yes 45
## Diabetes Freq
## 1 Don't Know 5
## 2 No 56
## 3 Yes 14
## HeartDis Freq
## 1 Don't Know 6
## 2 No 54
## 3 Yes 15
## Hypertension Freq
## 1 Don't Know 6
## 2 No 49
## 3 Yes 20
## Mental Freq
## 1 Don't Know 6
## 2 No 47
## 3 Yes 22
## Obesity Freq
## 1 Don't Know 4
## 2 No 62
## 3 Yes 9
## OralHealth Freq
## 1 Don't Know 7
## 2 No 39
## 3 Yes 29
## Handicap Freq
## 1 Don't Know 7
## 2 No 56
## 3 Yes 12
## Skin Freq
## 1 Don't Know 4
## 2 No 25
## 3 Yes 46
## ArthritisMD Freq
## 1 No 52
## 2 Yes 23
## AsthmaMD Freq
## 1 No 62
## 2 Yes 13
## CancerMD Freq
## 1 No 69
## 2 Yes 6
## DiabetesMD Freq
## 1 No 64
## 2 Yes 11
## HeartDisMD Freq
## 1 No 68
## 2 Yes 7
## HypertensionMD Freq
## 1 No 43
## 2 Yes 32
## MentalMD Freq
## 1 Don't Know 1
## 2 No 68
## 3 Yes 6
## ObesityMD Freq
## 1 No 64
## 2 Yes 11
## OralHealthMD Freq
## 1 No 68
## 2 Yes 7
## HandicapMD Freq
## 1 No 69
## 2 Yes 6
## SkinMD Freq
## 1 No 66
## 2 Yes 9
## HL1_HlthIns Freq
## 1 No 10
## 2 No Answer 1
## 3 Yes 64
## HL2_PrimHlthInfo Freq
## 1 Doctor 49
## 2 Family 3
## 3 Friends 4
## 4 Internet 11
## 5 No Answer 1
## 6 Other 7
## HL3_HelpReadHlth Freq
## 1 Always 5
## 2 Never 36
## 3 Occasionally 11
## 4 Often 8
## 5 Sometimes 15
## HL4_ConfHlthForms Freq
## 1 A little bit 4
## 2 Extremely 26
## 3 Not at all 8
## 4 Quite a Bit 29
## 5 Somewhat 8
## HL_5ProbLngMedCond Freq
## 1 Always 5
## 2 Never 37
## 3 Occasionally 13
## 4 Often 5
## 5 Sometimes 15
## HL_6ProbUnderstand Freq
## 1 Always 1
## 2 Never 42
## 3 Occasionally 16
## 4 Often 2
## 5 Sometimes 14
## H20_WaterSrce Freq
## 1 City Water 17
## 2 Private Well 14
## 3 Purchased Water 44
## H20_Well. Freq
## 1 No 50
## 2 Yes 25
## H20_Cook Freq
## 1 City Water 42
## 2 No Answer 1
## 3 Other 3
## 4 Private Well 16
## 5 Purchased 13
## H20_DrinkTap Freq
## 1 Always 19
## 2 Never 26
## 3 Often 13
## 4 Rarely 17
## H20_FilterTap Freq
## 1 Never Drink It 18
## 2 No 26
## 3 No Answer 1
## 4 Yes 30
## H20_HowFilter Freq
## 1 Brita 8
## 2 Faucet 3
## 3 No Answer 45
## 4 Other 9
## 5 Refrigerator 7
## 6 Refrigerator / Reverse Osmosis 1
## 7 Reverse Osmosis 2
## H20_Smell Freq
## 1 0 46
## 2 1 29
## H20_Taste Freq
## 1 0 60
## 2 1 15
## H20_Appear Freq
## 1 0 40
## 2 1 35
## AnyChange Freq
## 1 0 29
## 2 1 46
## H20_Tested Freq
## 1 No 57
## 2 No Answer 1
## 3 Yes 17
## H20_Concerns Freq
## 1 No 30
## 2 No Answer 1
## 3 Yes 44
## H20_SafeDrink Freq
## 1 A Little Bit 23
## 2 Extremely 11
## 3 Not at All 25
## 4 Quite a Bit 16
## H20_SafeCook Freq
## 1 A Little Bit 18
## 2 Extremely 18
## 3 No Answer 1
## 4 Not at All 13
## 5 Quite a Bit 25
## EHL_TotalColiform Freq
## 1 0 43
## 2 1 32
## EHL_ColiformNotSafe Freq
## 1 0 16
## 2 1 59
## EHL_Boil Freq
## 1 0 34
## 2 1 41
## EHL_Less15mgl Freq
## 1 0 36
## 2 1 39
## EHL_Nitrates Freq
## 1 0 18
## 2 1 57
## EHL_WhereCollected Freq
## 1 0 17
## 2 1 58
#########################################################
WellTest Gender Ethnicity Race Ed Level Income Health Job OGJob PreOGJob WiYesMOG Arthritis Asthma Cancer Diabetes Heart disease Hypertension
#########################################################
myvec4=rep(0, 58)
pvalue2=rep(0,58)
for (i in 16:73)
{
myvec4[(i-15)]=colnames(mydata[i]) #name the variable
if (length(levels(mydata[,i]))>2){
pvalue2[(i-15)]=kruskal.test(mydata$PerCorrect~mydata[,i])$p.value
} else
{pvalue2[(i-15)]=wilcox.test(mydata$PerCorrect~mydata[,i])$p.value
}
}
## Warning in wilcox.test.default(x = c(0.667, 0.667, 0.833, 1, 1, 0.333, 1, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(x = c(0.667, 0.833, 1, 0.333, 1, 0.667,
## 0.667, : cannot compute exact p-value with ties
## Warning in wilcox.test.default(x = c(1, 1, 0.667, 0.667, 1, 0.167, 0.833, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(x = c(1, 1, 1, 1, 0.667, 0.167, 0.667,
## 0.333, : cannot compute exact p-value with ties
## Warning in wilcox.test.default(x = c(1, 1, 1, 0.167, 0.333, 0.5, 0.167, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(x = c(0.667, 0.667, 0.333, 0.667, 0.5,
## 0.667, : cannot compute exact p-value with ties
## Warning in wilcox.test.default(x = c(0.667, 0.667, 0.5, 0.667, 0.167, 0, :
## cannot compute exact p-value with ties
## Warning in wilcox.test.default(x = c(0.667, 0.833, 0.333, 0.5, 0.167,
## 0.833, : cannot compute exact p-value with ties
pvalue2=sort(round(pvalue2,3))
newdata1=data.frame(cbind(myvec4, pvalue2))
newdata1=newdata1[order(pvalue2),]
print(newdata1)
## myvec4 pvalue2
## 1 WellTest 0
## 2 Gender 0
## 3 Ethnicity 0
## 4 Race 0
## 5 EdLevel 0
## 6 Income 0.003
## 7 Health 0.005
## 8 Job 0.006
## 9 OGJob 0.008
## 10 PreOGJob 0.013
## 11 WIYesMOG 0.022
## 12 Arthritis 0.023
## 13 Asthma 0.03
## 14 Cancer 0.034
## 15 Diabetes 0.045
## 16 HeartDis 0.048
## 17 Hypertension 0.051
## 18 Mental 0.067
## 19 Obesity 0.07
## 20 OralHealth 0.086
## 21 Handicap 0.087
## 22 Skin 0.109
## 23 ArthritisMD 0.114
## 24 AsthmaMD 0.146
## 25 CancerMD 0.147
## 26 DiabetesMD 0.161
## 27 HeartDisMD 0.166
## 28 HypertensionMD 0.208
## 29 MentalMD 0.219
## 30 ObesityMD 0.222
## 31 OralHealthMD 0.235
## 32 HandicapMD 0.26
## 33 SkinMD 0.268
## 34 HL1_HlthIns 0.304
## 35 HL2_PrimHlthInfo 0.312
## 36 HL3_HelpReadHlth 0.342
## 37 HL4_ConfHlthForms 0.36
## 38 HL_5ProbLngMedCond 0.362
## 39 HL_6ProbUnderstand 0.42
## 40 H20_WaterSrce 0.423
## 41 H20_Well. 0.443
## 42 H20_Cook 0.492
## 43 H20_DrinkTap 0.497
## 44 H20_FilterTap 0.502
## 45 H20_HowFilter 0.523
## 46 H20_Smell 0.526
## 47 H20_Taste 0.625
## 48 H20_Appear 0.652
## 49 AnyChange 0.682
## 50 H20_Tested 0.69
## 51 H20_Concerns 0.743
## 52 H20_SafeDrink 0.76
## 53 H20_SafeCook 0.798
## 54 EHL_TotalColiform 0.812
## 55 EHL_ColiformNotSafe 0.842
## 56 EHL_Boil 0.918
## 57 EHL_Less15mgl 0.921
## 58 EHL_Nitrates 0.996
#########################################################
welltest=subset(mydata, WellTest=="Y", select=c(1:length(mydata)))
describe(welltest)
## vars n mean sd median trimmed mad min
## ID 1 18 64.94 16.84 69.50 67.62 7.41 8.00
## YrBorn 2 18 1954.33 17.27 1952.00 1953.38 17.05 1927.00
## Age 3 18 62.67 17.27 65.00 63.62 17.05 20.00
## NumHH 4 18 2.28 1.07 2.00 2.19 0.00 1.00
## PerCorrect 5 18 0.71 0.28 0.75 0.73 0.37 0.17
## YrOGJob 6 2 22.50 24.75 22.50 22.50 25.95 5.00
## YrPreOGJob 7 2 3.50 2.12 3.50 3.50 2.22 2.00
## SmellText* 8 18 6.56 10.02 1.00 5.56 0.00 1.00
## TasteText* 9 18 1.89 2.93 1.00 1.25 0.00 1.00
## AppearText* 10 18 4.61 8.52 1.00 3.38 0.00 1.00
## TAP02* 11 18 5.33 5.22 3.00 5.00 2.97 1.00
## TAP03* 12 18 6.61 6.55 3.50 6.25 3.71 1.00
## TAP05* 13 18 10.44 14.46 1.00 9.12 0.00 1.00
## Interviewer* 14 18 2.78 0.94 3.00 2.62 0.00 2.00
## Location* 15 18 12.89 0.47 13.00 13.00 0.00 11.00
## WellTest* 16 18 2.00 0.00 2.00 2.00 0.00 2.00
## Gender* 17 18 1.61 0.50 2.00 1.62 0.00 1.00
## Ethnicity* 18 18 2.06 0.42 2.00 2.06 0.00 1.00
## Race* 19 18 3.78 0.65 4.00 3.88 0.00 2.00
## EdLevel* 20 18 4.44 1.62 4.00 4.50 2.97 2.00
## Income* 21 18 4.44 1.25 5.00 4.56 0.74 1.00
## Health* 22 18 3.89 2.27 4.50 3.94 2.22 1.00
## Job* 23 18 36.44 13.49 43.00 37.56 5.19 6.00
## OGJob* 24 18 1.11 0.32 1.00 1.06 0.00 1.00
## PreOGJob* 25 18 1.33 0.69 1.00 1.25 0.00 1.00
## WIYesMOG* 26 18 2.50 0.62 3.00 2.56 0.00 1.00
## Arthritis* 27 18 1.94 0.42 2.00 1.94 0.00 1.00
## Asthma* 28 18 2.33 0.59 2.00 2.38 0.00 1.00
## Cancer* 29 18 2.50 0.51 2.50 2.50 0.74 2.00
## Diabetes* 30 18 2.00 0.00 2.00 2.00 0.00 2.00
## HeartDis* 31 18 2.06 0.24 2.00 2.00 0.00 2.00
## Hypertension* 32 18 2.11 0.47 2.00 2.12 0.00 1.00
## Mental* 33 18 1.94 0.54 2.00 1.94 0.00 1.00
## Obesity* 34 18 2.00 0.00 2.00 2.00 0.00 2.00
## OralHealth* 35 18 2.17 0.51 2.00 2.19 0.00 1.00
## Handicap* 36 18 2.11 0.32 2.00 2.06 0.00 2.00
## Skin* 37 18 2.50 0.51 2.50 2.50 0.74 2.00
## ArthritisMD* 38 18 1.28 0.46 1.00 1.25 0.00 1.00
## AsthmaMD* 39 18 1.17 0.38 1.00 1.12 0.00 1.00
## CancerMD* 40 18 1.28 0.46 1.00 1.25 0.00 1.00
## DiabetesMD* 41 18 1.06 0.24 1.00 1.00 0.00 1.00
## HeartDisMD* 42 18 1.00 0.00 1.00 1.00 0.00 1.00
## HypertensionMD* 43 18 1.44 0.51 1.00 1.44 0.00 1.00
## MentalMD* 44 18 2.06 0.42 2.00 2.06 0.00 1.00
## ObesityMD* 45 18 1.00 0.00 1.00 1.00 0.00 1.00
## OralHealthMD* 46 18 1.00 0.00 1.00 1.00 0.00 1.00
## HandicapMD* 47 18 1.00 0.00 1.00 1.00 0.00 1.00
## SkinMD* 48 18 1.06 0.24 1.00 1.00 0.00 1.00
## HL1_HlthIns* 49 18 3.00 0.00 3.00 3.00 0.00 3.00
## HL2_PrimHlthInfo* 50 18 1.39 0.98 1.00 1.25 0.00 1.00
## HL3_HelpReadHlth* 51 18 2.61 1.04 2.00 2.50 0.00 2.00
## HL4_ConfHlthForms* 52 18 3.39 1.09 4.00 3.38 0.74 2.00
## HL_5ProbLngMedCond* 53 18 2.83 1.25 2.00 2.75 0.00 2.00
## HL_6ProbUnderstand* 54 18 2.61 0.98 2.00 2.50 0.00 2.00
## H20_WaterSrce* 55 18 2.22 0.55 2.00 2.25 0.00 1.00
## H20_Well.* 56 18 1.94 0.24 2.00 2.00 0.00 1.00
## H20_Cook* 57 18 3.56 1.04 4.00 3.69 0.00 1.00
## H20_DrinkTap* 58 18 1.72 1.18 1.00 1.62 0.00 1.00
## H20_FilterTap* 59 18 3.56 1.04 4.00 3.69 0.00 1.00
## H20_HowFilter* 60 18 3.28 1.71 4.00 3.19 1.48 1.00
## H20_Smell 61 18 0.28 0.46 0.00 0.25 0.00 0.00
## H20_Taste 62 18 0.06 0.24 0.00 0.00 0.00 0.00
## H20_Appear 63 18 0.11 0.32 0.00 0.06 0.00 0.00
## AnyChange 64 18 0.33 0.49 0.00 0.31 0.00 0.00
## H20_Tested* 65 18 2.17 0.99 3.00 2.19 0.00 1.00
## H20_Concerns* 66 18 1.67 0.97 1.00 1.62 0.00 1.00
## H20_SafeDrink* 67 18 2.56 1.25 2.00 2.56 1.48 1.00
## H20_SafeCook* 68 18 3.44 1.62 3.50 3.50 2.22 1.00
## EHL_TotalColiform 69 18 0.61 0.50 1.00 0.62 0.00 0.00
## EHL_ColiformNotSafe 70 18 0.56 0.51 1.00 0.56 0.00 0.00
## EHL_Boil 71 18 0.72 0.46 1.00 0.75 0.00 0.00
## EHL_Less15mgl 72 18 0.61 0.50 1.00 0.62 0.00 0.00
## EHL_Nitrates 73 18 0.94 0.24 1.00 1.00 0.00 0.00
## EHL_WhereCollected 74 18 0.83 0.38 1.00 0.88 0.00 0.00
## max range skew kurtosis se
## ID 79 71.00 -2.14 4.48 3.97
## YrBorn 1997 70.00 0.64 -0.07 4.07
## Age 90 70.00 -0.64 -0.07 4.07
## NumHH 5 4.00 1.09 0.38 0.25
## PerCorrect 1 0.83 -0.34 -1.42 0.07
## YrOGJob 40 35.00 0.00 -2.75 17.50
## YrPreOGJob 5 3.00 0.00 -2.75 1.50
## SmellText* 28 27.00 1.33 -0.01 2.36
## TasteText* 13 12.00 3.08 8.59 0.69
## AppearText* 28 27.00 1.81 1.63 2.01
## TAP02* 15 14.00 0.68 -1.27 1.23
## TAP03* 18 17.00 0.57 -1.45 1.54
## TAP05* 41 40.00 0.93 -0.86 3.41
## Interviewer* 6 4.00 2.01 4.76 0.22
## Location* 13 2.00 -3.56 11.32 0.11
## WellTest* 2 0.00 NaN NaN 0.00
## Gender* 2 1.00 -0.42 -1.92 0.12
## Ethnicity* 3 2.00 0.39 2.25 0.10
## Race* 4 2.00 -2.27 3.36 0.15
## EdLevel* 6 4.00 -0.38 -1.46 0.38
## Income* 6 5.00 -1.34 1.34 0.29
## Health* 6 5.00 -0.21 -1.87 0.54
## Job* 49 43.00 -1.03 -0.53 3.18
## OGJob* 2 1.00 2.27 3.36 0.08
## PreOGJob* 3 2.00 1.61 1.01 0.16
## WIYesMOG* 3 2.00 -0.70 -0.67 0.15
## Arthritis* 3 2.00 -0.39 2.25 0.10
## Asthma* 3 2.00 -0.18 -0.92 0.14
## Cancer* 3 1.00 0.00 -2.11 0.12
## Diabetes* 2 0.00 NaN NaN 0.00
## HeartDis* 3 1.00 3.56 11.32 0.06
## Hypertension* 3 2.00 0.38 0.82 0.11
## Mental* 3 2.00 -0.06 0.20 0.13
## Obesity* 2 0.00 NaN NaN 0.00
## OralHealth* 3 2.00 0.27 0.01 0.12
## Handicap* 3 1.00 2.27 3.36 0.08
## Skin* 3 1.00 0.00 -2.11 0.12
## ArthritisMD* 2 1.00 0.91 -1.23 0.11
## AsthmaMD* 2 1.00 1.64 0.75 0.09
## CancerMD* 2 1.00 0.91 -1.23 0.11
## DiabetesMD* 2 1.00 3.56 11.32 0.06
## HeartDisMD* 1 0.00 NaN NaN 0.00
## HypertensionMD* 2 1.00 0.21 -2.06 0.12
## MentalMD* 3 2.00 0.39 2.25 0.10
## ObesityMD* 1 0.00 NaN NaN 0.00
## OralHealthMD* 1 0.00 NaN NaN 0.00
## HandicapMD* 1 0.00 NaN NaN 0.00
## SkinMD* 2 1.00 3.56 11.32 0.06
## HL1_HlthIns* 3 0.00 NaN NaN 0.00
## HL2_PrimHlthInfo* 4 3.00 2.07 2.66 0.23
## HL3_HelpReadHlth* 5 3.00 1.36 0.39 0.24
## HL4_ConfHlthForms* 5 3.00 -0.24 -1.55 0.26
## HL_5ProbLngMedCond* 5 3.00 0.98 -0.86 0.29
## HL_6ProbUnderstand* 5 3.00 1.49 1.05 0.23
## H20_WaterSrce* 3 2.00 0.13 -0.49 0.13
## H20_Well.* 2 1.00 -3.56 11.32 0.06
## H20_Cook* 4 3.00 -1.76 1.33 0.25
## H20_DrinkTap* 4 3.00 1.12 -0.50 0.28
## H20_FilterTap* 4 3.00 -1.76 1.33 0.25
## H20_HowFilter* 7 6.00 0.06 -0.74 0.40
## H20_Smell 1 1.00 0.91 -1.23 0.11
## H20_Taste 1 1.00 3.56 11.32 0.06
## H20_Appear 1 1.00 2.27 3.36 0.08
## AnyChange 1 1.00 0.65 -1.66 0.11
## H20_Tested* 3 2.00 -0.31 -1.95 0.23
## H20_Concerns* 3 2.00 0.65 -1.66 0.23
## H20_SafeDrink* 4 3.00 0.14 -1.75 0.29
## H20_SafeCook* 5 4.00 -0.06 -2.00 0.38
## EHL_TotalColiform 1 1.00 -0.42 -1.92 0.12
## EHL_ColiformNotSafe 1 1.00 -0.21 -2.06 0.12
## EHL_Boil 1 1.00 -0.91 -1.23 0.11
## EHL_Less15mgl 1 1.00 -0.42 -1.92 0.12
## EHL_Nitrates 1 1.00 -3.56 11.32 0.06
## EHL_WhereCollected 1 1.00 -1.64 0.75 0.09
library(xgboost)
## Warning: package 'xgboost' was built under R version 3.5.1
set.seed(123)
testdata=read.csv("C:/Users/lfult/Desktop/Paula/subsetforxgboost.csv")
testdata$NumCorrect=as.integer(testdata$NumCorrect)
testdata$NumCorrect[testdata$NumCorrect<=4]=0
testdata$NumCorrect[testdata$NumCorrect>=5]=1
#########Set up the Matrix######
mys=sort(sample(1:nrow(testdata),.25*(nrow(testdata)), replace=FALSE))
train=testdata[-mys,]
test=testdata[mys,]
newtrain=model.matrix(NumCorrect~.,train)[,-1]
newtest=model.matrix(NumCorrect~.,test)[,-1]
total=model.matrix(NumCorrect~., testdata)[,-1]
dtrain=xgb.DMatrix(newtrain[,-1], label=train$NumCorrect)
dtest=xgb.DMatrix(newtest[,-1], label=test$NumCorrect)
dtotal=xgb.DMatrix(total[,-1], label=testdata$NumCorrect)
#mycv=xgb.cv(data=dtotal, nrounds=100, nfold=100, label=testdata$Health, prediction=TRUE, objective="multi:softmax", num_class=5)
watchlist <- list(train=dtrain, test=dtest)
myxgb<- xgb.train(data = dtrain, max.depth = 10000, eta=.01,nthread = 4, nrounds = 200, verbose=1,watchlist=watchlist, objective="binary:logistic")
## [1] train-error:0.140351 test-error:0.500000
## [2] train-error:0.105263 test-error:0.500000
## [3] train-error:0.087719 test-error:0.555556
## [4] train-error:0.087719 test-error:0.555556
## [5] train-error:0.087719 test-error:0.555556
## [6] train-error:0.070175 test-error:0.611111
## [7] train-error:0.070175 test-error:0.555556
## [8] train-error:0.087719 test-error:0.555556
## [9] train-error:0.070175 test-error:0.555556
## [10] train-error:0.087719 test-error:0.555556
## [11] train-error:0.070175 test-error:0.555556
## [12] train-error:0.087719 test-error:0.555556
## [13] train-error:0.070175 test-error:0.611111
## [14] train-error:0.087719 test-error:0.611111
## [15] train-error:0.070175 test-error:0.611111
## [16] train-error:0.087719 test-error:0.611111
## [17] train-error:0.070175 test-error:0.611111
## [18] train-error:0.087719 test-error:0.611111
## [19] train-error:0.087719 test-error:0.555556
## [20] train-error:0.070175 test-error:0.555556
## [21] train-error:0.087719 test-error:0.555556
## [22] train-error:0.070175 test-error:0.555556
## [23] train-error:0.070175 test-error:0.555556
## [24] train-error:0.070175 test-error:0.555556
## [25] train-error:0.070175 test-error:0.555556
## [26] train-error:0.070175 test-error:0.555556
## [27] train-error:0.070175 test-error:0.555556
## [28] train-error:0.070175 test-error:0.555556
## [29] train-error:0.070175 test-error:0.555556
## [30] train-error:0.070175 test-error:0.555556
## [31] train-error:0.070175 test-error:0.555556
## [32] train-error:0.070175 test-error:0.555556
## [33] train-error:0.070175 test-error:0.555556
## [34] train-error:0.070175 test-error:0.555556
## [35] train-error:0.070175 test-error:0.555556
## [36] train-error:0.070175 test-error:0.555556
## [37] train-error:0.070175 test-error:0.555556
## [38] train-error:0.070175 test-error:0.555556
## [39] train-error:0.070175 test-error:0.555556
## [40] train-error:0.070175 test-error:0.555556
## [41] train-error:0.070175 test-error:0.500000
## [42] train-error:0.087719 test-error:0.500000
## [43] train-error:0.087719 test-error:0.500000
## [44] train-error:0.087719 test-error:0.500000
## [45] train-error:0.087719 test-error:0.500000
## [46] train-error:0.087719 test-error:0.500000
## [47] train-error:0.087719 test-error:0.500000
## [48] train-error:0.087719 test-error:0.500000
## [49] train-error:0.087719 test-error:0.500000
## [50] train-error:0.087719 test-error:0.500000
## [51] train-error:0.087719 test-error:0.500000
## [52] train-error:0.087719 test-error:0.500000
## [53] train-error:0.087719 test-error:0.500000
## [54] train-error:0.087719 test-error:0.500000
## [55] train-error:0.087719 test-error:0.500000
## [56] train-error:0.087719 test-error:0.500000
## [57] train-error:0.087719 test-error:0.500000
## [58] train-error:0.087719 test-error:0.500000
## [59] train-error:0.087719 test-error:0.500000
## [60] train-error:0.087719 test-error:0.500000
## [61] train-error:0.087719 test-error:0.500000
## [62] train-error:0.087719 test-error:0.500000
## [63] train-error:0.087719 test-error:0.500000
## [64] train-error:0.087719 test-error:0.500000
## [65] train-error:0.087719 test-error:0.500000
## [66] train-error:0.087719 test-error:0.500000
## [67] train-error:0.087719 test-error:0.500000
## [68] train-error:0.087719 test-error:0.500000
## [69] train-error:0.087719 test-error:0.500000
## [70] train-error:0.087719 test-error:0.500000
## [71] train-error:0.087719 test-error:0.500000
## [72] train-error:0.087719 test-error:0.500000
## [73] train-error:0.087719 test-error:0.500000
## [74] train-error:0.087719 test-error:0.500000
## [75] train-error:0.087719 test-error:0.500000
## [76] train-error:0.087719 test-error:0.500000
## [77] train-error:0.087719 test-error:0.500000
## [78] train-error:0.087719 test-error:0.500000
## [79] train-error:0.087719 test-error:0.500000
## [80] train-error:0.087719 test-error:0.500000
## [81] train-error:0.087719 test-error:0.500000
## [82] train-error:0.087719 test-error:0.500000
## [83] train-error:0.087719 test-error:0.500000
## [84] train-error:0.087719 test-error:0.500000
## [85] train-error:0.087719 test-error:0.500000
## [86] train-error:0.087719 test-error:0.500000
## [87] train-error:0.087719 test-error:0.500000
## [88] train-error:0.087719 test-error:0.500000
## [89] train-error:0.087719 test-error:0.500000
## [90] train-error:0.087719 test-error:0.500000
## [91] train-error:0.087719 test-error:0.500000
## [92] train-error:0.087719 test-error:0.500000
## [93] train-error:0.070175 test-error:0.500000
## [94] train-error:0.087719 test-error:0.500000
## [95] train-error:0.070175 test-error:0.500000
## [96] train-error:0.070175 test-error:0.500000
## [97] train-error:0.070175 test-error:0.500000
## [98] train-error:0.070175 test-error:0.500000
## [99] train-error:0.070175 test-error:0.500000
## [100] train-error:0.070175 test-error:0.500000
## [101] train-error:0.070175 test-error:0.500000
## [102] train-error:0.070175 test-error:0.500000
## [103] train-error:0.070175 test-error:0.500000
## [104] train-error:0.070175 test-error:0.500000
## [105] train-error:0.070175 test-error:0.500000
## [106] train-error:0.070175 test-error:0.500000
## [107] train-error:0.070175 test-error:0.500000
## [108] train-error:0.070175 test-error:0.500000
## [109] train-error:0.070175 test-error:0.500000
## [110] train-error:0.070175 test-error:0.500000
## [111] train-error:0.070175 test-error:0.500000
## [112] train-error:0.070175 test-error:0.500000
## [113] train-error:0.070175 test-error:0.500000
## [114] train-error:0.070175 test-error:0.500000
## [115] train-error:0.070175 test-error:0.500000
## [116] train-error:0.070175 test-error:0.500000
## [117] train-error:0.070175 test-error:0.500000
## [118] train-error:0.070175 test-error:0.500000
## [119] train-error:0.070175 test-error:0.500000
## [120] train-error:0.070175 test-error:0.500000
## [121] train-error:0.070175 test-error:0.500000
## [122] train-error:0.070175 test-error:0.500000
## [123] train-error:0.070175 test-error:0.500000
## [124] train-error:0.070175 test-error:0.500000
## [125] train-error:0.070175 test-error:0.500000
## [126] train-error:0.070175 test-error:0.500000
## [127] train-error:0.070175 test-error:0.500000
## [128] train-error:0.070175 test-error:0.500000
## [129] train-error:0.070175 test-error:0.500000
## [130] train-error:0.070175 test-error:0.500000
## [131] train-error:0.070175 test-error:0.500000
## [132] train-error:0.070175 test-error:0.500000
## [133] train-error:0.070175 test-error:0.500000
## [134] train-error:0.070175 test-error:0.500000
## [135] train-error:0.070175 test-error:0.500000
## [136] train-error:0.070175 test-error:0.500000
## [137] train-error:0.070175 test-error:0.500000
## [138] train-error:0.070175 test-error:0.500000
## [139] train-error:0.070175 test-error:0.500000
## [140] train-error:0.070175 test-error:0.500000
## [141] train-error:0.070175 test-error:0.500000
## [142] train-error:0.070175 test-error:0.500000
## [143] train-error:0.070175 test-error:0.500000
## [144] train-error:0.070175 test-error:0.500000
## [145] train-error:0.070175 test-error:0.500000
## [146] train-error:0.070175 test-error:0.500000
## [147] train-error:0.070175 test-error:0.500000
## [148] train-error:0.070175 test-error:0.500000
## [149] train-error:0.070175 test-error:0.500000
## [150] train-error:0.052632 test-error:0.500000
## [151] train-error:0.052632 test-error:0.500000
## [152] train-error:0.052632 test-error:0.500000
## [153] train-error:0.052632 test-error:0.500000
## [154] train-error:0.052632 test-error:0.500000
## [155] train-error:0.052632 test-error:0.500000
## [156] train-error:0.052632 test-error:0.500000
## [157] train-error:0.052632 test-error:0.500000
## [158] train-error:0.052632 test-error:0.500000
## [159] train-error:0.052632 test-error:0.500000
## [160] train-error:0.052632 test-error:0.500000
## [161] train-error:0.052632 test-error:0.500000
## [162] train-error:0.052632 test-error:0.500000
## [163] train-error:0.052632 test-error:0.500000
## [164] train-error:0.052632 test-error:0.500000
## [165] train-error:0.052632 test-error:0.500000
## [166] train-error:0.052632 test-error:0.500000
## [167] train-error:0.052632 test-error:0.500000
## [168] train-error:0.052632 test-error:0.500000
## [169] train-error:0.052632 test-error:0.500000
## [170] train-error:0.052632 test-error:0.500000
## [171] train-error:0.052632 test-error:0.500000
## [172] train-error:0.052632 test-error:0.500000
## [173] train-error:0.052632 test-error:0.500000
## [174] train-error:0.052632 test-error:0.500000
## [175] train-error:0.052632 test-error:0.500000
## [176] train-error:0.052632 test-error:0.500000
## [177] train-error:0.052632 test-error:0.500000
## [178] train-error:0.052632 test-error:0.500000
## [179] train-error:0.052632 test-error:0.500000
## [180] train-error:0.052632 test-error:0.500000
## [181] train-error:0.052632 test-error:0.500000
## [182] train-error:0.052632 test-error:0.500000
## [183] train-error:0.052632 test-error:0.500000
## [184] train-error:0.052632 test-error:0.500000
## [185] train-error:0.052632 test-error:0.500000
## [186] train-error:0.052632 test-error:0.500000
## [187] train-error:0.052632 test-error:0.500000
## [188] train-error:0.052632 test-error:0.500000
## [189] train-error:0.052632 test-error:0.500000
## [190] train-error:0.052632 test-error:0.500000
## [191] train-error:0.052632 test-error:0.500000
## [192] train-error:0.052632 test-error:0.500000
## [193] train-error:0.052632 test-error:0.500000
## [194] train-error:0.052632 test-error:0.500000
## [195] train-error:0.052632 test-error:0.500000
## [196] train-error:0.052632 test-error:0.500000
## [197] train-error:0.052632 test-error:0.500000
## [198] train-error:0.052632 test-error:0.500000
## [199] train-error:0.052632 test-error:0.500000
## [200] train-error:0.052632 test-error:0.500000
pred <- predict(myxgb, dtest)
plot(jitter(test$NumCorrect)~jitter(pred))
summary(lm(test$NumCorrect~pred))
##
## Call:
## lm(formula = test$NumCorrect ~ pred)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.6221 -0.5257 0.1700 0.3881 0.5035
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.3688 0.2196 1.680 0.112
## pred 0.9833 0.6277 1.567 0.137
##
## Residual standard error: 0.4656 on 16 degrees of freedom
## Multiple R-squared: 0.133, Adjusted R-squared: 0.07879
## F-statistic: 2.454 on 1 and 16 DF, p-value: 0.1368
impmat=xgb.importance(model = myxgb, feature_names=colnames(newtest))
impmat
## Feature Gain Cover Frequency
## 1: YrBorn 2.678454e-01 0.3158389825 0.2085264133
## 2: HandicapNo 2.327260e-01 0.1429712230 0.1260426321
## 3: WIYesMOGNo 1.810954e-01 0.1848747129 0.1742354032
## 4: H20_DrinkTapNever 8.843088e-02 0.0898437013 0.1075069509
## 5: HeartDisMDYes 3.717749e-02 0.0485562031 0.0639481001
## 6: H20_SafeCookNot at All 3.120589e-02 0.0224748699 0.0333642261
## 7: H20_WaterSrcePurchased Water 2.019148e-02 0.0232358273 0.0315106580
## 8: EdLevelPostHSTech 1.639864e-02 0.0162175039 0.0176088971
## 9: CancerNo 1.581074e-02 0.0143062492 0.0176088971
## 10: H20_SmellYes 1.211661e-02 0.0093811684 0.0185356812
## 11: SkinYes 1.185432e-02 0.0047378108 0.0120481928
## 12: CancerMDYes 1.000556e-02 0.0039817411 0.0101946247
## 13: Income<75K 9.594785e-03 0.0109856572 0.0185356812
## 14: EdLevelGED 9.424146e-03 0.0093829235 0.0148285449
## 15: RaceWhite 7.784296e-03 0.0078311935 0.0092678406
## 16: HypertensionMDYes 6.567521e-03 0.0084819245 0.0046339203
## 17: HL2_PrimHlthInfoOther 5.833163e-03 0.0176743124 0.0278035218
## 18: HL3_HelpReadHlthSometimes 4.825510e-03 0.0209264748 0.0278035218
## 19: H20_ConcernsNo Answer 4.242701e-03 0.0067375172 0.0083410565
## 20: H20_SafeCookNo Answer 3.919670e-03 0.0048577010 0.0046339203
## 21: H20_DrinkTapOften 3.650452e-03 0.0039885923 0.0092678406
## 22: ObesityMDYes 2.894366e-03 0.0044647836 0.0027803522
## 23: DiabetesYes 2.088808e-03 0.0022187325 0.0064874884
## 24: H20_SafeDrinkExtremely 1.845487e-03 0.0017039669 0.0037071362
## 25: HL4_ConfHlthFormsSomewhat 1.682151e-03 0.0008476231 0.0027803522
## 26: AsthmaYes 1.464357e-03 0.0031404177 0.0055607044
## 27: HeartDisNo 1.306120e-03 0.0025617017 0.0027803522
## 28: HL_5ProbLngMedCondSometimes 1.265322e-03 0.0023043920 0.0037071362
## 29: H20_HowFilterOther 9.991903e-04 0.0012580075 0.0009267841
## 30: OralHealthYes 9.796818e-04 0.0015509498 0.0018535681
## 31: HL2_PrimHlthInfoFriends 8.720046e-04 0.0010988770 0.0009267841
## 32: ObesityYes 8.346242e-04 0.0005600866 0.0018535681
## 33: H20_DrinkTapRarely 7.217444e-04 0.0015729682 0.0027803522
## 34: H20_SafeDrinkQuite a Bit 4.788696e-04 0.0014444575 0.0018535681
## 35: JobRetailer 4.177794e-04 0.0035776056 0.0083410565
## 36: HealthPoor 3.752537e-04 0.0009038841 0.0009267841
## 37: H20_AppearNo Answer 2.976839e-04 0.0005705789 0.0018535681
## 38: HandicapYes 2.956554e-04 0.0003283880 0.0009267841
## 39: HL4_ConfHlthFormsNot at all 2.948934e-04 0.0003306332 0.0009267841
## 40: YrPreOGJobNotApplicable 1.713390e-04 0.0016618541 0.0018535681
## 41: HL_5ProbLngMedCondNever 1.409299e-05 0.0006138022 0.0009267841
## Feature Gain Cover Frequency
#xgb.dump(myxgb, with.stats = T)
#xgb.plot.tree(model=myxgb)