library(cubature)
\(\int{4e^{-7x}dx}\)
Let \(u=-7x\), and then \(du = -7dx\).
\[ \begin{split} \int{4e^{-7x}dx} &= \int{\frac{-7 \times 4}{-7}e^{-7x}dx} \\ &= \int{\frac{-4}{7}e^u du} \\ &= \frac{-4}{7}e^u+C \\ &= -\frac{4}{7}e^{-7x}+ C \end{split} \]
\(N(1)= 6530\)
\[\begin{split} N(t) &= \frac{1050}{t^3}-220t+C \\ N(1) &= 6530 \\ \frac{3050}{1^3}-220\times 1 +C &= 6530 \\ C &= 6530 - 1050 + 220 \\ C &= 5700 \end{split}\]The level of contamination :
\(N(t) = \frac{1050}{t^3}-220t+5700\)
3.Find the total area of the red rectangles in the figure below, where the equation of the line is f (x ) = 2x ??? 9.
f = function(x){
(2*x) - 9
}
integrate(f,4.5,8.5)
## 16 with absolute error < 1.8e-13
4.Find the area of the region bounded by the graphs of the given equations. y = x2 ??? 2x ??? 2, y = x + 2
Enter your answer below.
f1 = function(x){
x+2
}
f2 = function(x){
(x^2)- (2*x) -2
}
hcubature(f1,-1,4)$integral - hcubature(f2,-1,4)$integral
## [1] 20.83333
\(x\) is the number of flat irons to be ordered.
\(Yearly\ storage\ cost = {Storage\ cost\ per\ iron} \times {Average\ number\ of\ irons\ stored} = 3.75 \times x/2 = 1.875x\)
\(Yearly\ ordering\ cost = {Cost\ of\ each\ order} \times {Number\ of\ orders} = 8.25 \times 110/x = 907.5/x\)
\(Inventory\ cost = Yearly\ storage\ cost + Yearly\ ordering\ cost = 1.875x+907.5/x = f(x)\)
To find the minimized value, differentiate and solve at \(0\):
\[ \begin{split} f'(x) &= 1.875-\frac{907.5}{x^2} \\ f'(x) &= 0 \\ 1.875-\frac{907.5}{x^2} &= 0 \\ 1.875&= \frac{907.5}{x^2} \\ 1.875x^2&= 907.5 \\ x^2&= \frac{907.5}{1.875} \\ x&= \sqrt{\frac{907.5}{1.875}} \\ x&=\sqrt{484} \\ x&=22 \end{split} \] Each order should contain \(22\) flat irons as lot size, therefore, it should be \(110/22=5\) orders.
\(\int{ln(9x) \times x^6 dx}\) Let \(u= ln(9x)\), then \(\frac{du}{dx}=\frac{1}{x}\).
Let \(\frac{dv}{dx}=x^6\), then \(v = \int{x^6 dx} = \frac{1}{7}x^7\).
Using the formula for integration by parts: \(\int{u \frac{dv}{dx}dx} = uv - \int{v \frac{du}{dx} dx}\)
\[ \begin{split} \int{ln(9x) \times x^6 dx} &= \frac{1}{7}x^7 \times ln(9x) - \int{\frac{1}{7}x^7 \times \frac{1}{x} dx} \\ &=\frac{1}{7}x^7 \times ln(9x) - \int{\frac{1}{7}x^6 dx} \\ &=\frac{7}{49}x^7 \times ln(9x) - \frac{1}{49}x^7 + C \\ &=\frac{1}{49}x^7 (7ln(9x) - 1) + C \\ \end{split} \]
7.Determine whether \(f(x)\) is a probability density function on the interval \([1, e^6]\). If not, determine the value of the definite integral.
\(f(x) = \frac{1}{6x}\)
\[ \begin{aligned} \int^{e^6}_{1} 1/6x \,dx = \big[\ln(6x) \big]^{e^6}_1 \\ = \ln(6e^6) - \ln(6) \\ \ln(6) + \ln(e^6) - \ln(6) = 6 \neq 1 \end{aligned} \]
It is not a probability distribution because the area is not 1.