\[ \int 4 e^{-7 x} d x \] u = -7x
du/dx = -7
du = -7 dx
\[ = \int \frac{-4}{7} d u e^u \] \[ = \frac{-4}{7} \int e^u d u \] \[ = \frac{-4}{7} e^u + C \] \[ = \frac{-4}{7} e^{-7x} + C \]
\[ \int -\frac{3150}{t^4} - 220 \] \[ = \int -3150 t^{-4} - 220 \] \[ = -3150 \frac{t^{-3}}{-3} - 220 t + C = 6530 \] \[ = 1050 t^{-3} - 220 t + 5700 \]
1 + 3 + 5 + 7 = 16
curve(x^2 - 2*x - 2, -5, 5)
curve(x + 2, -5, 5, add=T, col="red")
Set the equations equal to each other to calculate where they intersect.
x^2 - 2x - 2 = x + 2
x^2 - 3x - 4 = 0
(x-4)*(x+1) = 0
x = (4, -1)
\[ \int_{-1}^4 (x + 2) - (x^2 - 2x -2) \] \[ = \int -x^2 + 3x + 4 \]
\[ = \frac{x^3}{3} + \frac{3 x^2}{2} + 4 x + C \] Plugging in 4 and -1 and subtracting:
4^3/3 + 3*4^2/2 + 4*4 - ((-1)^3/3 + 3*(-1)^2/2 + 4*(-1)) = 64.1666667
Unless there is information missing (no price or demand curve formula is given), selling all 110 irons in one order would minimize costs.
\[ \int ln(9x) x^6 dx \] \[ \int f(x) g'(x) dx = f(x) g(x) - \int f'(x) g(x) dx \] f(x) = ln(9x)
f’(x) = 1/x
g’(x) = x6
g(x) = x7/7
\[ ln(9x) \frac{x^7}{7} - \int \frac{1}{x} \frac{x^7}{7} dx \] \[ ln(9x) \frac{x^7}{7} - \frac{1}{7} \int x^6 dx \] \[ ln(9x) \frac{x^7}{7} - \frac{1}{7} \frac{x^7}{7} + C \] \[ \frac{x^7}{49}(7 ln(9x) - 1) + C \]
\[ \int_1^{e^6} \frac{1}{6x} dx \] \[ \frac{1}{6} \int x^{-1} dx \] \[ \frac{ln x}{6} \] Now plugging in e6 and 1 and subtracting:
log(exp(6))/6 - log(exp(1))/6 = 0.8333333
It is not a probability distribution because the area is not 1.