library(dplyr)## Warning: package 'dplyr' was built under R version 3.4.4
library(readr)## Warning: package 'readr' was built under R version 3.4.4
ejemp_regresion <- read.csv("D:/GUIA 2 Econometria/ejemplo_regresion.csv",sep = ",")
head(ejemp_regresion,n=6)## X1 X2 Y
## 1 3.92 7298 0.75
## 2 3.61 6855 0.71
## 3 3.32 6636 0.66
## 4 3.07 6506 0.61
## 5 3.06 6450 0.70
## 6 3.11 6402 0.72
library(stargazer)
options(scipen = 9999)
modelo_lineal<-lm(formula = Y~X1+X2,data = ejemp_regresion)
stargazer(modelo_lineal, title= "Ejemplo de Regresion Multiple", type = "text", digist= 8)##
## Ejemplo de Regresion Multiple
## ===============================================
## Dependent variable:
## ---------------------------
## Y
## -----------------------------------------------
## X1 0.237***
## (0.056)
##
## X2 -0.0002***
## (0.00003)
##
## Constant 1.564***
## (0.079)
##
## -----------------------------------------------
## Observations 25
## R2 0.865
## Adjusted R2 0.853
## Residual Std. Error 0.053 (df = 22)
## F Statistic 70.661*** (df = 2; 22)
## ===============================================
## Note: *p<0.1; **p<0.05; ***p<0.01
##
## Ejemplo de Regresion Multiple
## =
## 8
## -
library(fitdistrplus)## Warning: package 'fitdistrplus' was built under R version 3.4.4
## Warning: package 'npsurv' was built under R version 3.4.4
## Warning: package 'lsei' was built under R version 3.4.4
library(stargazer)
fit_normal<-fitdist(data = modelo_lineal$residuals, distr= "norm")
plot(fit_normal)summary(fit_normal)## Fitting of the distribution ' norm ' by maximum likelihood
## Parameters :
## estimate Std. Error
## mean 0.000000000000000007770748 0.010000382
## sd 0.050001911895951975384200 0.007058615
## Loglikelihood: 39.41889 AIC: -74.83778 BIC: -72.40002
## Correlation matrix:
## mean sd
## mean 1 0
## sd 0 1
library(normtest)## Warning: package 'normtest' was built under R version 3.4.4
jb.norm.test(modelo_lineal$residuals)##
## Jarque-Bera test for normality
##
## data: modelo_lineal$residuals
## JB = 0.93032, p-value = 0.484
qqnorm(modelo_lineal$residuals)
qqline(modelo_lineal$residuals)hist(modelo_lineal$residuals, main = "Histograma de los residuos", xlab = "Residuos", ylab = "Frecuencia") Comentario
library(nortest)## Warning: package 'nortest' was built under R version 3.4.4
lillie.test(modelo_lineal$residuals)##
## Lilliefors (Kolmogorov-Smirnov) normality test
##
## data: modelo_lineal$residuals
## D = 0.082345, p-value = 0.9328
qqnorm(modelo_lineal$residuals)
qqline(modelo_lineal$residuals)hist(modelo_lineal$residuals, main = "Histograma", xlab = "REsiduos", ylab = "Frecuencia")shapiro.test(modelo_lineal$residuals)##
## Shapiro-Wilk normality test
##
## data: modelo_lineal$residuals
## W = 0.97001, p-value = 0.6453