Cortisol Visualization
cortvalues <- NA
cortvalues[1] <- mean(df$cort0, na.rm=T)
cortvalues[2] <- mean(df$cort1, na.rm=T)
cortvalues[3] <- mean(df$cort2, na.rm=T)
sevalues <- NA
a <- summarySE(df, measurevar="cort0", na.rm=T)
sevalues[1] <- a$se
a2 <- summarySE(df, measurevar="cort1", na.rm=T)
sevalues[2] <- a2$se
a3 <- summarySE(df, measurevar="cort2", na.rm=T)
sevalues[3] <- a3$se
Cortvalues <- NA
Cortvalues <- cbind(as.data.frame(cortvalues),as.data.frame(sevalues))
Cortvalues$Time <- c(0,1,2)
p<- ggplot(Cortvalues, aes(x=Time, y=cortvalues)) +
geom_line() +
geom_point()+
geom_errorbar(aes(ymin=cortvalues-sevalues, ymax=cortvalues+sevalues), width=.2,
position=position_dodge(0.05))
# Finished line plot
p+labs(title="Average cortisol across course of experimental stress manipulation", x="Time Point", y = "Average Cortisol (nmol/L)")+ theme_classic() + scale_x_continuous(breaks=c(0,1,2), labels=c("Baseline","Stress","Recovery")) + theme(plot.title = element_text(hjust = 0.5))

The plot clearly indicates an average increase in cortisol during the stress induction, and a decrease in cortisol as individuals recovered from the stressor.
Preliminary Analyses
t.test(df$cort1, df$cort0, paired=T)
##
## Paired t-test
##
## data: df$cort1 and df$cort0
## t = 2.719, df = 62, p-value = 0.008483
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.2448777 1.6046461
## sample estimates:
## mean of the differences
## 0.9247619
t.test(df$cort2, df$cort0, paired=T)
##
## Paired t-test
##
## data: df$cort2 and df$cort0
## t = -3.5126, df = 62, p-value = 0.0008341
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.3209934 -0.6374193
## sample estimates:
## mean of the differences
## -1.479206
t.test(df$cort2, df$cort1, paired=T)
##
## Paired t-test
##
## data: df$cort2 and df$cort1
## t = -8.6171, df = 62, p-value = 0.000000000003386
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.961636 -1.846300
## sample estimates:
## mean of the differences
## -2.403968
t.test(df$na1, df$na0, paired=T)
##
## Paired t-test
##
## data: df$na1 and df$na0
## t = 8.3599, df = 62, p-value = 0.000000000009414
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 3.430030 5.585843
## sample estimates:
## mean of the differences
## 4.507937
t.test(df$na2, df$na0, paired=T)
##
## Paired t-test
##
## data: df$na2 and df$na0
## t = -3.5411, df = 63, p-value = 0.0007558
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.3953757 -0.6671243
## sample estimates:
## mean of the differences
## -1.53125
t.test(df$na2, df$na1, paired=T)
##
## Paired t-test
##
## data: df$na2 and df$na1
## t = -9.645, df = 62, p-value = 0.00000000000005917
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.320183 -4.806801
## sample estimates:
## mean of the differences
## -6.063492
t.test(df$lambda_ANT_log, df$lambda_BL_log, paired=T)
##
## Paired t-test
##
## data: df$lambda_ANT_log and df$lambda_BL_log
## t = 1.1049, df = 55, p-value = 0.274
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05627334 0.19457168
## sample estimates:
## mean of the differences
## 0.06914917
t.test(df$lambda_REC_log, df$lambda_BL_log, paired=T)
##
## Paired t-test
##
## data: df$lambda_REC_log and df$lambda_BL_log
## t = 1.2722, df = 55, p-value = 0.2087
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.04383823 0.19625332
## sample estimates:
## mean of the differences
## 0.07620755
t.test(df$lambda_REC_log, df$lambda_ANT_log, paired=T)
##
## Paired t-test
##
## data: df$lambda_REC_log and df$lambda_ANT_log
## t = 0.1125, df = 55, p-value = 0.9108
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1186806 0.1327973
## sample estimates:
## mean of the differences
## 0.007058376
t.test(df$rho_ANT_log, df$rho_BL_log, paired=T)
##
## Paired t-test
##
## data: df$rho_ANT_log and df$rho_BL_log
## t = -1.8751, df = 55, p-value = 0.06609
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.091170524 0.003030089
## sample estimates:
## mean of the differences
## -0.04407022
t.test(df$rho_REC_log, df$rho_BL_log, paired=T)
##
## Paired t-test
##
## data: df$rho_REC_log and df$rho_BL_log
## t = -2.7781, df = 55, p-value = 0.007465
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.11496782 -0.01860906
## sample estimates:
## mean of the differences
## -0.06678844
t.test(df$rho_REC_log, df$rho_ANT_log, paired=T)
##
## Paired t-test
##
## data: df$rho_REC_log and df$rho_ANT_log
## t = -0.90377, df = 55, p-value = 0.3701
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.07309434 0.02765790
## sample estimates:
## mean of the differences
## -0.02271822
t.test(df$mu_ANT_log, df$mu_BL_log, paired=T)
##
## Paired t-test
##
## data: df$mu_ANT_log and df$mu_BL_log
## t = 0.56323, df = 55, p-value = 0.5756
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1158097 0.2063525
## sample estimates:
## mean of the differences
## 0.04527141
t.test(df$mu_REC_log, df$mu_BL_log, paired=T)
##
## Paired t-test
##
## data: df$mu_REC_log and df$mu_BL_log
## t = 2.195, df = 55, p-value = 0.0324
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.01404581 0.30878720
## sample estimates:
## mean of the differences
## 0.1614165
t.test(df$mu_REC_log, df$mu_ANT_log, paired=T)
##
## Paired t-test
##
## data: df$mu_REC_log and df$mu_ANT_log
## t = 1.3332, df = 55, p-value = 0.188
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.05844067 0.29073084
## sample estimates:
## mean of the differences
## 0.1161451
Regression Models
Aim 1
hurte1 <- lm(scale(HurricaneImpairment) ~ scale(RNT_1), data=df)
stargazer(hurte1, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(HurricaneImpairment)
|
|
|
|
scale(RNT_1)
|
0.257**
|
|
|
(0.055, 0.458)
|
|
|
|
|
Constant
|
-0.000
|
|
|
(-0.201, 0.201)
|
|
|
|
|
|
|
Observations
|
90
|
|
R2
|
0.066
|
|
Adjusted R2
|
0.055
|
|
Residual Std. Error
|
0.972 (df = 88)
|
|
F Statistic
|
6.198** (df = 1; 88)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Aim 2
Baseline Models
cortBLmod <- lm(scale(cort0) ~ scale(RNT_1) +scale(Smoker_0no_1yes_2yestoday_t3) + Gender+ scale(TodayCaff_NumCups_t3), data=df)
stargazer(cortBLmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(cort0)
|
|
|
|
scale(RNT_1)
|
0.189
|
|
|
(-0.037, 0.415)
|
|
|
|
|
scale(Smoker_0no_1yes_2yestoday_t3)
|
0.479***
|
|
|
(0.255, 0.703)
|
|
|
|
|
Gender
|
-0.075
|
|
|
(-0.591, 0.441)
|
|
|
|
|
scale(TodayCaff_NumCups_t3)
|
0.025
|
|
|
(-0.204, 0.254)
|
|
|
|
|
Constant
|
0.011
|
|
|
(-0.243, 0.265)
|
|
|
|
|
|
|
Observations
|
63
|
|
R2
|
0.274
|
|
Adjusted R2
|
0.224
|
|
Residual Std. Error
|
0.881 (df = 58)
|
|
F Statistic
|
5.468*** (df = 4; 58)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
naBLmod <- lm(scale(na0) ~ scale(RNT_1) , data=df)
stargazer(naBLmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(na0)
|
|
|
|
scale(RNT_1)
|
0.469***
|
|
|
(0.241, 0.698)
|
|
|
|
|
Constant
|
-0.014
|
|
|
(-0.234, 0.206)
|
|
|
|
|
|
|
Observations
|
64
|
|
R2
|
0.207
|
|
Adjusted R2
|
0.194
|
|
Residual Std. Error
|
0.898 (df = 62)
|
|
F Statistic
|
16.175*** (df = 1; 62)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
rhoBLmod <- lm(scale(rho_BL_log) ~ scale(RNT_1) , data=df)
stargazer(rhoBLmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(rho_BL_log)
|
|
|
|
scale(RNT_1)
|
0.091
|
|
|
(-0.185, 0.367)
|
|
|
|
|
Constant
|
-0.008
|
|
|
(-0.272, 0.257)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.008
|
|
Adjusted R2
|
-0.011
|
|
Residual Std. Error
|
1.005 (df = 54)
|
|
F Statistic
|
0.418 (df = 1; 54)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
lambdaBLmod <- lm(scale(lambda_BL_log) ~ scale(RNT_1) , data=df)
stargazer(lambdaBLmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(lambda_BL_log)
|
|
|
|
scale(RNT_1)
|
-0.275**
|
|
|
(-0.543, -0.008)
|
|
|
|
|
Constant
|
0.024
|
|
|
(-0.232, 0.280)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.070
|
|
Adjusted R2
|
0.053
|
|
Residual Std. Error
|
0.973 (df = 54)
|
|
F Statistic
|
4.067** (df = 1; 54)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
muBLmod <- lm(scale(mu_BL_log) ~ scale(RNT_1) , data=df)
stargazer(muBLmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(mu_BL_log)
|
|
|
|
scale(RNT_1)
|
0.179
|
|
|
(-0.094, 0.452)
|
|
|
|
|
Constant
|
-0.015
|
|
|
(-0.277, 0.246)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.030
|
|
Adjusted R2
|
0.012
|
|
Residual Std. Error
|
0.994 (df = 54)
|
|
F Statistic
|
1.649 (df = 1; 54)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Aim 3
Stress Models
cortANTmod <- lm(scale(cort1) ~ scale(RNT_1) +scale(Smoker_0no_1yes_2yestoday_t3) + Gender+ scale(TodayCaff_NumCups_t3), data=df)
stargazer(cortANTmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(cort1)
|
|
|
|
scale(RNT_1)
|
0.233**
|
|
|
(0.022, 0.445)
|
|
|
|
|
scale(Smoker_0no_1yes_2yestoday_t3)
|
0.438***
|
|
|
(0.228, 0.648)
|
|
|
|
|
Gender
|
-0.002
|
|
|
(-0.485, 0.482)
|
|
|
|
|
scale(TodayCaff_NumCups_t3)
|
0.246**
|
|
|
(0.031, 0.461)
|
|
|
|
|
Constant
|
-0.011
|
|
|
(-0.249, 0.227)
|
|
|
|
|
|
|
Observations
|
63
|
|
R2
|
0.363
|
|
Adjusted R2
|
0.319
|
|
Residual Std. Error
|
0.825 (df = 58)
|
|
F Statistic
|
8.253*** (df = 4; 58)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
cortANTmod2 <- lm(scale(cort1) ~ scale(RNT_1) +scale(Smoker_0no_1yes_2yestoday_t3) + Gender+ scale(TodayCaff_NumCups_t3) + scale(cort0), data=df)
stargazer(cortANTmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(cort1)
|
|
|
|
scale(RNT_1)
|
0.096
|
|
|
(-0.042, 0.235)
|
|
|
|
|
scale(Smoker_0no_1yes_2yestoday_t3)
|
0.092
|
|
|
(-0.062, 0.245)
|
|
|
|
|
Gender
|
0.053
|
|
|
(-0.257, 0.363)
|
|
|
|
|
scale(TodayCaff_NumCups_t3)
|
0.228***
|
|
|
(0.090, 0.365)
|
|
|
|
|
scale(cort0)
|
0.723***
|
|
|
(0.569, 0.878)
|
|
|
|
|
Constant
|
-0.019
|
|
|
(-0.171, 0.134)
|
|
|
|
|
|
|
Observations
|
63
|
|
R2
|
0.742
|
|
Adjusted R2
|
0.720
|
|
Residual Std. Error
|
0.529 (df = 57)
|
|
F Statistic
|
32.866*** (df = 5; 57)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
naANTmod <- lm(scale(na1) ~ scale(RNT_1) , data=df)
stargazer(naANTmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(na1)
|
|
|
|
scale(RNT_1)
|
0.591***
|
|
|
(0.374, 0.808)
|
|
|
|
|
Constant
|
-0.032
|
|
|
(-0.238, 0.174)
|
|
|
|
|
|
|
Observations
|
63
|
|
R2
|
0.319
|
|
Adjusted R2
|
0.308
|
|
Residual Std. Error
|
0.832 (df = 61)
|
|
F Statistic
|
28.558*** (df = 1; 61)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
confint.lm(naANTmod)
2.5 % 97.5 %
(Intercept) -0.2420333 0.1778826 scale(RNT_1) 0.3697919 0.8119974
naANTmod2 <- lm(scale(na1) ~ scale(RNT_1) + scale(na0), data=df)
stargazer(naANTmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(na1)
|
|
|
|
scale(RNT_1)
|
0.271***
|
|
|
(0.107, 0.435)
|
|
|
|
|
scale(na0)
|
0.682***
|
|
|
(0.526, 0.838)
|
|
|
|
|
Constant
|
-0.023
|
|
|
(-0.162, 0.116)
|
|
|
|
|
|
|
Observations
|
63
|
|
R2
|
0.694
|
|
Adjusted R2
|
0.684
|
|
Residual Std. Error
|
0.562 (df = 60)
|
|
F Statistic
|
67.993*** (df = 2; 60)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
rhoANTmod <- lm(scale(rho_ANT_log) ~ scale(RNT_1) , data=df)
stargazer(rhoANTmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(rho_ANT_log)
|
|
|
|
scale(RNT_1)
|
0.011
|
|
|
(-0.267, 0.288)
|
|
|
|
|
Constant
|
-0.001
|
|
|
(-0.266, 0.264)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.0001
|
|
Adjusted R2
|
-0.018
|
|
Residual Std. Error
|
1.009 (df = 54)
|
|
F Statistic
|
0.006 (df = 1; 54)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
rhoANTmod2 <- lm(scale(rho_ANT_log) ~ scale(RNT_1) + scale(rho_BL_log), data=df)
stargazer(rhoANTmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(rho_ANT_log)
|
|
|
|
scale(RNT_1)
|
-0.061
|
|
|
(-0.236, 0.114)
|
|
|
|
|
scale(rho_BL_log)
|
0.786***
|
|
|
(0.618, 0.954)
|
|
|
|
|
Constant
|
0.005
|
|
|
(-0.161, 0.172)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.613
|
|
Adjusted R2
|
0.599
|
|
Residual Std. Error
|
0.634 (df = 53)
|
|
F Statistic
|
42.008*** (df = 2; 53)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
lambdaANTmod <- lm(scale(lambda_ANT_log) ~ scale(RNT_1) , data=df)
stargazer(lambdaANTmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(lambda_ANT_log)
|
|
|
|
scale(RNT_1)
|
0.067
|
|
|
(-0.210, 0.343)
|
|
|
|
|
Constant
|
-0.006
|
|
|
(-0.271, 0.259)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.004
|
|
Adjusted R2
|
-0.014
|
|
Residual Std. Error
|
1.007 (df = 54)
|
|
F Statistic
|
0.222 (df = 1; 54)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
lambdaANTmod2 <- lm(scale(lambda_ANT_log) ~ scale(RNT_1) + scale(lambda_BL_log), data=df)
stargazer(lambdaANTmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(lambda_ANT_log)
|
|
|
|
scale(RNT_1)
|
0.303***
|
|
|
(0.142, 0.465)
|
|
|
|
|
scale(lambda_BL_log)
|
0.859***
|
|
|
(0.704, 1.015)
|
|
|
|
|
Constant
|
-0.026
|
|
|
(-0.175, 0.123)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.691
|
|
Adjusted R2
|
0.679
|
|
Residual Std. Error
|
0.567 (df = 53)
|
|
F Statistic
|
59.172*** (df = 2; 53)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
muANTmod <- lm(scale(mu_ANT_log) ~ scale(RNT_1) , data=df)
stargazer(muANTmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(mu_ANT_log)
|
|
|
|
scale(RNT_1)
|
-0.135
|
|
|
(-0.411, 0.140)
|
|
|
|
|
Constant
|
0.012
|
|
|
(-0.252, 0.275)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.017
|
|
Adjusted R2
|
-0.001
|
|
Residual Std. Error
|
1.001 (df = 54)
|
|
F Statistic
|
0.932 (df = 1; 54)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
muANTmod2 <- lm(scale(mu_ANT_log) ~ scale(RNT_1) + scale(mu_BL_log), data=df)
stargazer(muANTmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(mu_ANT_log)
|
|
|
|
scale(RNT_1)
|
-0.231*
|
|
|
(-0.470, 0.008)
|
|
|
|
|
scale(mu_BL_log)
|
0.534***
|
|
|
(0.304, 0.763)
|
|
|
|
|
Constant
|
0.020
|
|
|
(-0.205, 0.245)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.293
|
|
Adjusted R2
|
0.267
|
|
Residual Std. Error
|
0.856 (df = 53)
|
|
F Statistic
|
10.996*** (df = 2; 53)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
Aim 4
Recovery Models
cortRECmod <- lm(scale(cort2) ~ scale(RNT_1) +scale(Smoker_0no_1yes_2yestoday_t3) + Gender+ scale(TodayCaff_NumCups_t3), data=df)
stargazer(cortRECmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(cort2)
|
|
|
|
scale(RNT_1)
|
0.321***
|
|
|
(0.103, 0.538)
|
|
|
|
|
scale(Smoker_0no_1yes_2yestoday_t3)
|
0.350***
|
|
|
(0.134, 0.566)
|
|
|
|
|
Gender
|
0.226
|
|
|
(-0.269, 0.721)
|
|
|
|
|
scale(TodayCaff_NumCups_t3)
|
0.225**
|
|
|
(0.006, 0.445)
|
|
|
|
|
Constant
|
-0.066
|
|
|
(-0.307, 0.176)
|
|
|
|
|
|
|
Observations
|
64
|
|
R2
|
0.327
|
|
Adjusted R2
|
0.281
|
|
Residual Std. Error
|
0.848 (df = 59)
|
|
F Statistic
|
7.153*** (df = 4; 59)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
cortRECmod2 <- lm(scale(cort2) ~ scale(RNT_1) +scale(Smoker_0no_1yes_2yestoday_t3) + Gender+ scale(TodayCaff_NumCups_t3) + scale(cort0), data=df)
stargazer(cortRECmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(cort2)
|
|
|
|
scale(RNT_1)
|
0.216**
|
|
|
(0.042, 0.389)
|
|
|
|
|
scale(Smoker_0no_1yes_2yestoday_t3)
|
0.088
|
|
|
(-0.104, 0.281)
|
|
|
|
|
Gender
|
0.318
|
|
|
(-0.071, 0.706)
|
|
|
|
|
scale(TodayCaff_NumCups_t3)
|
0.234**
|
|
|
(0.062, 0.406)
|
|
|
|
|
scale(cort0)
|
0.551***
|
|
|
(0.357, 0.745)
|
|
|
|
|
Constant
|
-0.115
|
|
|
(-0.306, 0.076)
|
|
|
|
|
|
|
Observations
|
63
|
|
R2
|
0.586
|
|
Adjusted R2
|
0.550
|
|
Residual Std. Error
|
0.663 (df = 57)
|
|
F Statistic
|
16.139*** (df = 5; 57)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
cortRECmod3 <- lm(scale(cort2) ~ scale(RNT_1) +scale(Smoker_0no_1yes_2yestoday_t3) + Gender+ scale(TodayCaff_NumCups_t3) + scale(cort1), data=df)
stargazer(cortRECmod3, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(cort2)
|
|
|
|
scale(RNT_1)
|
0.129**
|
|
|
(0.005, 0.253)
|
|
|
|
|
scale(Smoker_0no_1yes_2yestoday_t3)
|
-0.006
|
|
|
(-0.140, 0.128)
|
|
|
|
|
Gender
|
0.278**
|
|
|
(0.006, 0.549)
|
|
|
|
|
scale(TodayCaff_NumCups_t3)
|
0.047
|
|
|
(-0.079, 0.172)
|
|
|
|
|
scale(cort1)
|
0.818***
|
|
|
(0.673, 0.963)
|
|
|
|
|
Constant
|
-0.100
|
|
|
(-0.234, 0.034)
|
|
|
|
|
|
|
Observations
|
63
|
|
R2
|
0.797
|
|
Adjusted R2
|
0.779
|
|
Residual Std. Error
|
0.464 (df = 57)
|
|
F Statistic
|
44.825*** (df = 5; 57)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
naRECmod <- lm(scale(na2) ~ scale(RNT_1) , data=df)
stargazer(naRECmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(na2)
|
|
|
|
scale(RNT_1)
|
0.503***
|
|
|
(0.279, 0.727)
|
|
|
|
|
Constant
|
-0.015
|
|
|
(-0.230, 0.201)
|
|
|
|
|
|
|
Observations
|
64
|
|
R2
|
0.238
|
|
Adjusted R2
|
0.225
|
|
Residual Std. Error
|
0.880 (df = 62)
|
|
F Statistic
|
19.333*** (df = 1; 62)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
confint.lm(naRECmod)
2.5 % 97.5 %
(Intercept) -0.2346433 0.2053861 scale(RNT_1) 0.2743333 0.7317067
naRECmod2 <- lm(scale(na2) ~ scale(RNT_1) + scale(na0), data=df)
stargazer(naRECmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(na2)
|
|
|
|
scale(RNT_1)
|
0.149*
|
|
|
(-0.013, 0.311)
|
|
|
|
|
scale(na0)
|
0.754***
|
|
|
(0.597, 0.911)
|
|
|
|
|
Constant
|
-0.004
|
|
|
(-0.143, 0.135)
|
|
|
|
|
|
|
Observations
|
64
|
|
R2
|
0.689
|
|
Adjusted R2
|
0.678
|
|
Residual Std. Error
|
0.567 (df = 61)
|
|
F Statistic
|
67.469*** (df = 2; 61)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
naRECmod3 <- lm(scale(na2) ~ scale(RNT_1) + scale(na1), data=df)
stargazer(naRECmod3, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(na2)
|
|
|
|
scale(RNT_1)
|
0.104
|
|
|
(-0.114, 0.321)
|
|
|
|
|
scale(na1)
|
0.679***
|
|
|
(0.471, 0.887)
|
|
|
|
|
Constant
|
0.006
|
|
|
(-0.165, 0.177)
|
|
|
|
|
|
|
Observations
|
63
|
|
R2
|
0.543
|
|
Adjusted R2
|
0.528
|
|
Residual Std. Error
|
0.690 (df = 60)
|
|
F Statistic
|
35.624*** (df = 2; 60)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
rhoRECmod <- lm(scale(rho_REC_log) ~ scale(RNT_1) , data=df)
stargazer(rhoRECmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(rho_REC_log)
|
|
|
|
scale(RNT_1)
|
0.177
|
|
|
(-0.097, 0.450)
|
|
|
|
|
Constant
|
-0.015
|
|
|
(-0.277, 0.246)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.029
|
|
Adjusted R2
|
0.011
|
|
Residual Std. Error
|
0.995 (df = 54)
|
|
F Statistic
|
1.602 (df = 1; 54)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
rhoRECmod2 <- lm(scale(rho_REC_log) ~ scale(RNT_1) + scale(rho_BL_log), data=df)
stargazer(rhoRECmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(rho_REC_log)
|
|
|
|
scale(RNT_1)
|
0.105
|
|
|
(-0.064, 0.275)
|
|
|
|
|
scale(rho_BL_log)
|
0.782***
|
|
|
(0.619, 0.945)
|
|
|
|
|
Constant
|
-0.009
|
|
|
(-0.171, 0.153)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.636
|
|
Adjusted R2
|
0.622
|
|
Residual Std. Error
|
0.615 (df = 53)
|
|
F Statistic
|
46.265*** (df = 2; 53)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
rhoRECmod3 <- lm(scale(rho_REC_log) ~ scale(RNT_1) + scale(rho_ANT_log), data=df)
stargazer(rhoRECmod3, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(rho_REC_log)
|
|
|
|
scale(RNT_1)
|
0.169*
|
|
|
(-0.015, 0.353)
|
|
|
|
|
scale(rho_ANT_log)
|
0.735***
|
|
|
(0.558, 0.912)
|
|
|
|
|
Constant
|
-0.014
|
|
|
(-0.190, 0.162)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.569
|
|
Adjusted R2
|
0.552
|
|
Residual Std. Error
|
0.669 (df = 53)
|
|
F Statistic
|
34.918*** (df = 2; 53)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
lambdaRECmod <- lm(scale(lambda_REC_log) ~ scale(RNT_1) , data=df)
stargazer(lambdaRECmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(lambda_REC_log)
|
|
|
|
scale(RNT_1)
|
0.017
|
|
|
(-0.261, 0.294)
|
|
|
|
|
Constant
|
-0.001
|
|
|
(-0.267, 0.264)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.0003
|
|
Adjusted R2
|
-0.018
|
|
Residual Std. Error
|
1.009 (df = 54)
|
|
F Statistic
|
0.014 (df = 1; 54)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
lambdaRECmod2 <- lm(scale(lambda_REC_log) ~ scale(RNT_1) + scale(lambda_BL_log), data=df)
stargazer(lambdaRECmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(lambda_REC_log)
|
|
|
|
scale(RNT_1)
|
0.269***
|
|
|
(0.134, 0.404)
|
|
|
|
|
scale(lambda_BL_log)
|
0.918***
|
|
|
(0.788, 1.048)
|
|
|
|
|
Constant
|
-0.023
|
|
|
(-0.148, 0.101)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.784
|
|
Adjusted R2
|
0.776
|
|
Residual Std. Error
|
0.474 (df = 53)
|
|
F Statistic
|
96.097*** (df = 2; 53)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
lambdaRECmod3 <- lm(scale(lambda_REC_log) ~ scale(RNT_1) + scale(lambda_ANT_log), data=df)
stargazer(lambdaRECmod3, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(lambda_REC_log)
|
|
|
|
scale(RNT_1)
|
-0.039
|
|
|
(-0.195, 0.118)
|
|
|
|
|
scale(lambda_ANT_log)
|
0.832***
|
|
|
(0.682, 0.982)
|
|
|
|
|
Constant
|
0.003
|
|
|
(-0.146, 0.153)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.690
|
|
Adjusted R2
|
0.678
|
|
Residual Std. Error
|
0.567 (df = 53)
|
|
F Statistic
|
58.919*** (df = 2; 53)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
muRECmod <- lm(scale(mu_REC_log) ~ scale(RNT_1) , data=df)
stargazer(muRECmod, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(mu_REC_log)
|
|
|
|
scale(RNT_1)
|
-0.038
|
|
|
(-0.315, 0.240)
|
|
|
|
|
Constant
|
0.003
|
|
|
(-0.262, 0.268)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.001
|
|
Adjusted R2
|
-0.017
|
|
Residual Std. Error
|
1.009 (df = 54)
|
|
F Statistic
|
0.071 (df = 1; 54)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
muRECmod2 <- lm(scale(mu_REC_log) ~ scale(RNT_1) + scale(mu_BL_log), data=df)
stargazer(muRECmod2, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(mu_REC_log)
|
|
|
|
scale(RNT_1)
|
-0.160
|
|
|
(-0.370, 0.050)
|
|
|
|
|
scale(mu_BL_log)
|
0.684***
|
|
|
(0.482, 0.886)
|
|
|
|
|
Constant
|
0.014
|
|
|
(-0.184, 0.211)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.455
|
|
Adjusted R2
|
0.435
|
|
Residual Std. Error
|
0.752 (df = 53)
|
|
F Statistic
|
22.146*** (df = 2; 53)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|
muRECmod3 <- lm(scale(mu_REC_log) ~ scale(RNT_1) + scale(mu_ANT_log), data=df)
stargazer(muRECmod3, ci=TRUE, type="html")
|
|
|
|
Dependent variable:
|
|
|
|
|
|
scale(mu_REC_log)
|
|
|
|
scale(RNT_1)
|
0.025
|
|
|
(-0.226, 0.276)
|
|
|
|
|
scale(mu_ANT_log)
|
0.460***
|
|
|
(0.219, 0.702)
|
|
|
|
|
Constant
|
-0.002
|
|
|
(-0.240, 0.236)
|
|
|
|
|
|
|
Observations
|
56
|
|
R2
|
0.210
|
|
Adjusted R2
|
0.180
|
|
Residual Std. Error
|
0.906 (df = 53)
|
|
F Statistic
|
7.026*** (df = 2; 53)
|
|
|
|
Note:
|
p<0.1; p<0.05; p<0.01
|