3. Consider the Gini index, classification error, and entropy in asimple classification setting with two classes. Create a single plot that displays each of these quantities as a function of ^pm1. The xaxis should display ^pm1, ranging from 0 to 1, and the y-axis should display the value of the Gini index, classification error, and entropy

p = seq(0, 1, 0.01)
gini = p * (1 - p) * 2
entropy = -(p * log(p) + (1 - p) * log(1 - p))
class.err = 1 - pmax(p, 1 - p)
matplot(p, cbind(gini, entropy, class.err), col = c("red", "yellow", "pink"))

9. This problem involves the OJ data set which is part of the ISLR package.

(a) Create a training set containing a random sample of 800 observations, and a test set containing the remaining observations.

library(ISLR)
attach(OJ)
set.seed(1013)

train = sample(dim(OJ)[1], 800)
OJ.train = OJ[train, ]
OJ.test = OJ[-train, ]

(b) Fit a tree to the training data, with Purchase as the response and the other variables as predictors. Use the summary() function to produce summary statistics about the tree, and describe the results obtained. What is the training error rate? How many terminal nodes does the tree have?

library(tree)
oj.tree = tree(Purchase ~ ., data = OJ.train)
summary(oj.tree)
## 
## Classification tree:
## tree(formula = Purchase ~ ., data = OJ.train)
## Variables actually used in tree construction:
## [1] "LoyalCH"   "PriceDiff"
## Number of terminal nodes:  7 
## Residual mean deviance:  0.7517 = 596.1 / 793 
## Misclassification error rate: 0.155 = 124 / 800

(c) Type in the name of the tree object in order to get a detailed text output. Pick one of the terminal nodes, and interpret the information displayed.

oj.tree
## node), split, n, deviance, yval, (yprob)
##       * denotes terminal node
## 
##  1) root 800 1075.00 CH ( 0.60250 0.39750 )  
##    2) LoyalCH < 0.5036 359  422.80 MM ( 0.27577 0.72423 )  
##      4) LoyalCH < 0.276142 170  119.10 MM ( 0.11176 0.88824 ) *
##      5) LoyalCH > 0.276142 189  257.50 MM ( 0.42328 0.57672 )  
##       10) PriceDiff < 0.05 79   76.79 MM ( 0.18987 0.81013 ) *
##       11) PriceDiff > 0.05 110  148.80 CH ( 0.59091 0.40909 ) *
##    3) LoyalCH > 0.5036 441  343.30 CH ( 0.86848 0.13152 )  
##      6) LoyalCH < 0.764572 186  210.30 CH ( 0.74731 0.25269 )  
##       12) PriceDiff < -0.165 29   34.16 MM ( 0.27586 0.72414 ) *
##       13) PriceDiff > -0.165 157  140.90 CH ( 0.83439 0.16561 )  
##         26) PriceDiff < 0.265 82   95.37 CH ( 0.73171 0.26829 ) *
##         27) PriceDiff > 0.265 75   31.23 CH ( 0.94667 0.05333 ) *
##      7) LoyalCH > 0.764572 255   90.67 CH ( 0.95686 0.04314 ) *

(d) Create a plot of the tree, and interpret the results.

plot(oj.tree)
text(oj.tree, pretty = 0)

(e) Predict the response on the test data, and produce a confusion matrix comparing the test labels to the predicted test labels. What is the test error rate?

oj.pred = predict(oj.tree, OJ.test, type = "class")
table(OJ.test$Purchase, oj.pred)
##     oj.pred
##       CH  MM
##   CH 152  19
##   MM  32  67

(f) Apply the cv.tree() function to the training set in order to determine the optimal tree size.

cv.oj = cv.tree(oj.tree, FUN = prune.tree)

(g) Produce a plot with tree size on the x-axis and cross-validated classification error rate on the y-axis.

plot(cv.oj$size, cv.oj$dev, type = "b", xlab = "Tree Size", ylab = "Deviance")

(h) Which tree size corresponds to the lowest cross-validated classification error rate?

Size of 6 gives lowest cross-validation error.

(i) Produce a pruned tree corresponding to the optimal tree size obtained using cross-validation. If cross-validation does not lead to selection of a pruned tree, then create a pruned tree with five terminal nodes.

oj.pruned = prune.tree(oj.tree, best = 6)

(j) Compare the training error rates between the pruned and unpruned trees. Which is higher?

summary(oj.pruned)
## 
## Classification tree:
## snip.tree(tree = oj.tree, nodes = 13L)
## Variables actually used in tree construction:
## [1] "LoyalCH"   "PriceDiff"
## Number of terminal nodes:  6 
## Residual mean deviance:  0.7689 = 610.5 / 794 
## Misclassification error rate: 0.155 = 124 / 800

(k) Compare the test error rates between the pruned and unpruned trees. Which is higher?

pred.unpruned = predict(oj.tree, OJ.test, type = "class")
misclass.unpruned = sum(OJ.test$Purchase != pred.unpruned)
misclass.unpruned/length(pred.unpruned)
## [1] 0.1888889
pred.pruned = predict(oj.pruned, OJ.test, type = "class")
misclass.pruned = sum(OJ.test$Purchase != pred.pruned)
misclass.pruned/length(pred.pruned)
## [1] 0.1888889