library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
library(psych)
library(tidyLPA)
## Note that an update to tidyLPA is forthcoming; see vignette('introduction-to-major-changes') for details!
#stats2 <- read.csv("constrained_parameters.csv")
stats <- read.csv("stats_rev.csv")
colnames(stats)[1] <- "ID"
options(scipen=999)
options(digits=2)
library(stargazer)
##
## Please cite as:
## Hlavac, Marek (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables.
## R package version 5.2.2. https://CRAN.R-project.org/package=stargazer
hU <- read.csv("hUdata.csv")
hUhddm <- inner_join(hU[c(1,14)],stats, by="ID")
hUfull <- read.csv("RNT_wide_final_V7.csv")
#which(colnames(hUfull)=="PHQ9_tot_1")
#which(colnames(hUfull)=="EmotionalImpulsivity_1")
hUhddm <- inner_join(hUhddm,hUfull[c(1,31,49)], by="ID")
hUhddm[c(2:16)] <- scale(hUhddm[c(2:16)])
lmod1 <- lm(RNT_1 ~ a_mean + t_mean + v_IncSwitch_mean + v_ConSwitch_mean+ v_ConStay_mean + v_IncStay_mean, data=hUhddm)
stargazer(lmod1, type="html")
| Dependent variable: | |
| RNT_1 | |
| a_mean | -0.110 |
| (0.120) | |
| t_mean | -0.080 |
| (0.120) | |
| v_IncSwitch_mean | 0.360 |
| (0.220) | |
| v_ConSwitch_mean | -0.640*** |
| (0.220) | |
| v_ConStay_mean | 0.130 |
| (0.230) | |
| v_IncStay_mean | 0.077 |
| (0.210) | |
| Constant | 0.000 |
| (0.100) | |
| Observations | 90 |
| R2 | 0.140 |
| Adjusted R2 | 0.082 |
| Residual Std. Error | 0.960 (df = 83) |
| F Statistic | 2.300** (df = 6; 83) |
| Note: | p<0.1; p<0.05; p<0.01 |
RNT is linked with lower drift rate for congruent shift trials, which indicates poorer set shifting.
For all cluster models, the optimal number of clusters was determined by comparing BIC values. For parsimony, only the best fitting models are shown here.
lpaMod <- estimate_profiles(hUhddm[c(3,5,7,9,11,13)],
a_mean,t_mean, v_ConStay_mean, v_ConSwitch_mean, v_IncStay_mean, v_IncSwitch_mean,
n_profiles=4, return_orig_df = T)
## Fit Equal variances and covariances fixed to 0 (model 1) model with 4 profiles.
## LogLik is 602.575
## BIC is 1353.643
## Entropy is 0.95
plot_profiles(lpaMod, to_center=T, plot_error_bars = F)
lpaMod2 <- estimate_profiles(hUhddm[c(4,6,8,10,12,14)],
a_std, t_std, v_ConStay_std, v_ConSwitch_std, v_IncStay_std, v_IncSwitch_std,
n_profiles=3, return_orig_df = T)
## Fit Equal variances and covariances fixed to 0 (model 1) model with 3 profiles.
## LogLik is 652.713
## BIC is 1422.421
## Entropy is 0.885
plot_profiles(lpaMod2, to_center=T, plot_error_bars = F)
lpaMod3 <- estimate_profiles(hUhddm[c(3:14)],
a_mean,a_std,t_mean, t_std, v_ConStay_mean,v_ConStay_std, v_ConSwitch_mean,v_ConSwitch_std, v_IncStay_mean,v_IncStay_std, v_IncSwitch_mean,v_IncSwitch_std,
n_profiles=4, return_orig_df = T)
## Fit Equal variances and covariances fixed to 0 (model 1) model with 4 profiles.
## LogLik is 1223.929
## BIC is 2731.346
## Entropy is 0.973
plot_profiles(lpaMod3, to_center=T, plot_error_bars = F)
huLPA <- cbind(hUhddm, lpaMod[c(7)], lpaMod2[c(7)], lpaMod3[c(13)])
colnames(huLPA)[c(18,19)] <- c("profileSD","profileComb")
mod <- lm(RNT_1 ~ profile, data=huLPA)
stargazer(mod, type="html")
| Dependent variable: | |
| RNT_1 | |
| profile2 | -0.210 |
| (0.280) | |
| profile3 | -0.670** |
| (0.280) | |
| profile4 | -0.730 |
| (0.730) | |
| Constant | 0.340 |
| (0.220) | |
| Observations | 90 |
| R2 | 0.076 |
| Adjusted R2 | 0.043 |
| Residual Std. Error | 0.980 (df = 86) |
| F Statistic | 2.300* (df = 3; 86) |
| Note: | p<0.1; p<0.05; p<0.01 |
Profile 3 is associated with lower RNT.
mod2 <- lm(RNT_1 ~ profileSD, data=huLPA)
stargazer(mod2, type="html")
| Dependent variable: | |
| RNT_1 | |
| profileSD2 | 0.064 |
| (0.390) | |
| profileSD3 | -0.100 |
| (0.220) | |
| Constant | 0.042 |
| (0.160) | |
| Observations | 90 |
| R2 | 0.003 |
| Adjusted R2 | -0.020 |
| Residual Std. Error | 1.000 (df = 87) |
| F Statistic | 0.150 (df = 2; 87) |
| Note: | p<0.1; p<0.05; p<0.01 |
mod3 <- lm(RNT_1 ~ profileComb, data=huLPA)
stargazer(mod3, type="html")
| Dependent variable: | |
| RNT_1 | |
| profileComb2 | -0.250 |
| (0.300) | |
| profileComb3 | -0.620** |
| (0.280) | |
| profileComb4 | -0.510 |
| (0.440) | |
| Constant | 0.380 |
| (0.230) | |
| Observations | 90 |
| R2 | 0.060 |
| Adjusted R2 | 0.027 |
| Residual Std. Error | 0.990 (df = 86) |
| F Statistic | 1.800 (df = 3; 86) |
| Note: | p<0.1; p<0.05; p<0.01 |
Profile 3 is associated with lower RNT.
hUBehavioral <- hUfull[c(1,6:10,33)]
hUBehavioral[c(2:7)] <- scale(hUBehavioral[c(2:7)])
hUBehavioral <- hUBehavioral[complete.cases(hUBehavioral),]
Note that RNT is called “PTQ” in this dataset but it is the same variable.
modlmB <- lm(PTQ_tot_1 ~ sw_costRT + sw_avg_ac + sw_inc_ac + sw_acc + sw_iacc, data=hUBehavioral)
stargazer(modlmB, type="html")
| Dependent variable: | |
| PTQ_tot_1 | |
| sw_costRT | 0.037 |
| (0.130) | |
| sw_avg_ac | 0.130 |
| (0.790) | |
| sw_inc_ac | 0.280 |
| (0.600) | |
| sw_acc | -0.710 |
| (0.750) | |
| sw_iacc | 0.330 |
| (0.540) | |
| Constant | -0.052 |
| (0.100) | |
| Observations | 86 |
| R2 | 0.071 |
| Adjusted R2 | 0.013 |
| Residual Std. Error | 0.970 (df = 80) |
| F Statistic | 1.200 (df = 5; 80) |
| Note: | p<0.1; p<0.05; p<0.01 |
There are no significant associations between the behavioral data and RNT.
lpaBehavioral <- estimate_profiles(hUBehavioral[c(2:6)],
sw_costRT, sw_avg_ac, sw_inc_ac, sw_acc, sw_iacc,
n_profiles=4, return_orig_df = T)
## Fit Equal variances and covariances fixed to 0 (model 1) model with 4 profiles.
## LogLik is 342.351
## BIC is 809.423
## Entropy is 0.963
plot_profiles(lpaBehavioral, to_center=T, plot_error_bars = F)
## Warning: attributes are not identical across measure variables;
## they will be dropped
hULPABehavioral <- cbind(hUBehavioral, lpaBehavioral[c(6)])
clustModB <- lm(PTQ_tot_1 ~ profile, data=hULPABehavioral)
stargazer(clustModB, type="html")
| Dependent variable: | |
| PTQ_tot_1 | |
| profile2 | 0.100 |
| (0.340) | |
| profile3 | 0.230 |
| (0.340) | |
| profile4 | 0.190 |
| (0.380) | |
| Constant | -0.200 |
| (0.280) | |
| Observations | 86 |
| R2 | 0.007 |
| Adjusted R2 | -0.030 |
| Residual Std. Error | 0.990 (df = 82) |
| F Statistic | 0.180 (df = 3; 82) |
| Note: | p<0.1; p<0.05; p<0.01 |
There are no significant associations.