1 가설검정

1.1 가설검정

모집단 실제의 값이 얼마가 된다는 주장과 관련해, 표본의 정보를 사용해서 가설의 합당성 여부를 판정하는 과정을 의미

절차

  1. 유의수준의 결정, 귀무가설과 대립가설 설정
  2. 검정통계량 설정
  3. 기각역 설정
  4. 검정통계량 계산
  5. 통계적 의사결정.

1.1.1 가설과 가설검정의 기본개념

가설 : 모집단의 알지못하는 모수에 관한 주장을 말한다.

  1. 귀무가설(null hypothesis) : 기존의 사실
  2. 대립가설(alternative hypothesis): 연구자가 검증하고 싶은 가설
  3. 1종오류(type 1 error) : 귀무가설 \(H_{0}\)가 참일 때 \(H_{0}\)를 기각하는 오류
  4. 2종오류(type 2 error) : 귀무가설 \(H_{0}\)가 거짓일 때 \(H_{0}\)를 기각하지 않는 오류
  5. 유의수준(significance level) : 귀무가설 \(H_{0}\)에 대해, 참인 \(H_{0}\) 를 기각할 확률 \(\alpha\)를 유의수준이라 한다.

참 고

\(\color{gray}{\text{ 단순가설, 복합가설}}\) 1\(\color{gray}{\text{ , 검정통계량(test statistic)}}\) 2,\(\color{gray}{\text{ 기각역(critical region)}}\)3


예제 11.2.2


1.1.2 검 정 력& 검 정 력 함수

  1. 검정력(power) : \(\theta\)가 참일 때 \(H_{0}\)를 기각할 확률을 \(\theta\)에 대한 검정의 검정력이라 한다. (단, \(\theta \in\Omega^{c}_{0}\)이고 \(C\)는 검정의 기각역)
    간단히 대립가설 하에서 귀무가설을 기각시킬 확률(2종오류를 범하지 않을 확률)

  2. 수식
    \(\beta_C(\theta)=P_\theta[X\in C]\)\(\theta\)에 대한 검정의 검정력이라 한다.

  3. 검정력함수(power function) : 모수의 참값이 \(\theta\)일 때 \(H_{0}\)를 기각할 확률을 기각역 C를 가지는 가설검정의 검정력함수라 한다.(즉, 귀무가설을 기각하는 확률)


예제 11.2.3


1.1.3 유 의 확 률

유의확률(significance probability) : 검정통계량의 관측값에 근거하여 귀무가설을 기각할 수 있는 검정의 크기 \(\alpha\)의 최소값(p-value)

참 고

\(\color{gray}{\text{상단단측검정}}\) 4\(\color{gray}{\text{하단단측검정 ,}}\) 5,\(\color{gray}{\text{양측검정}}\)6


예제 11.2.4


1.2 예 제

1.2.1 예제 11.2.2

예제 11.2.2 어떤 화학 반응량은 정규분포 \(N(\mu,16)\)을 따른다는 이론이 제시되었다. 과거 경험에 의하면 어떤 종류의 광물질이 포함되어 있지 않으면 \(\mu=10\)이고 광물질이 포함되어 있으면 \(\mu=11\)임을 알았다.

어느 것이 참인지를 결정하기위해 표본을 25개 추출하여 \(H_{0} : \mu=10\)\(H_{1} : \mu=11\) 가설을 검정하고자 한다면, 유의수준 \(\alpha=0.05\)일 때의 기각역은 다음과 같다.

표본의 분포 : \(\bar{X} \sim N(\mu,4^2)\) 표준정규화를 이용한 확률 계산은 다음과 같다.

\(P(Z>A)=0.05\)를 만족하는 A를 구하면

x <- seq(-3,3,0.1)
y <- dnorm(x)
plot(x,dnorm(x,0,1),type="l", col="black", lwd=3)
polygon(c(x[x>qnorm(.95)],rev(x[x>qnorm(.95)])),
        c(rep(0,sum(x>qnorm(.95))),rev(y[x>qnorm(.95)])), col="lightblue")
text(round(qnorm(.95),5),.2,paste0('x=',round(qnorm(.95),5)))

\(Z=\frac{\bar{x}-\mu_{0}}{\sigma/\sqrt{n}}\)이고 \(P(Z\ge 1.645)=0.05\)이므로

\(C=\{(x_{1},\cdots,x_{25})| \frac{\bar{x} - \mu_{0}}{\sigma /\sqrt{n}} \ge 1.645\}\)

\(C=\{(x_{1},\cdots,x_{25})|\bar{x} \ge \mu_{0}+ z_{\alpha}\sigma /\sqrt{n} =10+1.645(4)/5=11.316 \}\)

따라서 기각역은 11.316이다. 기각역이 11.316이므로 \(\bar{x} \ge 11.316\)을 만족하지 않으므로 귀무가설을 기각 할 수 없다.

기각역에 대한 제2종 오류를 범할 확률은 \(P[\bar{X}<11.316|\mu=11]=P[\frac{\bar{X}-11}{4/5}<\frac{11.316-11}{4/5}|\mu=11]=P[Z<0.395] \\ \approx0.654\)


library(scales)
n=25
x <- seq(5,15,0.01)
mean=10;sd=4/sqrt(n)
y <- dnorm(x,mean,sd)
plot(x,y,type="l", col="black", lwd=3)
polygon(c(x[x>qnorm(.95,mean,sd)],rev(x[x>qnorm(.95,mean,sd)])),
c(rep(0,sum(x>qnorm(.95,mean,sd))),rev(y[x>qnorm(.95,mean,sd)])), col=alpha('lightblue',.3))
critical=qnorm(.95,mean,sd)
text(critical,.2,paste0('기각역=',round(critical,5)),cex=.7)
x <- seq(5,15,0.01)
mean=11;sd=4/sqrt(n)
y <- dnorm(x,mean,sd)
lines(x,y,type="l", col="black", lwd=3)
polygon(c(x[x<critical],rev(x[x<critical])),
        c(rep(0,sum(x<critical)),rev(y[x<critical])), col=alpha('red',.3))
legend('topright',col=c(alpha('lightblue',.6),alpha('red',.6)),legend = c('1종오류','2종오류'),lwd=16,bty='n')
text(mean-.65,.1,expression(beta),cex=.7)
text(mean-.2,.1,paste0('= ',round(pnorm(critical,mean,sd),4)),cex=.7)

\(\color{red}{\text{따라서 이 경우에는 귀무가설이 참이거나 2종오류를 범하거나 둘 중 하나 일 것이다.}}\)

표본의 수가 증가함에 따라 2종오류가 증가하는지 보자.

표본의 크기와 2종오류와의 관계

n=100이면 \(\alpha=0.05\)일 때 기각역은 10.658임을 알 수 있고 이 때 제2종 오류를 범할 확률은 0.196이다. 따라서 제2종 오류는 표본의 크기에 영향을 많이 받는다.


1.2.2 예제 11.2.3

예제 11.2.3 어느 과일 상점에서는 각 상자당 약간의 흠이 있는 과일이 4%를 초과하지 않는다고 주장하는 도매점에서 과일을 구매한다. 이 때 \(H_{0} : p \le 0.04\)\(H_{1}:p \gt 0.04\)인 검정을 생각해 보자. 상자에서 25개의 과일을 무작위로 선택하여 음이 있는 과일의 개수가 a개 이상이면 그 과일을 구입하지 않는다고 하자. 즉 \(X\ge a\)일 때 \(H_{0}\)를 기각한다. 여기서 \(\Omega_{0}=[0,0.04]\)이고 \(\Omega^{c}_{0}=(0.04,1]\)이다.


  1. 기각역이 \(C_{1}=\{x|x\ge2\}\)이면 검정력함수는 아래와 같다. \(\beta_{c_{1}}(p)=P_{p}[X\ge2]=1-P_{p}[X=0]-P_{p}[X=1] \\=1-(1-p)^{25}-_{25}C_{1} p(1-p)^{24}=1-(1-p)^{24}(1+24p)\)

\(\beta_{C_{1}}(p)\)\(\beta_{C_{1}}(0)=0\)에서 \(\beta_{C_{1}}(1)=1\)까지 증가하는 순증가함수이다.

따라서 \(\beta_{C_{1}}(0.05)\approx0.3576,\ \beta_{C_{1}}(0.1)\approx0.7288, \ \beta_{C_{1}}(0.3)\approx0.9984\)등이다.

즉, 1종오류를 범활 확률의 최대값인 \(\color{salmon}{\text{유의수준은 0.2642}}\)이고 p=0.05일 때 \(\color{salmon}{\text{제 2종오류를 범할 확률은 1-0.3576=0.6424}}\)이다.


  1. 기각역이 \(C_{1}=\{x|x\ge3\}\)이면 검정력함수는 아래와 같다. \(\beta_{c_{1}}(p)=P_{p}[X\ge3]=1-P_{p}[X=0]-P_{p}[X=1]-P_{p}[X=2] \\=1-(1-p)^{25}-_{25}C_{1} p(1-p)^{24}-_{25}C_{2} p^{2}(1-p)^{23}=1-(1-p)^{23}(1+23p+276p^{2})\)

따라서 \(\beta_{C_{2}}(0.05)\approx0.1271,\ \beta_{C_{2}}(0.1)\approx0.4629, \ \beta_{C_{2}}(0.3)\approx0.9910\)등이다.

즉, 1종오류를 범활 확률의 최대값인 \(\color{skyblue}{\text{유의수준은 0.0765}}\)이고 p=0.05일 때 \(\color{skyblue}{\text{제 2종오류를 범할 확률은 1-0.1271=0.8729}}\)이다.

즉, 같은 확률(0.04)에서의 유의수준은 기각역이 2인 (a)에 비해 기각역이 3인 (b)에서는 0.2642과 0.0765로 줄어들었지만, 같은 확률(0.04)에서 제2종 오류를 범할 확률은 기각역이 2인 (a)에 비해 기각역이 3인 (b)에서는 0.7358과 0.9235로 증가되었음을 알 수 있다.

x=seq(0,1,len=100)
n=25;p=0.04;critical=3
power=function(critical,n,p){
  c=0;del=0
  while(c <critical){
    del=del+choose(n,c)*(p^(c))*((1-p)^(n-c))
    c=c+1
  }
  return(1-del)
}
type2=function(critical,n,p){
  c=0;del=0
  while(c <critical){
    del=del+choose(n,c)*(p^(c))*((1-p)^(n-c))
    c=c+1
  }
  return(del)
}
for(cri in 1:critical){
if(cri==1)plot(1,pty='n',xlim=c(0,max(x[round(power(critical,25,x),3)<.99])),ylim=c(0,1))
curve(power(cri,25,x),0,max(x[round(power(critical,25,x),3)<.99])
      ,lty=cri,lwd=cri,add=T,main='기각역에 따른 검정력함수의 변화',ylab='',xlab='p',col=alpha('red',.5))}
legend('bottomright',legend = paste0('기각역 :',1:critical,'이상'),bty='n',lty=1:critical,cex=.8)
for(cri in 1:critical){
  curve(type2(cri,25,x),0,max(x[round(type2(critical,25,x),3)>.01])
        ,lty=cri,lwd=cri,add=T,main='기각역에 따른 변화',ylab='',xlab='p',col=alpha('blue',.5))}
legend('right',legend =c('유의수준','제2종오류') ,col=c(alpha('red',.5),alpha('blue',.5)),bty='n',lty=1,lwd=10,cex=.8)
abline(v=0.04)

** 즉, 기각역을 변경하면 한 오류를 범할 확률은 줄어들지만 다른 오류를 범할 확률은 오히려 증가하기 때문에 두 오류를 동시에 줄일 수 없다. 하지만, 표본의 수를 증가시키면 두 오류를 범할 확률을 동시에 줄일 수 있다.**


1.2.3 예제 11.2.4

예제 11.2.4 정규분포 \(N(\mu,25)\)에서 추출한 크기가 \(n=16\)인 확률표본에 근거하여 \(H_0:\mu\le15\)\(H_1:\mu\gt15\)를 검정해 보자. 관측값이 \(\bar{x}=17.25\)라 하자. 그러면 \(p-value\)\(P[\bar{X}\ge17.25|\mu=15]=P[Z\ge1.80]=0.0359\)이며 \(0.01<0.0359<0.05\)이므로, 검정은 \(\alpha=0.05\)에서는 기각되지만 \(\alpha=0.01\)에서는 기각하지 못한다. 따라서 \(p-value\)로 검정결과를 기록하면, 관심 있는 사람들은 그들 자신의 기준을 적용할 수 있다.

검정에 대한 기각역은 \(z_{0}=\frac{\bar{x}-\mu_{0}}{5/\sqrt{n}}\ge z_{\alpha}\)이다.

이러한 검정을 단측검정이라 한다.


2 최강력검정

검정의 크기가 \(\alpha\)인 기각역을 가지는 여러 검정 중에서 좋은 검정일 제2종 오류를 범할 확률이 작은 검정을 찾는 게 중점.

2.1 최 강 력 검 정

2.1.1 최 강 력 검 정 의 정 의

기각역\((C^*)\)이 아래의 조건을 만족하는 경우

검정을 유의수준이 \(\alpha\)최강력검정(most powerful test), 기각역을 유의수준이 \(\alpha\)최강력기각역(most powerful critical region)이라 한다.

\((a) \beta_{C^{*}}(\theta_0)=\alpha\)

\((b)\) 검정의 크기가 \(\alpha\) 인 임의의 기각역에 대해 \(\beta_{C^{*}}(\theta_1)\ge\beta_C(\theta_1)\)이다.

즉, 최강력검정은 2종오류를 범하지 않을 확률이 가장 높은 검정이라 말할 수 있다.


2.1.2 네 이 만 - 피 어 슨 보 조 정 리

\(X=(X_{1},\cdots,X_n)\)의 결합 \(pdf(pmf)\)\(f(x;\theta)\)이고 \(C^{*}=\{x|\lambda(x;\theta_0,\theta_1)=\frac{f(x;\theta_1)}{f(x;\theta_0)} \ge k\}\) 라고 하자.

(여기서 \(k\)\(\alpha = P_{\theta_0}[X\in C^{*}]=P[X\in C^{*}|\theta = \theta_0]\)을 만족하는 상수.)

그러면 \(C^*\)에 근거한 \(H_0:\theta=\theta_0\)\(H_1:\theta=\theta_1\) 검정은 유의수준이 \(\alpha\)인 최강력검정이다.


예제 11.3.1~2


2.2 예 제

네 이 만 - 피 어 슨 보 조 정 리

\(X=(X_{1},\cdots,X_n)\)의 결합 \(pdf(pmf)\)\(f(x;\theta)\)이고 \(C^{*}=\{x|\lambda(x;\theta_0,\theta_1)=\frac{f(x;\theta_1)}{f(x;\theta_0)} \ge k\}\) 라고 하자.

(여기서 \(k\)\(\alpha = P_{\theta_0}[X\in C^{*}]=P[X\in C^{*}|\theta = \theta_0]\)을 만족하는 상수.)

그러면 \(C^*\)에 근거한 \(H_0:\theta=\theta_0\)\(H_1:\theta=\theta_1\) 검정은 유의수준이 \(\alpha\)인 최강력검정이다.


2.2.1 예제 11.3.1

\(X_1,\cdots,X_n\)은 정규분포 \(N(\mu,4)\)에서의 확률표본이다. \(H_0:\mu=0\)\(H_1:\mu=1\)을 검정하고자 한다.


결합 pdf가 \(f(x;\mu)=(8\pi)^{-n/2} exp[-\frac{1}{8}\sum(x_i-\mu)^{2}]\)이므로 가능도함수의 비는 \(\lambda (x;\mu_{0} ,\mu_{1})=\frac{exp[-\frac{1}{8}]}{exp[-\frac{1}{8}\sum x_{i}]}=exp[\frac{1}{4}\sum x_{i}-\frac{n}{8}]\)


적당한 상수 \(k\gt0\)에 대해

\(\lambda(x;\mu_0,\mu_1)\ge k\leftrightarrow \sum x_i \ge k_1, k_1 = 4(\frac{n}{8}+ln k)\) 이면 귀무가설을 기각.(by 네이만-피어슨 보조정리)


\(k_1\)을 구해보면 \(\alpha = P[\sum X_i \ge k_1|\mu=0]\)을 만족해야 한다.

귀무가설 하에서 \(\sum X_{i} \sim N(0,4n)\)이므로
\(\alpha =P[\sum X_i \ge k_1|\mu=0]=P[Z\ge k_1 / \sqrt{4n}]\)을 만족하는 \(k_1\)\(k_1=z_\alpha \sqrt{4n}\).

따라서 유의수준이 \(\alpha\)인 최강력 기각역은 \(C^{*}=\{x|\sum x_i \ge 2 z_{\alpha}\sqrt{n}\}=\{x|\bar{x}\ge 2 z_{\alpha}/\sqrt{n}\}\)


2.2.2 예제 11.3.2

\(X_1,\cdots,X_n\)은 지수분포 \(Exp(\theta)\)에서 추출한 확률표본일 때, \(H_0:\theta=\theta_0\)\(H_1:\theta=\theta_1,\theta_1\gt\theta_0\)을 검정하고자 한다.


결합 \(pdf\)\(f(x;\theta)=\theta ^{-n}exp(-\frac{1}{\theta}\sum x_i)\)이므로 \(\lambda(x;\theta_0,\theta_1)=\frac{f(x;\theta_1)}{f(x;\theta_0)}=\frac{\theta_1^{-n}exp(-\frac{1}{\theta_1}\sum x_i)}{\theta_0^{-n}exp(-\frac{1}{\theta_0})\sum x_i)}=(\frac{\theta_0}{\theta_1})^n exp[-\sum x_i (\frac{1}{\theta_1 }-\frac{1}{\theta_0})]\)

적당한 상수 \(k\gt0\)에 대해

\(\lambda(x;\theta_0,\theta_1)\ge k \leftrightarrow \sum x_i \ge k_1\)이면 귀무가설을 기각(by 네이만-피어슨 보조정리).

여기서 상수 \(k\)\(\alpha=P[\lambda(X;\theta_0,\theta_1)\ge k |\theta=\theta_0]\)를 만족하는 값이므로 \(\alpha=P[\lambda(X;\theta_0,\theta_1)\ge k |\theta=\theta_0]=P[\sum X_i \ge k_1 | \theta =\theta_0]\).


귀무가설 하에서 \(2 \sum X_i/\theta_0\sim \chi^2(2n)\)이므로 \(k_1=\frac{1}{2}\theta_0\chi_\alpha^2(2n)\)이다.
따라서 최강력 기각역은 \(C=\{x|\sum x_i \ge \theta_0 \chi_{\alpha}^2(2n)/2\}\).


만일 \(H_0: \theta=\theta_0\)\(H_1 : \theta=\theta_1,\theta \lt \theta_0\)를 검정하고자 한다면

\(\lambda(x;\theta_0 ,\theta_1)\ge k \leftrightarrow \sum x_i \le k_2\)이므로 최강력 기각역은 \(C=\{x|\sum x_i \le \theta_0 \chi_{1-\alpha}^2(2n)/2\}\).


2.2.3 예제 11.3.3

\(X_1,\cdots,X_n\)이 정규분포 \(N(0,\sigma^2)\)에서 추출한 크기가 \(n\)인 확률표본일 때, \(H_0:\sigma^2=\sigma^2_0\)\(H_1:\sigma^2=\sigma^2_1,\sigma^2_1\gt\sigma^2_0\)을 검정하고자 한다.


\(\lambda(x;\sigma^2_{0},\sigma^2_1)=\frac{(2\pi\sigma^2_1)^{-n/2}exp(-\frac{1}{2\sigma^2_1}\sum x_{i}^2)}{(2\pi\sigma^2_0)^{-n/2}exp(-\frac{1}{2\sigma^2_0} \sum x_{i}^2)} =(\frac{\sigma_{0}}{\sigma_1})^n exp[-\sum x_i^2 (\frac{1}{2\sigma^2_1}-\frac{1}{2\sigma^2_0})]\)

\(\lambda(x;\sigma^2_0,\sigma^2_1)\ge k \leftrightarrow \sum x_i^2\ge k_1\)을 만족하면 귀무가설을 기각(by 네이만-피어슨 보조정리).

\(k_1\)\(\alpha=P[\sum X_i^2 \ge k_1|\sigma^2=\sigma^2_0]\)을 만족하는 상수 값

귀무가설 하에서 \(\sum x_i^2/\sigma^2_0 \sim \chi^2(n)\)이므로

최강력 기각역은 \(C^*=\{x|\sum x_i^2 \ge \sigma^2_0\chi^2_{\alpha}(n)\}\)이다.


만약 \(\sigma^2_1 \lt \sigma^2_0\)이면, 유의수준이 \(\alpha\)인 최각력 검정은 \(\sum x_i^2 \le \sigma^2_0 \chi^2_{1-\alpha}(n)\)일 때 귀무가설을 기각하는 것이다. 따라서 최강력 검정은 \(\sigma^2\) 의 충분통계량인 \(\sum X_i^2\)의 함수임을 알 수 있다.


2.2.4 예제 11.3.4

\(X_1,\cdots,X_n\)이 베르누이분포 \(Bin(1,p)\)에서 추출한 확률표본일 때, \(H_0:p=p_0\)\(H_1:p=p_1,p_1\gt p_0\)의 최강검정력의 형태를 결정해보자.


\(\lambda(x;p_0,p_1)=\frac{p_1^{\sum x_i}(1-p_1)^{n-\sum x_i}}{p_0^{\sum x_i} (1-p_0)^{n-\sum x_i}}=(\frac{1-p_1}{1-p_0})^n(\frac{p_1(1-p_0)}{p_0(1-p_1)})^{\sum x_i}\)

\(\lambda(x;p_0,p_1)\ge k \leftrightarrow (\frac{p_1(1-p_0)}{p_0(1-p_1)})^{\sum x_i}\ge k_1 \leftrightarrow \sum x_i \ge k_2\)이면 귀무가설을 기각(by 네이만 피어슨 보조정리).

이산인 경우이므로 \(P[X \ge c|p=p_0]=1-P[X \le c-1|p=p_0]=1-\sum {_nC_i} p_0^i(1-p_0)^{n-i}=\alpha_c\)이면 유의수준이 \(\alpha_c\)인 최강력검정은 \(X\ge c\)이면 귀무가설을 기각하는 검정이다.

최강력 기각역은 \(C^*={x|x\ge c}\)이다. 그러나 \(\alpha_c\)와 다른 미리 정해진 유의수준인 \(\alpha\)인 검정에 대해서는 보수적 검정을 택해야 할 필요가 있다.

7 확률화검정(randomized test)


2.2.5 예제 11.3.5

\(H_0:X\sim U(0,1)\)\(H_1:X\sim Beta(6,1)\)의 유의수준이 \(\alpha\)인 최강력검정을 구해 보자.


\(\lambda(x)=\frac{f_1(x)}{f_0(x)}=\frac{6x^5}{1}=6x^5\)이므로 최강력 검정은 \(x^5 \ge k\)이면 귀무가설을 기각.

\(\lambda(x)\)\(x\)의 증가함수이므로 최강력검정은 \(x\ge k_1\)이면 귀무가설을 기각.

\(k_1\)\(\alpha=P[X\ge k_1 | H_0 \ 가 \ 참일 \ 때]= \int^1_{k_1}dx=1-k_1\)을 만족해야하므로 \(k_1=1-\alpha\) 따라서 이 검정력의 검정력은 아래와 같다.

\(P[X\ge 1-\alpha| X\sim Beta(6,1)]= \int^1_{1-\alpha}6x^5dx=1-(1-\alpha)^6\)


3 균일 최강력 검정

3.1 균일 최강력 검정

앞 절에서는 단순가설인 경우 검정력이 가장 큰 검정을 유도하는 방법에 해당. 이 절에서는 복합가설인 경우 대립가설에 해당하는 모수값들의 변화에 대하여 영향을 받지 않는 최강력검정균일최강력검정 다룬다.


3.1.1 균 일 최 강 력 검정 정의

기각역이 아래의 조건을 만족하는 경우

검정을 유의수준이 \(\alpha\)균일최강력검정(uniformly most powerful test), 기각역을 유의수준이 \(\alpha\)균일최강력기각역(uniformly most powerful critical region)이라 한다.

\((a) \max_{\theta\in \Omega_0} \beta_{C^{*}}(\theta_0)=\alpha\)

\((b)\)모든 \({\theta\in \Omega_0^c}\) 크기가 \(\alpha\) 인 임의의 기각역에 대해 \(\beta_{C^{*}}(\theta)\ge\beta_C(\theta)\)이다.


예제 11.4.1


3.1.2 단조 우도비

균일최강력검정을 좀더 쉽게 구하기 위하여 사용


3.1.2.1 단조우도비의 정의

\({f(x;\theta)|\theta \in \Omega}\)\(X=(X_1,\cdots,X_n)\)의 결합 pdf의 모임. \(T(X)\)는 실숫값 통계량이라 하자.

\(L(x;\theta_1,\theta_2)=\frac{f(x;\theta_2)}{f(x;\theta_1)}\)\(T(x)\)의 비감소 함수이면 \(T(x)\)에서 단조 우도비(monotone likelihood ratio ;MLR) 성질을 갖는다고 한다(단, \(\theta_1,\theta_2 \in \Omega(\theta_1\lt\theta_2)\)).


예제 11.4.1~3


3.1.3 정리

정리 11.4.1

다음의 결합 pdf(pmf)를 갖는 1-모수 지수족을 생각해 보자. \(f(x;\theta)=c(\theta)h(x)\exp[q(\theta)T(x)]\)


\((a)\) \(q(\theta)\)\(\theta\)의 비감소함수이면, 지수족은 \(T(x)\)에서 \(MLR\) 성질을 갖는다.

\((b)\) \(q(\theta)\)\(\theta\)의 비증가함수이면, 지수족은 \(T^*(x)=-T(x)\)에서 \(MLR\) 성질을 갖는다.


\(pf)\)

\(\theta_{1}\lt \theta_{2}\)라 하면 가능도 함수비는 \(L(x;\theta_1,\theta_2)=\frac{c(\theta_2)h(x)\exp[q(\theta_2)T(x)]}{c(\theta_1)h(x)\exp[q(\theta_1)T(x)]}=\frac{c(\theta_2)}{c(\theta_1)}\exp [ \{q(\theta_2)-q(\theta_1)\} T(x)]\)


\(q(\theta)\)\(\theta\)의 비감소함수이면 \(q(\theta_2)-q(\theta_1)\ge0\)이므로 \(L(x;\theta_1,\theta_2)\)\(T(x)\)의 비감소함수이다.

\(q(\theta)\)\(\theta\)의 비증가함수이면 \(q(\theta_2)-q(\theta_1)\le0\)이므로 \(L(x;\theta_1,\theta_2)\)\(T^*(x)=-T(x)\)의 비감소함수이다.


정리 11.4.2

결합 \(pdf(pmf)\ f(x;\theta)\)를 갖는 분포가 \(T(x)\)에서 \(MLR\) 성질을 갖는다면
\((a) \ H_0:\theta \le \theta_0\)\(H_1:\theta \gt \theta_0\) 가설에 대하여

검정의 크기가 \(\alpha\)인 균일최강력검정의 기각역은 \(C_1=\{x|T(x)\ge k\}\)이다(단, 상수 \(k\)\(\alpha=P[T(X)\ge k|\theta=\theta_0]\)를 만족하는 값).

\((b) \ H_0:\theta \ge \theta_0\)\(H_1:\theta \lt \theta_0\) 가설에 대하여

검정의 크기가 \(\alpha\)인 균일최강력검정의 기각역은 \(C_2=\{x|T(x)\le k\}\)이다(단, 상수 \(k\)\(\alpha=P[T(X)\le k|\theta=\theta_0]\)를 만족하는 값).


예제 11.4.6~7


3.2 예 제

3.2.1 예제 11.4.1

\(X_1,\cdots,X_n\)이 정규분포 \(N(\mu,\sigma^2_0)\)에서 추출한 확률표본이라 하자. 여기서 \(\sigma^2_0\)은 알려진 상수이다. \(H_0:\mu\le\mu_0\)\(H_1:\mu\gt\mu_0\)의 크기가 \(\alpha\)인 균일최강력 검정을 구해보자. 여기서 \(\mu_0\)는 특정한 상수이다. 먼저 네이만-피어슨 보조정리를 이용하기 위해 다음의 단순가설에 대해 생각해 보자.

\(H_0:\mu=\mu_0\)\(H_1:\mu=\mu_1,\mu_1\gt\mu_0\)

\(\lambda(x;\mu_0,\mu_1)=\frac{(2\pi\sigma^2_0)^{-n/2}\exp[-\sum(x_i-\mu_1)^2/2\sigma^2_0]}{(2\pi\sigma^2_0)^{-n/2}\exp[-\sum(x_i-\mu_0)^2/2\sigma^2_0]}\\=\exp[\frac{n(\mu_1-\mu_0)}{\sigma^2_0}\bar{x}-\frac{n}{2\sigma^2_0}(\mu_1^2-\mu_0^2)]\)

\(\mu_1\gt\mu_0\)이므로 \(\lambda(x;\mu_0,\mu_1)\)\(\mu\)의 충분통계량 \(\bar{X}\)의 관찰값에대한 증가함수이다.

따라서 네이만-피어슨 보조정리에 의해 최강력 검정은 \(\lambda(x;\mu_0,\mu_1)\ge k \leftrightarrow \bar{x}\ge k_1\)을 만족할 때 기각하는 것이다.

상수 \(k_1\)\(\alpha=P[\bar{X}\ge k_1|\mu=\mu_0]=P[Z\ge\frac{k_1-\mu_0}{\sigma_0/\sqrt{n}}]\)을 만족하는 값이므로 \(k_1=\mu_0+\frac{\sigma_0}{\sqrt{n}}z_\alpha\)

따라서 \(H_0:\mu=\mu_0\)\(H_0:\mu=\mu_1\)의 최강력 기각역은 \(C^*=\{x|\bar{x}\ge\mu_0+z_\alpha\frac{\sigma_0}{\sqrt{n}}\}\)

\(H_0:\mu=\mu_0\)\(H_0:\mu\ge\mu_1\)의 균일 최강력 검정을 보이자.

위 기각역 식을 보면 알 수 있듯 기각역은 \(\mu_1\)의 영향을 받지 않는다. 그러므로 기각역\(C^*\)\(\mu_1\gt\mu_0\)인 임의의 \(\mu_1\)에 대하여 최강기각역이다.

\(H_0:\mu\le\mu_0\)\(H_0:\mu\gt\mu_1\)의 균일 최강력 검정을 보이자.

가설에 대한 검정력함수는 다음과 같다.

\(\beta_{C^*}(\mu)=P[\bar{X}\ge \mu_0+z_\alpha\frac{\sigma_0}{\sqrt{n}}|\mu]=P[Z\ge\frac{\mu_0-\mu}{\sigma_0/\sqrt{n}}+z_\alpha]=1-\Phi(\frac{\mu_0-\mu}{\sigma_0/\sqrt{n}}+z_\alpha)\)

검정력함수는 \(\mu\)의 증가함수이다. 따라서 검정의 크기는 \(\max_{\mu\le\mu_0} \beta_C^*(\mu)=1-\Phi(z_\alpha)=\alpha\)

그러므로 기각역\(C^*\)은 균일최강력검정의 기각역이다.


3.2.2 예제 11.4.2

\(X_1,\cdots,X_n\)이 균일분포 \(U(0,\theta)\)에서 추출한 확률표본이면, 결합 pdf는 아래와 같다.

\(f(x;\theta)=\frac{1}{\theta^n}, (\ 0\lt x_{1;n}\le x_{n:n} \lt\theta,그\ 이외 0)\)

\(L(x;\theta_1,\theta_2)=\frac{f(x;\theta_2)}{f(x;\theta_1)}=(\frac{\theta_1}{\theta_2})^n \frac{I_{(0,\theta_2)}(x_{n:n})}{I_{(0,\theta_1)}(x_{n:n})} \ (단, \theta_1\lt\theta_2)\)

\(L(x;\theta_1,\theta_2)\)\(T(x)=x_{n:n}\)의 비감소함수이므로, \((0,\theta)\)에서 균일분포는 \(x_{n:n}\)에서 단조가능도비(MLR)의 성질을 가진다.


3.2.3 예제 11.4.3

\(X_1,\cdots,X_n\)이 지수분포 \(\exp(\theta)\)에서의 확률표본이라 하면, 결합 pdf는 아래와 같다.

\(f(x;\theta)=(\frac{1}{\theta})^n\exp(-\frac{1}{\theta}\sum x_i)\)

\(L(x;\theta_1,\theta_2)=\frac{(1/\theta_2)^n \exp(-\frac{1}{\theta_2}\sum x_i)}{(1/\theta_1)^n \exp(-\frac{1}{\theta_1}\sum x_i)}=(\frac{\theta_1}{\theta_2})^n \exp[-\sum x_i(\frac{1}{\theta_2}-\frac{1}{\theta_1}) ] \ (단, \theta_1\lt\theta_2)\)

\(L(x;\theta_1,\theta_2)\)\(\sum x_i\)의 증가함수이다. 따라서 모수가 \(\theta\)인 지수분포는 \(T(x)=\sum x_i\)에서 MLR의 성질을 갖는다.


3.2.4 예제 11.4.4

\(X_1,\cdots,X_n\)이 정규분포 \(N(\mu,\sigma^2)\)에서 추출한 확률표본이라 하자.


\((a)\sigma^2\) 이 알려진 상수일 때

결합 pdf는

\(f(x;\mu)=(2\pi\sigma^2)^{-n/2}\exp(\frac{\mu}{\sigma^2}\sum x_i - \frac{1}{2\sigma^2}\sum x_i^2 -\frac{n\mu^2}{2\sigma^2})\)

\(q(\mu)=\mu/\sigma^2\)\(\mu\)의 증가함수이고 \(T(x)=\sum x_i\)

따라서 분산이 알려진 정규분포는 \(T(x)=\sum x_i\)에서 MLR의 성질을 지닌다.


\((b)\mu\) 이 알려진 상수이고, \(\sigma^2\)이 미지의 모수일 때

결합 pdf는

\(f(x;\sigma^2)=(2\pi\sigma^2)^{-n/2}\exp(-\frac{1}{2\sigma^2}\sum(x_i-\mu )^2)\)

\(q(\sigma^2)=-1/2\sigma^2\)\(\sigma^2\)의 증가함수이다.

따라서 \(T(x)=\sum(x_i-\mu)^2\)에서 MLR의 성질을 지닌다.


3.2.5 예제 11.4.5

\(X \sim Cau(1,\theta)\)라 하면, \(\theta_1\lt\theta_2\)에 대해

\(L(x;\theta_1,\theta_2)=\frac{f(x;\theta_2)}{f(x;\theta_1)}=\frac{1+(x-\theta_1)^2}{1+(x-\theta_2)^2}\)

\(\theta_1=4,\ \theta_2=5,\ x=1,\ y=2\)일 때

\(L(x;4,5)=\frac{1+(1-4)^2}{1+(1-5)^2}=\frac{10}{17}\) \(L(x;4,5)=\frac{1+(2-4)^2}{1+(2-5)^2}=\frac{1}{2}\)

따라서 \(L9x;4,5)\gt L(y;4,5)\)이므로 \(T(x)=x\)에서 MLR 성질을 가지지 못한다.


3.2.6 예제 11.4.6

예제 11.4.4 (a)에서 \(H_0:\mu\le\mu_0\)\(H_1:\mu\gt\mu_0\)의 크기가 \(\alpha\)인 균일최강력검정을 구해 보자.

\(T(x)=\sum x_i\)에서 MLR 성질을 갖기 때문에 정리 11.4.2에 의해 \(\alpha=P[\sum X_i \ge k |\mu=\mu_0]\)를 만족하는 \(k\)에 대하여

균일 최강력 검정은 \(\sum x_i \ge k\)일 때 귀무가설을 기각한다.

\(\alpha =P[\sum X_i \ge k |\mu = \mu_0] \\ = P[\frac{1}{\sqrt{n\sigma^2}}(\sum X_i)\ge \frac{k-n\mu_0}{\sqrt{n\sigma^2}}|\mu=\mu_0]=P[Z\ge\frac{k-n\mu_0}{\sqrt{n\sigma^2}}]\)

따라서 \(k=n\mu_0+z_\alpha \sqrt{n\sigma^2}\)이다. 즉, \(C^*=\{x|\bar{x}\ge\mu_0+z_\alpha\frac{\sigma}{\sqrt{n}}\}\)가 균일최강력검정의 기각역이다.


3.2.7 예제 11.4.7

예제 11.4.4 (b)에서 \(H_0:\sigma^2\le\sigma^2_0\)\(H_1:\sigma^2\gt\sigma^2_0\)의 크기가 \(\alpha\)인 균일최강력검정을 구해 보자.

\(T(x)=\sum(x_i-\mu)^2\)에서 MLR 성질을 갖기 때문에 정리 11.4.2에 의해 \(\alpha=P[\sum (X_i-\mu)^2 \ge k |\sigma^2=\sigma^2_0]\)를 만족하는 \(k\)에 대하여

균일 최강력 검정은 \(\sum (x_i-\mu)^2 \ge k\)일 때 귀무가설을 기각한다.

\(\alpha =P[\sum (X_i-\mu)^2 \ge k |\sigma^2 = \sigma^2_0] \\ = P[\frac{\sum(X_i-\mu)^2}{\sigma^2}\ge \frac{k}{\sigma^2}|\sigma^2=\sigma^2_0]=P[\chi^2(n)\ge k /\sigma^2_0]\)

따라서 \(k=\sigma^2_0\chi^2_\alpha(n)\)이다. 즉, \(C^*=\{x|\sum(x_i-\mu)^2\ge\sigma^2_0\chi^2_\alpha(n)\}\)가 균일최강력검정의 기각역이다.


  1. 만약 가설이 완전히 \(f(x;\theta)\)를 명확하게 결정하면 단순가설이라 하고, 그렇지 않은 경우 복합가설이라 한다.

  2. 주어진 확률표본 \(X_{1}, \cdots ,X_{n}\)에 근거하여 가설검정에 사용되는 통계량

  3. 귀무가설을 기각하는 표본공간의 부분집합

  4.  \(H_{0}:\theta\le\theta_{0}\)\(H_{1}:\theta\gt\theta_{0}\) 에 대한 검정

  5.  \(H_{0}:\theta\ge\theta_{0}\)\(H_{1}:\theta\lt\theta_{0}\) 에 대한 검정

  6.  \(H_{0}:\theta=\theta_{0}\)\(H_{1}:\theta\ne\theta_{0}\) 에 대한 검정

  7. 이산인 경우 미리 정한 유의수준 \(\alpha\)인 검정을 유도하기 위해 기각하거나, 특정 확률로 기각하거나, 기각하지 않는 3가지 경우의 검정이 가능하다. \(P[X\ge 7]\lt \alpha\)이고 \(P[X\ge 6]\gt \alpha\)라 하면 \(X \ge 7\)이면 기각, \(X=6\)이면 유의수준이 \(\alpha\)가 되도록 하기 위해 적당한 \(\alpha_1\) 확률로 기각하거나 \(1-\alpha_1\) 확률로 기각하지 않으며, \(X \le 5\)이면 기각하지 않는 검정을 생각하는 것이다. 이러한 검정을 확률화 검정이라고 한다.

LS0tCnRpdGxlOiAiMTHsnqUuIOqwgOyEpOqygOyglSIKYXV0aG9yOiAiY2hvIGNoYW5nIGplIgpkYXRlOiAiYHIgZm9ybWF0KFN5cy50aW1lKCksICcgJVnrhYQsICVCICVk7J28JylgIgpvdXRwdXQ6CiAgaHRtbF9ub3RlYm9vazoKICAgIGZpZ19jYXB0aW9uOiB5ZXMKICAgIG51bWJlcl9zZWN0aW9uczogeWVzCiAgICB0b2M6IHllcwogICAgdG9jX2Zsb2F0OiB5ZXMKICBodG1sX2RvY3VtZW50OgogICAgZmlnX2NhcHRpb246IHllcwogICAgbnVtYmVyX3NlY3Rpb25zOiB5ZXMKICAgIHRvYzogeWVzCiAgICB0b2NfZmxvYXQ6IHllcwogICAgZGZfcHJpbnQ6IHBhZ2VkCi0tLQoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKbGlicmFyeShzaGlueSkKbGlicmFyeShzaGlueWRhc2hib2FyZCkKbGlicmFyeShzY2FsZXMpCmBgYAoKLS0tLS0tLS0tLS0tLS0tLQoKIyDqsIDshKTqsoDsoJUgey50YWJzZXR9CgojIyDqsIDshKTqsoDsoJUgey50YWJzZXR9Cgrrqqjsp5Hri6gg7Iuk7KCc7J2YIOqwkuydtCDslrzrp4jqsIAg65Cc64uk64qUIOyjvOyepeqzvCDqtIDroKjtlbQsIO2RnOuzuOydmCDsoJXrs7Trpbwg7IKs7Jqp7ZW07IScIOqwgOyEpOydmCDtlanri7nshLEg7Jes67aA66W8IO2MkOygle2VmOuKlCDqs7zsoJXsnYQg7J2Y66+4CgoqKuygiOywqCoqCgoxLiDsnKDsnZjsiJjspIDsnZgg6rKw7KCVLCDqt4DrrLTqsIDshKTqs7wg64yA66a96rCA7ISkIOyEpOyglQoyLiDqsoDsoJXthrXqs4Trn4kg7ISk7KCVCjMuIOq4sOqwgeyXrSDshKTsoJUKNC4g6rKA7KCV7Ya16rOE65+JIOqzhOyCsAo1LiDthrXqs4TsoIEg7J2Y7IKs6rKw7KCVLgoKCiMjIyDqsIDshKTqs7wg6rCA7ISk6rKA7KCV7J2YIOq4sOuzuOqwnOuFkCAKCioq6rCA7ISkKiogOiDrqqjsp5Hri6jsnZgg7JWM7KeA66q77ZWY64qUIOuqqOyImOyXkCDqtIDtlZwg7KO87J6l7J2EIOunkO2VnOuLpC4KCigxKSDqt4DrrLTqsIDshKQobnVsbCBoeXBvdGhlc2lzKSA6IOq4sOyhtOydmCDsgqzsi6QKKDIpIOuMgOumveqwgOyEpChhbHRlcm5hdGl2ZSBoeXBvdGhlc2lzKTog7Jew6rWs7J6Q6rCAIOqygOymne2VmOqzoCDsi7bsnYAg6rCA7ISkCigzKSAx7KKF7Jik66WYKHR5cGUgMSBlcnJvcikgOiDqt4DrrLTqsIDshKQgJEhfezB9JOqwgCDssLjsnbwg65WMICRIX3swfSTrpbwg6riw6rCB7ZWY64qUIOyYpOulmAooNCkgMuyiheyYpOulmCh0eXBlIDIgZXJyb3IpIDog6reA66y06rCA7ISkICRIX3swfSTqsIAg6rGw7KeT7J28IOuVjCAkSF97MH0k66W8IOq4sOqwge2VmOyngCDslYrripQg7Jik66WYCig1KSDsnKDsnZjsiJjspIAoc2lnbmlmaWNhbmNlIGxldmVsKSA6IOq3gOustOqwgOyEpCAkSF97MH0k7JeQIOuMgO2VtCwg7LC47J24ICRIX3swfSQg66W8IOq4sOqwge2VoCDtmZXrpaAgJFxhbHBoYSTrpbwg7Jyg7J2Y7IiY7KSA7J206528IO2VnOuLpC4KCi0tLS0tLS0tLS0tLS0tCioq7LC4IOqzoCoqCgokXGNvbG9ye2dyYXl9e1x0ZXh0ewrri6jsiJzqsIDshKQsIOuzte2VqeqwgOyEpH19JCBbXjFdJFxjb2xvcntncmF5fXtcdGV4dHsgLCDqsoDsoJXthrXqs4Trn4kodGVzdCBzdGF0aXN0aWMpfX0kIFteMl0sJFxjb2xvcntncmF5fXtcdGV4dHsg6riw6rCB7JetKGNyaXRpY2FsIHJlZ2lvbil9fSRbXjNdCgoKKioqKioqKioqKioqKioqKgoKKirsmIjsoJwgMTEuMi4yKioKCioqKioqKioqKioqKioqKioKCiMjIyDqsoAg7KCVIOugpSYg6rKAIOyglSDroKUg7ZWo7IiYCgoxLiAqKuqygOygleugpShwb3dlcikqKiA6ICRcdGhldGEk6rCAIOywuOydvCDrlYwgJEhfezB9JOulvCDquLDqsIHtlaAg7ZmV66Wg7J2EICRcdGhldGEk7JeQIOuMgO2VnCDqsoDsoJXsnZgg6rKA7KCV66Cl7J206528IO2VnOuLpC4KKOuLqCwgJFx0aGV0YSBcaW5cT21lZ2Fee2N9X3swfSTsnbTqs6AgJEMk64qUIOqygOygleydmCDquLDqsIHsl60pClwKKuqwhOuLqO2eiCDrjIDrpr3qsIDshKQg7ZWY7JeQ7IScIOq3gOustOqwgOyEpOydhCDquLDqsIHsi5ztgqwg7ZmV66WgKDLsooXsmKTrpZjrpbwg67KU7ZWY7KeAIOyViuydhCDtmZXrpaApKgoKMi4gKirsiJjsi50qKgpcCiRcYmV0YV9DKFx0aGV0YSk9UF9cdGhldGFbWFxpbiBDXSTrpbwgJFx0aGV0YSTsl5Ag64yA7ZWcIOqygOygleydmCDqsoDsoJXroKXsnbTrnbwg7ZWc64ukLgoKCgozLiAqKuqygOygleugpe2VqOyImChwb3dlciBmdW5jdGlvbikqKiA6IOuqqOyImOydmCDssLjqsJLsnbQgJFx0aGV0YSTsnbwg65WMICAkSF97MH0k66W8IOq4sOqwge2VoCDtmZXrpaDsnYQg6riw6rCB7JetIEPrpbwg6rCA7KeA64qUIOqwgOyEpOqygOygleydmCDqsoDsoJXroKXtlajsiJjrnbwg7ZWc64ukLijspoksIOq3gOustOqwgOyEpOydhCDquLDqsIHtlZjripQg7ZmV66WgKQoKKioqKioqKioqKioqKioqKgoqKuyYiOygnCAxMS4yLjMqKgoKKioqKioqKioqKioqKioqKgoKIyMjIOycoCDsnZgg7ZmVIOuloCAKCuycoOydmO2ZleuloChzaWduaWZpY2FuY2UgcHJvYmFiaWxpdHkpIDog6rKA7KCV7Ya16rOE65+J7J2YIOq0gOy4oeqwkuyXkCDqt7zqsbDtlZjsl6wg6reA66y06rCA7ISk7J2EIOq4sOqwge2VoCDsiJgg7J6I64qUIOqygOygleydmCDtgazquLAgJFxhbHBoYSTsnZgg7LWc7IaM6rCSKHAtdmFsdWUpCgoqKuywuCDqs6AqKgoKJFxjb2xvcntncmF5fXtcdGV4dHvsg4Hri6jri6jsuKHqsoDsoJV9fSQgW140XSRcY29sb3J7Z3JheX17XHRleHR77ZWY64uo64uo7Lih6rKA7KCVICx9fSQgW141XSwkXGNvbG9ye2dyYXl9e1x0ZXh0e+yWkey4oeqygOyglX19JFteNl0KCioqKioqKioqKioqKioqKioKKirsmIjsoJwgMTEuMi40KioKCioqKioqKioqKioqKioqKioKClteMV06IOunjOyVvSDqsIDshKTsnbQg7JmE7KCE7Z6IICRmKHg7XHRoZXRhKSTrpbwg66qF7ZmV7ZWY6rKMIOqysOygle2VmOuptCDri6jsiJzqsIDshKTsnbTrnbwg7ZWY6rOgLCDqt7jroIfsp4Ag7JWK7J2AIOqyveyasCDrs7XtlanqsIDshKTsnbTrnbwg7ZWc64ukLgoKW14yXTog7KO87Ja07KeEIO2ZleuloO2RnOuzuCAkWF97MX0sIFxjZG90cyAsWF97bn0k7JeQIOq3vOqxsO2VmOyXrCDqsIDshKTqsoDsoJXsl5Ag7IKs7Jqp65CY64qUIO2GteqzhOufiQoKW14zXTog6reA66y06rCA7ISk7J2EIOq4sOqwge2VmOuKlCDtkZzrs7jqs7XqsITsnZgg67aA67aE7KeR7ZWpCgpbXjRdOiBcICRIX3swfTpcdGhldGFcbGVcdGhldGFfezB9JCDrjIAgJEhfezF9Olx0aGV0YVxndFx0aGV0YV97MH0kIOyXkCDrjIDtlZwg6rKA7KCVCgpbXjVdOiBcICRIX3swfTpcdGhldGFcZ2VcdGhldGFfezB9JCDrjIAgJEhfezF9Olx0aGV0YVxsdFx0aGV0YV97MH0kIOyXkCDrjIDtlZwg6rKA7KCVCgpbXjZdOiBcICRIX3swfTpcdGhldGE9XHRoZXRhX3swfSQg64yAICRIX3sxfTpcdGhldGFcbmVcdGhldGFfezB9JCDsl5Ag64yA7ZWcIOqygOyglQoKCiMjIOyYiCDsoJwgey50YWJzZXR9CgojIyMg7JiI7KCcIDExLjIuMgoK7JiI7KCcIDExLjIuMiAK7Ja065akIO2ZlO2VmSDrsJjsnZHrn4nsnYAg7KCV6rec67aE7Y+sICROKFxtdSwxNikk7J2EIOuUsOuluOuLpOuKlCDsnbTroaDsnbQg7KCc7Iuc65CY7JeI64ukLiDqs7zqsbAg6rK97ZeY7JeQIOydmO2VmOuptCDslrTrlqQg7KKF66WY7J2YIOq0keusvOyniOydtCDtj6ztlajrkJjslrQg7J6I7KeAIOyViuycvOuptCAkXG11PTEwJOydtOqzoCDqtJHrrLzsp4jsnbQg7Y+s7ZWo65CY7Ja0IOyeiOycvOuptCAkXG11PTExJOyehOydhCDslYzslZjri6QuCgoK7Ja064qQIOqyg+ydtCDssLjsnbjsp4Drpbwg6rKw7KCV7ZWY6riw7JyE7ZW0IO2RnOuzuOydhCAyNeqwnCDstpTstpztlZjsl6wgJEhfezB9IDogXG11PTEwJOuMgCAkSF97MX0gOiBcbXU9MTEkIOqwgOyEpOydhCDqsoDsoJXtlZjqs6DsnpAg7ZWc64uk66m0LCDsnKDsnZjsiJjspIAgJFxhbHBoYT0wLjA1JOydvCDrlYzsnZgg6riw6rCB7Jet7J2AIOuLpOydjOqzvCDqsJnri6QuCgrtkZzrs7jsnZgg67aE7Y+sIDogJFxiYXJ7WH0gXHNpbSBOKFxtdSw0XjIpJArtkZzspIDsoJXqt5ztmZTrpbwg7J207Jqp7ZWcIO2ZleuloCDqs4TsgrDsnYAg64uk7J2M6rO8IOqwmeuLpC4KCiRQKFo+QSk9MC4wNSTrpbwg66eM7KGx7ZWY64qUIEHrpbwg6rWs7ZWY66m0CmBgYHtyfQp4IDwtIHNlcSgtMywzLDAuMSkKeSA8LSBkbm9ybSh4KQpwbG90KHgsZG5vcm0oeCwwLDEpLHR5cGU9ImwiLCBjb2w9ImJsYWNrIiwgbHdkPTMpCnBvbHlnb24oYyh4W3g+cW5vcm0oLjk1KV0scmV2KHhbeD5xbm9ybSguOTUpXSkpLAogICAgICAgIGMocmVwKDAsc3VtKHg+cW5vcm0oLjk1KSkpLHJldih5W3g+cW5vcm0oLjk1KV0pKSwgY29sPSJsaWdodGJsdWUiKQp0ZXh0KHJvdW5kKHFub3JtKC45NSksNSksLjIscGFzdGUwKCd4PScscm91bmQocW5vcm0oLjk1KSw1KSkpCmBgYAokWj1cZnJhY3tcYmFye3h9LVxtdV97MH19e1xzaWdtYS9cc3FydHtufX0k7J206rOgCiRQKFpcZ2UgMS42NDUpPTAuMDUk7J2066+A66GcIAoKJEM9XHsoeF97MX0sXGNkb3RzLHhfezI1fSl8IFxmcmFje1xiYXJ7eH0gLSBcbXVfezB9fXtcc2lnbWEgL1xzcXJ0e259fSBcZ2UgMS42NDVcfSQKCiRDPVx7KHhfezF9LFxjZG90cyx4X3syNX0pfFxiYXJ7eH0gXGdlIFxtdV97MH0rIHpfe1xhbHBoYX1cc2lnbWEgL1xzcXJ0e259ID0xMCsxLjY0NSg0KS81PTExLjMxNiBcfSQKCuuUsOudvOyEnCDquLDqsIHsl63snYAgMTEuMzE27J2064ukLgrquLDqsIHsl63snbQgMTEuMzE27J2066+A66GcICRcYmFye3h9IFxnZSAxMS4zMTYk7J2EIOunjOyhse2VmOyngCDslYrsnLzrr4DroZwg6reA66y06rCA7ISk7J2EIOq4sOqwgSDtlaAg7IiYIOyXhuuLpC4KCuq4sOqwgeyXreyXkCDrjIDtlZwg7KCcMuyihSDsmKTrpZjrpbwg67KU7ZWgIO2ZleuloOydgCAKJFBbXGJhcntYfTwxMS4zMTZ8XG11PTExXT1QW1xmcmFje1xiYXJ7WH0tMTF9ezQvNX08XGZyYWN7MTEuMzE2LTExfXs0LzV9fFxtdT0xMV09UFtaPDAuMzk1XSBcXCBcYXBwcm94MC42NTQkCgoqKioqKioqKioqKioqKioqCgpgYGB7cn0KCmxpYnJhcnkoc2NhbGVzKQpuPTI1CnggPC0gc2VxKDUsMTUsMC4wMSkKbWVhbj0xMDtzZD00L3NxcnQobikKeSA8LSBkbm9ybSh4LG1lYW4sc2QpCnBsb3QoeCx5LHR5cGU9ImwiLCBjb2w9ImJsYWNrIiwgbHdkPTMpCnBvbHlnb24oYyh4W3g+cW5vcm0oLjk1LG1lYW4sc2QpXSxyZXYoeFt4PnFub3JtKC45NSxtZWFuLHNkKV0pKSwKYyhyZXAoMCxzdW0oeD5xbm9ybSguOTUsbWVhbixzZCkpKSxyZXYoeVt4PnFub3JtKC45NSxtZWFuLHNkKV0pKSwgY29sPWFscGhhKCdsaWdodGJsdWUnLC4zKSkKY3JpdGljYWw9cW5vcm0oLjk1LG1lYW4sc2QpCnRleHQoY3JpdGljYWwsLjIscGFzdGUwKCfquLDqsIHsl609Jyxyb3VuZChjcml0aWNhbCw1KSksY2V4PS43KQoKCnggPC0gc2VxKDUsMTUsMC4wMSkKbWVhbj0xMTtzZD00L3NxcnQobikKeSA8LSBkbm9ybSh4LG1lYW4sc2QpCmxpbmVzKHgseSx0eXBlPSJsIiwgY29sPSJibGFjayIsIGx3ZD0zKQoKcG9seWdvbihjKHhbeDxjcml0aWNhbF0scmV2KHhbeDxjcml0aWNhbF0pKSwKICAgICAgICBjKHJlcCgwLHN1bSh4PGNyaXRpY2FsKSkscmV2KHlbeDxjcml0aWNhbF0pKSwgY29sPWFscGhhKCdyZWQnLC4zKSkKbGVnZW5kKCd0b3ByaWdodCcsY29sPWMoYWxwaGEoJ2xpZ2h0Ymx1ZScsLjYpLGFscGhhKCdyZWQnLC42KSksbGVnZW5kID0gYygnMeyiheyYpOulmCcsJzLsooXsmKTrpZgnKSxsd2Q9MTYsYnR5PSduJykKdGV4dChtZWFuLS42NSwuMSxleHByZXNzaW9uKGJldGEpLGNleD0uNykKdGV4dChtZWFuLS4yLC4xLHBhc3RlMCgnPSAnLHJvdW5kKHBub3JtKGNyaXRpY2FsLG1lYW4sc2QpLDQpKSxjZXg9LjcpCgpgYGAKCiRcY29sb3J7cmVkfXtcdGV4dHvrlLDrnbzshJwg7J20IOqyveyasOyXkOuKlCDqt4DrrLTqsIDshKTsnbQg7LC47J206rGw64KYIDLsooXsmKTrpZjrpbwg67KU7ZWY6rGw64KYIOuRmCDspJEg7ZWY64KYIOydvCDqsoPsnbTri6QufX0kCgrtkZzrs7jsnZgg7IiY6rCAIOymneqwgO2VqOyXkCDrlLDrnbwgMuyiheyYpOulmOqwgCDspp3qsIDtlZjripTsp4Ag67O07J6QLgoKW+2RnOuzuOydmCDtgazquLDsmYAgMuyiheyYpOulmOyZgOydmCDqtIDqs4RdKGh0dHA6Ly9kdWNqMi5pcHRpbWUub3JnOjM4MzgvcmVsYXRpb25zaGlwJTIwYmV0d2VlbiUyMHR5cGUlMjAyJTIwZXJyb3IlMjBhbmQlMjBzYW1wbGUlMjBzaXplLykKCgpuPTEwMOydtOuptCAkXGFscGhhPTAuMDUk7J28IOuVjCDquLDqsIHsl63snYAgMTAuNjU47J6E7J2EIOyVjCDsiJgg7J6I6rOgIOydtCDrlYwg7KCcMuyihSDsmKTrpZjrpbwg67KU7ZWgIO2ZleuloOydgCAwLjE5NuydtOuLpC4g65Sw65287IScIOygnDLsooUg7Jik66WY64qUIO2RnOuzuOydmCDtgazquLDsl5Ag7JiB7Zal7J2EIOunjuydtCDrsJvripTri6QuCgoqKioqKioqKioqKioqKioqCgojIyMg7JiI7KCcIDExLjIuMwrsmIjsoJwgMTEuMi4zCuyWtOuKkCDqs7zsnbwg7IOB7KCQ7JeQ7ISc64qUIOqwgSDsg4HsnpDri7kg7JW96rCE7J2YIO2doOydtCDsnojripQg6rO87J287J20IDQl66W8IOy0iOqzvO2VmOyngCDslYrripTri6Tqs6Ag7KO87J6l7ZWY64qUIOuPhOunpOygkOyXkOyEnCDqs7zsnbzsnYQg6rWs66ek7ZWc64ukLiDsnbQg65WMICRIX3swfSA6IHAgXGxlIDAuMDQk64yAICRIX3sxfTpwIFxndCAwLjA0JOyduCDqsoDsoJXsnYQg7IOd6rCB7ZW0IOuztOyekC4g7IOB7J6Q7JeQ7IScIDI16rCc7J2YIOqzvOydvOydhCDrrLTsnpHsnITroZwg7ISg7YOd7ZWY7JesIOydjOydtCDsnojripQg6rO87J287J2YIOqwnOyImOqwgCBh6rCcIOydtOyDgeydtOuptCDqt7gg6rO87J287J2EIOq1rOyehe2VmOyngCDslYrripTri6Tqs6Ag7ZWY7J6QLiDspokgJFhcZ2UgYSTsnbwg65WMICRIX3swfSTrpbwg6riw6rCB7ZWc64ukLiDsl6zquLDshJwgJFxPbWVnYV97MH09WzAsMC4wNF0k7J206rOgICRcT21lZ2Fee2N9X3swfT0oMC4wNCwxXSTsnbTri6QuCgoqKioqKioqKioqKioqKioqCihhKSDquLDqsIHsl63snbQgJENfezF9PVx7eHx4XGdlMlx9JOydtOuptCDqsoDsoJXroKXtlajsiJjripQg7JWE656Y7JmAIOqwmeuLpC4KJFxiZXRhX3tjX3sxfX0ocCk9UF97cH1bWFxnZTJdPTEtUF97cH1bWD0wXS1QX3twfVtYPTFdIFxcPTEtKDEtcCleezI1fS1fezI1fUNfezF9IHAoMS1wKV57MjR9PTEtKDEtcCleezI0fSgxKzI0cCkkCgoKJFxiZXRhX3tDX3sxfX0ocCkk64qUICRcYmV0YV97Q197MX19KDApPTAk7JeQ7IScICRcYmV0YV97Q197MX19KDEpPTEk6rmM7KeAIOymneqwgO2VmOuKlCDsiJzspp3qsIDtlajsiJjsnbTri6QuIAoK65Sw65287IScICRcYmV0YV97Q197MX19KDAuMDUpXGFwcHJveDAuMzU3NixcICBcYmV0YV97Q197MX19KDAuMSlcYXBwcm94MC43Mjg4LCBcIFxiZXRhX3tDX3sxfX0oMC4zKVxhcHByb3gwLjk5ODQk65Ox7J2064ukLgoK7KaJLCAx7KKF7Jik66WY66W8IOuylO2ZnCDtmZXrpaDsnZgg7LWc64yA6rCS7J24ICRcY29sb3J7c2FsbW9ufXtcdGV4dHvsnKDsnZjsiJjspIDsnYAgMC4yNjQyfX0k7J206rOgIHA9MC4wNeydvCDrlYwgJFxjb2xvcntzYWxtb259e1x0ZXh0e+ygnCAy7KKF7Jik66WY66W8IOuylO2VoCDtmZXrpaDsnYAgMS0wLjM1NzY9MC42NDI0fX0k7J2064ukLgoKKioqKioqKioqKioqKioqKgoKKGIpIOq4sOqwgeyXreydtCAkQ197MX09XHt4fHhcZ2UzXH0k7J2066m0IOqygOygleugpe2VqOyImOuKlCDslYTrnpjsmYAg6rCZ64ukLgokXGJldGFfe2NfezF9fShwKT1QX3twfVtYXGdlM109MS1QX3twfVtYPTBdLVBfe3B9W1g9MV0tUF97cH1bWD0yXSBcXD0xLSgxLXApXnsyNX0tX3syNX1DX3sxfSBwKDEtcCleezI0fS1fezI1fUNfezJ9IHBeezJ9KDEtcCleezIzfT0xLSgxLXApXnsyM30oMSsyM3ArMjc2cF57Mn0pJAoK65Sw65287IScICRcYmV0YV97Q197Mn19KDAuMDUpXGFwcHJveDAuMTI3MSxcICBcYmV0YV97Q197Mn19KDAuMSlcYXBwcm94MC40NjI5LCBcIFxiZXRhX3tDX3syfX0oMC4zKVxhcHByb3gwLjk5MTAk65Ox7J2064ukLgoK7KaJLCAx7KKF7Jik66WY66W8IOuylO2ZnCDtmZXrpaDsnZgg7LWc64yA6rCS7J24ICRcY29sb3J7c2t5Ymx1ZX17XHRleHR77Jyg7J2Y7IiY7KSA7J2AIDAuMDc2NX19JOydtOqzoCBwPTAuMDXsnbwg65WMICRcY29sb3J7c2t5Ymx1ZX17XHRleHR77KCcIDLsooXsmKTrpZjrpbwg67KU7ZWgIO2ZleuloOydgCAxLTAuMTI3MT0wLjg3Mjl9fSTsnbTri6QuCgoK7KaJLCDqsJnsnYAg7ZmV66WgKDAuMDQp7JeQ7ISc7J2YIOycoOydmOyImOykgOydgCDquLDqsIHsl63snbQgMuyduCAoYSnsl5Ag67mE7ZW0IOq4sOqwgeyXreydtCAz7J24IChiKeyXkOyEnOuKlCAwLjI2NDLqs7wgMC4wNzY166GcIOykhOyWtOuTpOyXiOyngOunjCwgCuqwmeydgCDtmZXrpaAoMC4wNCnsl5DshJwg7KCcMuyihSDsmKTrpZjrpbwg67KU7ZWgIO2ZleuloOydgCDquLDqsIHsl63snbQgMuyduCAoYSnsl5Ag67mE7ZW0IOq4sOqwgeyXreydtCAz7J24IChiKeyXkOyEnOuKlCAwLjczNTjqs7wgIDAuOTIzNeuhnCDspp3qsIDrkJjsl4jsnYzsnYQg7JWMIOyImCDsnojri6QuCgpgYGB7cix3YXJuaW5nPUZBTFNFLG1lc3NhZ2U9RkFMU0V9Cgp4PXNlcSgwLDEsbGVuPTEwMCkKbj0yNTtwPTAuMDQ7Y3JpdGljYWw9Mwpwb3dlcj1mdW5jdGlvbihjcml0aWNhbCxuLHApewogIGM9MDtkZWw9MAogIHdoaWxlKGMgPGNyaXRpY2FsKXsKICAgIGRlbD1kZWwrY2hvb3NlKG4sYykqKHBeKGMpKSooKDEtcCleKG4tYykpCiAgICBjPWMrMQogIH0KICByZXR1cm4oMS1kZWwpCn0KdHlwZTI9ZnVuY3Rpb24oY3JpdGljYWwsbixwKXsKICBjPTA7ZGVsPTAKICB3aGlsZShjIDxjcml0aWNhbCl7CiAgICBkZWw9ZGVsK2Nob29zZShuLGMpKihwXihjKSkqKCgxLXApXihuLWMpKQogICAgYz1jKzEKICB9CiAgcmV0dXJuKGRlbCkKfQoKZm9yKGNyaSBpbiAxOmNyaXRpY2FsKXsKaWYoY3JpPT0xKXBsb3QoMSxwdHk9J24nLHhsaW09YygwLG1heCh4W3JvdW5kKHBvd2VyKGNyaXRpY2FsLDI1LHgpLDMpPC45OV0pKSx5bGltPWMoMCwxKSkKY3VydmUocG93ZXIoY3JpLDI1LHgpLDAsbWF4KHhbcm91bmQocG93ZXIoY3JpdGljYWwsMjUseCksMyk8Ljk5XSkKICAgICAgLGx0eT1jcmksbHdkPWNyaSxhZGQ9VCxtYWluPSfquLDqsIHsl63sl5Ag65Sw66W4IOqygOygleugpe2VqOyImOydmCDrs4DtmZQnLHlsYWI9JycseGxhYj0ncCcsY29sPWFscGhhKCdyZWQnLC41KSl9CmxlZ2VuZCgnYm90dG9tcmlnaHQnLGxlZ2VuZCA9IHBhc3RlMCgn6riw6rCB7JetIDonLDE6Y3JpdGljYWwsJ+ydtOyDgScpLGJ0eT0nbicsbHR5PTE6Y3JpdGljYWwsY2V4PS44KQoKZm9yKGNyaSBpbiAxOmNyaXRpY2FsKXsKICBjdXJ2ZSh0eXBlMihjcmksMjUseCksMCxtYXgoeFtyb3VuZCh0eXBlMihjcml0aWNhbCwyNSx4KSwzKT4uMDFdKQogICAgICAgICxsdHk9Y3JpLGx3ZD1jcmksYWRkPVQsbWFpbj0n6riw6rCB7Jet7JeQIOuUsOuluCDrs4DtmZQnLHlsYWI9JycseGxhYj0ncCcsY29sPWFscGhhKCdibHVlJywuNSkpfQpsZWdlbmQoJ3JpZ2h0JyxsZWdlbmQgPWMoJ+ycoOydmOyImOykgCcsJ+ygnDLsooXsmKTrpZgnKSAsY29sPWMoYWxwaGEoJ3JlZCcsLjUpLGFscGhhKCdibHVlJywuNSkpLGJ0eT0nbicsbHR5PTEsbHdkPTEwLGNleD0uOCkKYWJsaW5lKHY9MC4wNCkKYGBgCgoqKiDspoksIOq4sOqwgeyXreydhCDrs4Dqsr3tlZjrqbQg7ZWcIOyYpOulmOulvCDrspTtlaAg7ZmV66Wg7J2AIOykhOyWtOuTpOyngOunjCDri6Trpbgg7Jik66WY66W8IOuylO2VoCDtmZXrpaDsnYAg7Jik7Z6I66CkIOymneqwgO2VmOq4sCDrlYzrrLjsl5Ag65GQIOyYpOulmOulvCDrj5nsi5zsl5Ag7KSE7J28IOyImCDsl4bri6QuKioKKiog7ZWY7KeA66eMLCDtkZzrs7jsnZgg7IiY66W8IOymneqwgOyLnO2CpOuptCDrkZAg7Jik66WY66W8IOuylO2VoCDtmZXrpaDsnYQg64+Z7Iuc7JeQIOykhOydvCDsiJgg7J6I64ukLioqCgoKKioqKioqKioqKioqKioqKgoKIyMjIOyYiOygnCAxMS4yLjQKCuyYiOygnCAxMS4yLjQK7KCV6rec67aE7Y+sICROKFxtdSwyNSkk7JeQ7IScIOy2lOy2nO2VnCDtgazquLDqsIAgJG49MTYk7J24IO2ZleuloO2RnOuzuOyXkCDqt7zqsbDtlZjsl6wgJEhfMDpcbXVcbGUxNSTrjIAgJEhfMTpcbXVcZ3QxNSTrpbwg6rKA7KCV7ZW0IOuztOyekC4g6rSA7Lih6rCS7J20ICRcYmFye3h9PTE3LjI1JOudvCDtlZjsnpAuIOq3uOufrOuptCAkcC12YWx1ZSTripQgJFBbXGJhcntYfVxnZTE3LjI1fFxtdT0xNV09UFtaXGdlMS44MF09MC4wMzU5JOydtOupsCAkMC4wMTwwLjAzNTk8MC4wNSTsnbTrr4DroZwsIOqygOygleydgCAkXGFscGhhPTAuMDUk7JeQ7ISc64qUIOq4sOqwgeuQmOyngOunjCAkXGFscGhhPTAuMDEk7JeQ7ISc64qUIOq4sOqwge2VmOyngCDrqrvtlZzri6QuIOuUsOudvOyEnCAkcC12YWx1ZSTroZwg6rKA7KCV6rKw6rO866W8IOq4sOuhne2VmOuptCwg6rSA7IusIOyeiOuKlCDsgqzrnozrk6TsnYAg6re465OkIOyekOyLoOydmCDquLDspIDsnYQg7KCB7Jqp7ZWgIOyImCDsnojri6QuIAoK6rKA7KCV7JeQIOuMgO2VnCDquLDqsIHsl63snYAgCiR6X3swfT1cZnJhY3tcYmFye3h9LVxtdV97MH19ezUvXHNxcnR7bn19XGdlIHpfe1xhbHBoYX0k7J2064ukLgoK7J2065+s7ZWcIOqygOygleydhCDri6jsuKHqsoDsoJXsnbTrnbwg7ZWc64ukLiAKCioqKioqCgoKIyDstZzqsJXroKXqsoDsoJUgIHsudGFic2V0fQoK6rKA7KCV7J2YIO2BrOq4sOqwgCAkXGFscGhhJOyduCDquLDqsIHsl63snYQg6rCA7KeA64qUIOyXrOufrCDqsoDsoJUg7KSR7JeQ7IScIOyii+ydgCDqsoDsoJXsnbwg7KCcMuyihSDsmKTrpZjrpbwg67KU7ZWgIO2ZleuloOydtCDsnpHsnYAg6rKA7KCV7J2EIOywvuuKlCDqsowg7KSR7KCQLgoKCiMjIOy1nCDqsJUg66ClIOqygCDsoJUgey50YWJzZXR9CgoKIyMjIOy1nCDqsJUg66ClIOqygCDsoJUg7J2YIOyglSDsnZgKCuq4sOqwgeyXrSQoQ14qKSTsnbQg7JWE656Y7J2YIOyhsOqxtOydhCDrp4zsobHtlZjripQg6rK97JqwCgrqsoDsoJXsnYQg7Jyg7J2Y7IiY7KSA7J20ICRcYWxwaGEk7J24ICoq7LWc6rCV66Cl6rKA7KCVKioobW9zdCBwb3dlcmZ1bCB0ZXN0KSwg6riw6rCB7Jet7J2EIOycoOydmOyImOykgOydtCAkXGFscGhhJOyduCAqKuy1nOqwleugpeq4sOqwgeyXrSoqKG1vc3QgcG93ZXJmdWwgY3JpdGljYWwgcmVnaW9uKeydtOudvCDtlZzri6QuCgokKGEpIFxiZXRhX3tDXnsqfX0oXHRoZXRhXzApPVxhbHBoYSQKCiQoYikkIOqygOygleydmCDtgazquLDqsIAgJFxhbHBoYSQg7J24IOyehOydmOydmCDquLDqsIHsl63sl5Ag64yA7ZW0ICRcYmV0YV97Q157Kn19KFx0aGV0YV8xKVxnZVxiZXRhX0MoXHRoZXRhXzEpJOydtOuLpC4KCuymiSwg7LWc6rCV66Cl6rKA7KCV7J2AIDLsooXsmKTrpZjrpbwg67KU7ZWY7KeAIOyViuydhCDtmZXrpaDsnbQg6rCA7J6lIOuGkuydgCDqsoDsoJXsnbTrnbwg66eQ7ZWgIOyImCDsnojri6QuCgoKKioqKgoKIyMjIOuEpCDsnbQg66eMIC0gIO2UvCDslrQg7IqoIOuztCDsobAg7KCVIOumrAoKJFg9KFhfezF9LFxjZG90cyxYX24pJOydmCDqsrDtlakgJHBkZihwbWYpJOqwgCAkZih4O1x0aGV0YSkk7J206rOgIAokQ157Kn09XHt4fFxsYW1iZGEoeDtcdGhldGFfMCxcdGhldGFfMSk9XGZyYWN7Zih4O1x0aGV0YV8xKX17Zih4O1x0aGV0YV8wKX0gXGdlIGtcfSQK65286rOgIO2VmOyekC4KCijsl6zquLDshJwgJGsk64qUICRcYWxwaGEgPSBQX3tcdGhldGFfMH1bWFxpbiBDXnsqfV09UFtYXGluIENeeyp9fFx0aGV0YSA9IFx0aGV0YV8wXSTsnYQg66eM7KGx7ZWY64qUIOyDgeyImC4pCgrqt7jrn6zrqbQgJENeKiTsl5Ag6re86rGw7ZWcICRIXzA6XHRoZXRhPVx0aGV0YV8wJOuMgCAkSF8xOlx0aGV0YT1cdGhldGFfMSQg6rKA7KCV7J2AIOycoOydmOyImOykgOydtCAkXGFscGhhJOyduCDstZzqsJXroKXqsoDsoJXsnbTri6QuCgoKKioqKgoKCuyYiOygnCAxMS4zLjF+MgoKCioqKioKCgojIyDsmIgg7KCcIHsudGFic2V0fQoKKuuEpCDsnbQg66eMIC0gIO2UvCDslrQg7IqoIOuztCDsobAg7KCVIOumrCoKCiRYPShYX3sxfSxcY2RvdHMsWF9uKSTsnZgg6rKw7ZWpICRwZGYocG1mKSTqsIAgJGYoeDtcdGhldGEpJOydtOqzoCAKJENeeyp9PVx7eHxcbGFtYmRhKHg7XHRoZXRhXzAsXHRoZXRhXzEpPVxmcmFje2YoeDtcdGhldGFfMSl9e2YoeDtcdGhldGFfMCl9IFxnZSBrXH0kCuudvOqzoCDtlZjsnpAuCgoo7Jes6riw7IScICRrJOuKlCAkXGFscGhhID0gUF97XHRoZXRhXzB9W1hcaW4gQ157Kn1dPVBbWFxpbiBDXnsqfXxcdGhldGEgPSBcdGhldGFfMF0k7J2EIOunjOyhse2VmOuKlCDsg4HsiJguKQoK6re465+s66m0ICRDXiok7JeQIOq3vOqxsO2VnCAkSF8wOlx0aGV0YT1cdGhldGFfMCTrjIAgJEhfMTpcdGhldGE9XHRoZXRhXzEkIOqygOygleydgCDsnKDsnZjsiJjspIDsnbQgJFxhbHBoYSTsnbgg7LWc6rCV66Cl6rKA7KCV7J2064ukLgoKKioqKgoKCiMjIyDsmIjsoJwgMTEuMy4xCgokWF8xLFxjZG90cyxYX24k7J2AIOygleq3nOu2hO2PrCAkTihcbXUsNCkk7JeQ7ISc7J2YIO2ZleuloO2RnOuzuOydtOuLpC4gJEhfMDpcbXU9MCTrjIAgJEhfMTpcbXU9MSTsnYQg6rKA7KCV7ZWY6rOg7J6QIO2VnOuLpC4KCioqKioKCuqysO2VqSBwZGbqsIAgJGYoeDtcbXUpPSg4XHBpKV57LW4vMn0gZXhwWy1cZnJhY3sxfXs4fVxzdW0oeF9pLVxtdSleezJ9XSTsnbTrr4DroZwg6rCA64ql64+E7ZWo7IiY7J2YIOu5hOuKlAokXGxhbWJkYSAoeDtcbXVfezB9ICxcbXVfezF9KT1cZnJhY3tleHBbLVxmcmFjezF9ezh9XX17ZXhwWy1cZnJhY3sxfXs4fVxzdW0geF97aX1dfT1leHBbXGZyYWN7MX17NH1cc3VtIHhfe2l9LVxmcmFje259ezh9XSQKClwKCuyggeuLue2VnCDsg4HsiJggJGtcZ3QwJOyXkCDrjIDtlbQKCiRcbGFtYmRhKHg7XG11XzAsXG11XzEpXGdlIGtcbGVmdHJpZ2h0YXJyb3cgXHN1bSB4X2kgXGdlIGtfMSwga18xID0gNChcZnJhY3tufXs4fStsbiBrKSQK7J2066m0IOq3gOustOqwgOyEpOydhCDquLDqsIEuKihieSDrhKTsnbTrp4wt7ZS87Ja07IqoIOuztOyhsOygleumrCkqCgpcCgoka18xJOydhCDqtaztlbTrs7TrqbQgJFxhbHBoYSA9IFBbXHN1bSBYX2kgXGdlIGtfMXxcbXU9MF0k7J2EIOunjOyhse2VtOyVvCDtlZzri6QuIAoK6reA66y06rCA7ISkIO2VmOyXkOyEnCAkXHN1bSBYX3tpfSBcc2ltIE4oMCw0bikk7J2066+A66GcClwKJFxhbHBoYSA9UFtcc3VtIFhfaSBcZ2Uga18xfFxtdT0wXT1QW1pcZ2Uga18xIC8gXHNxcnR7NG59XSTsnYQg66eM7KGx7ZWY64qUICRrXzEk7J2AICRrXzE9el9cYWxwaGEgXHNxcnR7NG59JC4KXApcCuuUsOudvOyEnCDsnKDsnZjsiJjspIDsnbQgJFxhbHBoYSTsnbgg7LWc6rCV66ClIOq4sOqwgeyXreydgCAKJENeeyp9PVx7eHxcc3VtIHhfaSBcZ2UgMiB6X3tcYWxwaGF9XHNxcnR7bn1cfT1ce3h8XGJhcnt4fVxnZSAyIHpfe1xhbHBoYX0vXHNxcnR7bn1cfSQKCgoqKioqCgoKIyMjIOyYiOygnCAxMS4zLjIKCiRYXzEsXGNkb3RzLFhfbiTsnYAg7KeA7IiY67aE7Y+sICRFeHAoXHRoZXRhKSTsl5DshJwg7LaU7Lac7ZWcIO2ZleuloO2RnOuzuOydvCDrlYwsICRIXzA6XHRoZXRhPVx0aGV0YV8wJOuMgCAkSF8xOlx0aGV0YT1cdGhldGFfMSxcdGhldGFfMVxndFx0aGV0YV8wJOydhCDqsoDsoJXtlZjqs6DsnpAg7ZWc64ukLgoKKioqKgoK6rKw7ZWpICRwZGYk6rCAICRmKHg7XHRoZXRhKT1cdGhldGEgXnstbn1leHAoLVxmcmFjezF9e1x0aGV0YX1cc3VtIHhfaSkk7J2066+A66GcICRcbGFtYmRhKHg7XHRoZXRhXzAsXHRoZXRhXzEpPVxmcmFje2YoeDtcdGhldGFfMSl9e2YoeDtcdGhldGFfMCl9PVxmcmFje1x0aGV0YV8xXnstbn1leHAoLVxmcmFjezF9e1x0aGV0YV8xfVxzdW0geF9pKX17XHRoZXRhXzBeey1ufWV4cCgtXGZyYWN7MX17XHRoZXRhXzB9KVxzdW0geF9pKX09KFxmcmFje1x0aGV0YV8wfXtcdGhldGFfMX0pXm4gZXhwWy1cc3VtIHhfaSAoXGZyYWN7MX17XHRoZXRhXzEgfS1cZnJhY3sxfXtcdGhldGFfMH0pXSQKCuyggeuLue2VnCDsg4HsiJggJGtcZ3QwJOyXkCDrjIDtlbQKCgokXGxhbWJkYSh4O1x0aGV0YV8wLFx0aGV0YV8xKVxnZSBrIFxsZWZ0cmlnaHRhcnJvdyBcc3VtIHhfaSBcZ2Uga18xJOydtOuptCDqt4DrrLTqsIDshKTsnYQg6riw6rCBKGJ5IOuEpOydtOunjC3tlLzslrTsiqgg67O07KGw7KCV66asKS4KCuyXrOq4sOyEnCDsg4HsiJggJGsk64qUIAokXGFscGhhPVBbXGxhbWJkYShYO1x0aGV0YV8wLFx0aGV0YV8xKVxnZSBrIHxcdGhldGE9XHRoZXRhXzBdJOulvCDrp4zsobHtlZjripQg6rCS7J2066+A66GcCiRcYWxwaGE9UFtcbGFtYmRhKFg7XHRoZXRhXzAsXHRoZXRhXzEpXGdlIGsgfFx0aGV0YT1cdGhldGFfMF09UFtcc3VtIFhfaSBcZ2Uga18xIHwgXHRoZXRhID1cdGhldGFfMF0kLgoKXArqt4DrrLTqsIDshKQg7ZWY7JeQ7IScICQyIFxzdW0gWF9pL1x0aGV0YV8wXHNpbSBcY2hpXjIoMm4pJOydtOuvgOuhnCAka18xPVxmcmFjezF9ezJ9XHRoZXRhXzBcY2hpX1xhbHBoYV4yKDJuKSTsnbTri6QuIApcCuuUsOudvOyEnCDstZzqsJXroKUg6riw6rCB7Jet7J2AIAokQz1ce3h8XHN1bSB4X2kgXGdlIFx0aGV0YV8wIFxjaGlfe1xhbHBoYX1eMigybikvMlx9JC4KCioqKioKCuunjOydvCAkSF8wOiBcdGhldGE9XHRoZXRhXzAk64yAICRIXzEgOiBcdGhldGE9XHRoZXRhXzEsXHRoZXRhIFxsdCBcdGhldGFfMCTrpbwg6rKA7KCV7ZWY6rOg7J6QIO2VnOuLpOuptAoKJFxsYW1iZGEoeDtcdGhldGFfMCAsXHRoZXRhXzEpXGdlIGsgXGxlZnRyaWdodGFycm93IFxzdW0geF9pIFxsZSBrXzIk7J2066+A66GcIOy1nOqwleugpSDquLDqsIHsl63snYAKJEM9XHt4fFxzdW0geF9pIFxsZSBcdGhldGFfMCBcY2hpX3sxLVxhbHBoYX1eMigybikvMlx9JC4KCgoqKioqCgoKIyMjIOyYiOygnCAxMS4zLjMKCiRYXzEsXGNkb3RzLFhfbiTsnbQg7KCV6rec67aE7Y+sICROKDAsXHNpZ21hXjIpJOyXkOyEnCDstpTstpztlZwg7YGs6riw6rCAICRuJOyduCDtmZXrpaDtkZzrs7jsnbwg65WMLCAkSF8wOlxzaWdtYV4yPVxzaWdtYV4yXzAk64yAICRIXzE6XHNpZ21hXjI9XHNpZ21hXjJfMSxcc2lnbWFeMl8xXGd0XHNpZ21hXjJfMCTsnYQg6rKA7KCV7ZWY6rOg7J6QIO2VnOuLpC4gCgoqKioqCgokXGxhbWJkYSh4O1xzaWdtYV4yX3swfSxcc2lnbWFeMl8xKT1cZnJhY3soMlxwaVxzaWdtYV4yXzEpXnstbi8yfWV4cCgtXGZyYWN7MX17MlxzaWdtYV4yXzF9XHN1bSB4X3tpfV4yKX17KDJccGlcc2lnbWFeMl8wKV57LW4vMn1leHAoLVxmcmFjezF9ezJcc2lnbWFeMl8wfSBcc3VtIHhfe2l9XjIpfSA9KFxmcmFje1xzaWdtYV97MH19e1xzaWdtYV8xfSlebiBleHBbLVxzdW0geF9pXjIgKFxmcmFjezF9ezJcc2lnbWFeMl8xfS1cZnJhY3sxfXsyXHNpZ21hXjJfMH0pXSQKCiRcbGFtYmRhKHg7XHNpZ21hXjJfMCxcc2lnbWFeMl8xKVxnZSBrIFxsZWZ0cmlnaHRhcnJvdyBcc3VtIHhfaV4yXGdlIGtfMSTsnYQg66eM7KGx7ZWY66m0IOq3gOustOqwgOyEpOydhCDquLDqsIEoYnkg64Sk7J2066eMLe2UvOyWtOyKqCDrs7TsobDsoJXrpqwpLiAKCiRrXzEk7J2AICRcYWxwaGE9UFtcc3VtIFhfaV4yIFxnZSBrXzF8XHNpZ21hXjI9XHNpZ21hXjJfMF0k7J2EIOunjOyhse2VmOuKlCDsg4HsiJgg6rCSCgrqt4DrrLTqsIDshKQg7ZWY7JeQ7IScICRcc3VtIHhfaV4yL1xzaWdtYV4yXzAgXHNpbSBcY2hpXjIobikk7J2066+A66GcIAoK7LWc6rCV66ClIOq4sOqwgeyXreydgCAkQ14qPVx7eHxcc3VtIHhfaV4yIFxnZSBcc2lnbWFeMl8wXGNoaV4yX3tcYWxwaGF9KG4pXH0k7J2064ukLgoKKioqKgoK66eM7JW9ICRcc2lnbWFeMl8xIFxsdCBcc2lnbWFeMl8wJOydtOuptCwg7Jyg7J2Y7IiY7KSA7J20ICRcYWxwaGEk7J24IOy1nOqwgeugpSDqsoDsoJXsnYAgJFxzdW0geF9pXjIgXGxlIFxzaWdtYV4yXzAgXGNoaV4yX3sxLVxhbHBoYX0obikk7J28IOuVjCDqt4DrrLTqsIDshKTsnYQg6riw6rCB7ZWY64qUIOqyg+ydtOuLpC4g65Sw65287IScIOy1nOqwleugpSDqsoDsoJXsnYAgJFxzaWdtYV4yJCDsnZgg7Lap67aE7Ya16rOE65+J7J24ICRcc3VtIFhfaV4yJOydmCDtlajsiJjsnoTsnYQg7JWMIOyImCDsnojri6QuCgoKKioqKgoKIyMjIOyYiOygnCAxMS4zLjQKCiRYXzEsXGNkb3RzLFhfbiTsnbQg67Kg66W064iE7J2067aE7Y+sICRCaW4oMSxwKSTsl5DshJwg7LaU7Lac7ZWcIO2ZleuloO2RnOuzuOydvCDrlYwsICRIXzA6cD1wXzAk64yAICRIXzE6cD1wXzEscF8xXGd0IHBfMCTsnZgg7LWc6rCV6rKA7KCV66Cl7J2YIO2Yle2DnOulvCDqsrDsoJXtlbTrs7TsnpAuIAoKKioqKgoKJFxsYW1iZGEoeDtwXzAscF8xKT1cZnJhY3twXzFee1xzdW0geF9pfSgxLXBfMSlee24tXHN1bSB4X2l9fXtwXzBee1xzdW0geF9pfSAoMS1wXzApXntuLVxzdW0geF9pfX09KFxmcmFjezEtcF8xfXsxLXBfMH0pXm4oXGZyYWN7cF8xKDEtcF8wKX17cF8wKDEtcF8xKX0pXntcc3VtIHhfaX0kCgokXGxhbWJkYSh4O3BfMCxwXzEpXGdlIGsgXGxlZnRyaWdodGFycm93ICAoXGZyYWN7cF8xKDEtcF8wKX17cF8wKDEtcF8xKX0pXntcc3VtIHhfaX1cZ2Uga18xIFxsZWZ0cmlnaHRhcnJvdyBcc3VtIHhfaSBcZ2Uga18yJOydtOuptCDqt4DrrLTqsIDshKTsnYQg6riw6rCBKGJ5IOuEpOydtOunjCDtlLzslrTsiqgg67O07KGw7KCV66asKS4KCuydtOyCsOyduCDqsr3smrDsnbTrr4DroZwgCiRQW1ggXGdlIGN8cD1wXzBdPTEtUFtYIFxsZSBjLTF8cD1wXzBdPTEtXHN1bSB7X25DX2l9IHBfMF5pKDEtcF8wKV57bi1pfT1cYWxwaGFfYyTsnbTrqbQgCuycoOydmOyImOykgOydtCAkXGFscGhhX2Mk7J24IOy1nOqwleugpeqygOygleydgCAkWFxnZSBjJOydtOuptCDqt4DrrLTqsIDshKTsnYQg6riw6rCB7ZWY64qUIOqygOygleydtOuLpC4gCgrstZzqsJXroKUg6riw6rCB7Jet7J2AICRDXio9e3h8eFxnZSBjfSTsnbTri6QuIOq3uOufrOuCmCAkXGFscGhhX2Mk7JmAIOuLpOuluCDrr7jrpqwg7KCV7ZW07KeEIOycoOydmOyImOykgOyduCAkXGFscGhhJOyduCDqsoDsoJXsl5Ag64yA7ZW07ISc64qUIOuztOyImOyggSDqsoDsoJXsnYQg7YOd7ZW07JW8IO2VoCDtlYTsmpTqsIAg7J6I64ukLgoKW143XSDtmZXrpaDtmZTqsoDsoJUocmFuZG9taXplZCB0ZXN0KQoKW143XTog7J207IKw7J24IOqyveyasCDrr7jrpqwg7KCV7ZWcIOycoOydmOyImOykgCAkXGFscGhhJOyduCDqsoDsoJXsnYQg7Jyg64+E7ZWY6riwIOychO2VtCDquLDqsIHtlZjqsbDrgpgsIO2KueyglSDtmZXrpaDroZwg6riw6rCB7ZWY6rGw64KYLCDquLDqsIHtlZjsp4Ag7JWK64qUIDPqsIDsp4Ag6rK97Jqw7J2YIOqygOygleydtCDqsIDriqXtlZjri6QuICRQW1hcZ2UgN11cbHQgXGFscGhhJOydtOqzoCAgJFBbWFxnZSA2XVxndCBcYWxwaGEk6528IO2VmOuptCAkWCBcZ2UgNyTsnbTrqbQg6riw6rCBLCAkWD02JOydtOuptCDsnKDsnZjsiJjspIDsnbQgJFxhbHBoYSTqsIAg65CY64+E66GdIO2VmOq4sCDsnITtlbQg7KCB64u57ZWcICRcYWxwaGFfMSQg7ZmV66Wg66GcIOq4sOqwge2VmOqxsOuCmCAkMS1cYWxwaGFfMSQg7ZmV66Wg66GcIOq4sOqwge2VmOyngCDslYrsnLzrqbAsICRYIFxsZSA1JOydtOuptCDquLDqsIHtlZjsp4Ag7JWK64qUIOqygOygleydhCDsg53qsIHtlZjripQg6rKD7J2064ukLiDsnbTrn6ztlZwg6rKA7KCV7J2EIO2ZleuloO2ZlCDqsoDsoJXsnbTrnbzqs6Ag7ZWc64ukLgoKCioqKioKCiMjIyDsmIjsoJwgMTEuMy41CgokSF8wOlhcc2ltIFUoMCwxKSTrjIAgJEhfMTpYXHNpbSBCZXRhKDYsMSkk7J2YIOycoOydmOyImOykgOydtCAkXGFscGhhJOyduCDstZzqsJXroKXqsoDsoJXsnYQg6rWs7ZW0IOuztOyekC4gCgoqKioqCgokXGxhbWJkYSh4KT1cZnJhY3tmXzEoeCl9e2ZfMCh4KX09XGZyYWN7NnheNX17MX09NnheNSTsnbTrr4DroZwg7LWc6rCV66ClIOqygOygleydgCAkeF41IFxnZSBrJOydtOuptCDqt4DrrLTqsIDshKTsnYQg6riw6rCBLgoKJFxsYW1iZGEoeCkk6rCAICR4JOydmCDspp3qsIDtlajsiJjsnbTrr4DroZwg7LWc6rCV66Cl6rKA7KCV7J2AICR4XGdlIGtfMSTsnbTrqbQg6reA66y06rCA7ISk7J2EIOq4sOqwgS4gCgogJGtfMSTsnYAgJFxhbHBoYT1QW1hcZ2Uga18xIHwgSF8wIFwg6rCAIFwg7LC47J28IFwg65WMXT0gXGludF4xX3trXzF9ZHg9MS1rXzEk7J2EIOunjOyhse2VtOyVvO2VmOuvgOuhnCAKICRrXzE9MS1cYWxwaGEkIOuUsOudvOyEnCDsnbQg6rKA7KCV66Cl7J2YIOqygOygleugpeydgCDslYTrnpjsmYAg6rCZ64ukLgoKJFBbWFxnZSAxLVxhbHBoYXwgWFxzaW0gQmV0YSg2LDEpXT0gXGludF4xX3sxLVxhbHBoYX02eF41ZHg9MS0oMS1cYWxwaGEpXjYkCgoKKioqKgoKIyDqt6Dsnbwg7LWc6rCV66ClIOqygOyglSAgey50YWJzZXR9CgojIyDqt6Dsnbwg7LWc6rCV66ClIOqygOyglQoK7JWeIOygiOyXkOyEnOuKlCDri6jsiJzqsIDshKTsnbgg6rK97JqwIOqygOygleugpeydtCDqsIDsnqUg7YGwIOqygOygleydhCDsnKDrj4TtlZjripQg67Cp67KV7JeQIO2VtOuLuS4K7J20IOygiOyXkOyEnOuKlCAqKuuzte2VqeqwgOyEpOyduCDqsr3smrAqKiDrjIDrpr3qsIDshKTsl5Ag7ZW064u57ZWY64qUICoq66qo7IiY6rCS65Ok7J2YIOuzgO2ZlOyXkCDrjIDtlZjsl6wg7JiB7Zal7J2EIOuwm+yngCDslYrripQg7LWc6rCV66Cl6rKA7KCVKirsnbggKirqt6DsnbzstZzqsJXroKXqsoDsoJUqKiDri6Tro6zri6QuCgoqKioqCgoKIyMjIOq3oCDsnbwg7LWcIOqwlSDroKUg6rKA7KCVIOygleydmAoKCuq4sOqwgeyXreydtCDslYTrnpjsnZgg7KGw6rG07J2EIOunjOyhse2VmOuKlCDqsr3smrAKCuqygOygleydhCDsnKDsnZjsiJjspIDsnbQgJFxhbHBoYSTsnbggKirqt6DsnbzstZzqsJXroKXqsoDsoJUqKih1bmlmb3JtbHkgbW9zdCBwb3dlcmZ1bCB0ZXN0KSwg6riw6rCB7Jet7J2EIOycoOydmOyImOykgOydtCAkXGFscGhhJOyduCAqKuq3oOydvOy1nOqwleugpeq4sOqwgeyXrSoqKHVuaWZvcm1seSBtb3N0IHBvd2VyZnVsIGNyaXRpY2FsIHJlZ2lvbinsnbTrnbwg7ZWc64ukLgoKJChhKSBcbWF4X3tcdGhldGFcaW4gXE9tZWdhXzB9IFxiZXRhX3tDXnsqfX0oXHRoZXRhXzApPVxhbHBoYSQKCiQoYikk66qo65OgICR7XHRoZXRhXGluIFxPbWVnYV8wXmN9JCDtgazquLDqsIAgJFxhbHBoYSQg7J24IOyehOydmOydmCDquLDqsIHsl63sl5Ag64yA7ZW0ICRcYmV0YV97Q157Kn19KFx0aGV0YSlcZ2VcYmV0YV9DKFx0aGV0YSkk7J2064ukLgoKCioqKioKCioq7JiI7KCcIDExLjQuMSoqCgoqKioqCgojIyMg64uo7KGwIOyasOuPhOu5hAoK6reg7J287LWc6rCV66Cl6rKA7KCV7J2EIOyigOuNlCDsib3qsowg6rWs7ZWY6riwIOychO2VmOyXrCDsgqzsmqkKCioqKioKCiMjIyMg64uo7KGw7Jqw64+E67mE7J2YIOygleydmCAKCiR7Zih4O1x0aGV0YSl8XHRoZXRhIFxpbiBcT21lZ2F9JOulvCAkWD0oWF8xLFxjZG90cyxYX24pJOydmCDqsrDtlakgcGRm7J2YIOuqqOyehC4KJFQoWCkk64qUIOyLpOyIq+qwkiDthrXqs4Trn4nsnbTrnbwg7ZWY7J6QLgoKJEwoeDtcdGhldGFfMSxcdGhldGFfMik9XGZyYWN7Zih4O1x0aGV0YV8yKX17Zih4O1x0aGV0YV8xKX0k6rCAICRUKHgpJOydmCDruYTqsJDshowg7ZWo7IiY7J2066m0ICRUKHgpJOyXkOyEnCAqKuuLqOyhsCDsmrDrj4TruYQqKihtb25vdG9uZSBsaWtlbGlob29kIHJhdGlvIDtNTFIpIOyEseyniOydhCDqsJbripTri6Tqs6Ag7ZWc64ukKOuLqCwgJFx0aGV0YV8xLFx0aGV0YV8yIFxpbiBcT21lZ2EoXHRoZXRhXzFcbHRcdGhldGFfMikkKS4KCioqKioKCioq7JiI7KCcIDExLjQuMX4zKioKCioqKioKCiMjIyDsoJXrpqwgCgoqKuygleumrCAxMS40LjEqKgoK64uk7J2M7J2YIOqysO2VqSBwZGYocG1mKeulvCDqsJbripQgMS3rqqjsiJgg7KeA7IiY7KGx7J2EIOyDneqwge2VtCDrs7TsnpAuCiRmKHg7XHRoZXRhKT1jKFx0aGV0YSloKHgpXGV4cFtxKFx0aGV0YSlUKHgpXSQKClwKCiQoYSkkICRxKFx0aGV0YSkk6rCAICRcdGhldGEk7J2YIOu5hOqwkOyGjO2VqOyImOydtOuptCwg7KeA7IiY7KGx7J2AICRUKHgpJOyXkOyEnCAkTUxSJCDshLHsp4jsnYQg6rCW64qU64ukLgoKJChiKSQgJHEoXHRoZXRhKSTqsIAgJFx0aGV0YSTsnZgg67mE7Kad6rCA7ZWo7IiY7J2066m0LCDsp4DsiJjsobHsnYAgJFReKih4KT0tVCh4KSTsl5DshJwgJE1MUiQg7ISx7KeI7J2EIOqwluuKlOuLpC4KClwKCiRwZikkIAoKJFx0aGV0YV97MX1cbHQgXHRoZXRhX3syfSTrnbwg7ZWY66m0IOqwgOuKpeuPhCDtlajsiJjruYTripQgCiRMKHg7XHRoZXRhXzEsXHRoZXRhXzIpPVxmcmFje2MoXHRoZXRhXzIpaCh4KVxleHBbcShcdGhldGFfMilUKHgpXX17YyhcdGhldGFfMSloKHgpXGV4cFtxKFx0aGV0YV8xKVQoeCldfT1cZnJhY3tjKFx0aGV0YV8yKX17YyhcdGhldGFfMSl9XGV4cCBbIFx7cShcdGhldGFfMiktcShcdGhldGFfMSlcfSBUKHgpXSQKClwKCiRxKFx0aGV0YSkk6rCAICRcdGhldGEk7J2YIOu5hOqwkOyGjO2VqOyImOydtOuptCAkcShcdGhldGFfMiktcShcdGhldGFfMSlcZ2UwJOydtOuvgOuhnCAkTCh4O1x0aGV0YV8xLFx0aGV0YV8yKSTsnYAgJFQoeCkk7J2YIOu5hOqwkOyGjO2VqOyImOydtOuLpC4gCgokcShcdGhldGEpJOqwgCAkXHRoZXRhJOydmCDruYTspp3qsIDtlajsiJjsnbTrqbQgJHEoXHRoZXRhXzIpLXEoXHRoZXRhXzEpXGxlMCTsnbTrr4DroZwgJEwoeDtcdGhldGFfMSxcdGhldGFfMikk7J2AICRUXiooeCk9LVQoeCkk7J2YIOu5hOqwkOyGjO2VqOyImOydtOuLpC4gCgoqKioqCgoqKuygleumrCAxMS40LjIqKgoK6rKw7ZWpICRwZGYocG1mKVwgZih4O1x0aGV0YSkk66W8IOqwluuKlCDrtoTtj6zqsIAgJFQoeCkk7JeQ7IScICRNTFIkIOyEseyniOydhCDqsJbripTri6TrqbQgClwKCiQoYSkgXCBIXzA6XHRoZXRhIFxsZSBcdGhldGFfMCQg64yAICRIXzE6XHRoZXRhIFxndCBcdGhldGFfMCQg6rCA7ISk7JeQIOuMgO2VmOyXrCAKCuqygOygleydmCDtgazquLDqsIAgJFxhbHBoYSTsnbgg6reg7J287LWc6rCV66Cl6rKA7KCV7J2YIOq4sOqwgeyXreydgCAkQ18xPVx7eHxUKHgpXGdlIGtcfSTsnbTri6Qo64uoLCDsg4HsiJggJGsk64qUICRcYWxwaGE9UFtUKFgpXGdlIGt8XHRoZXRhPVx0aGV0YV8wXSTrpbwg66eM7KGx7ZWY64qUIOqwkikuClwKXAoKJChiKSBcIEhfMDpcdGhldGEgXGdlIFx0aGV0YV8wJCDrjIAgJEhfMTpcdGhldGEgXGx0IFx0aGV0YV8wJCDqsIDshKTsl5Ag64yA7ZWY7JesIAoK6rKA7KCV7J2YIO2BrOq4sOqwgCAkXGFscGhhJOyduCDqt6DsnbzstZzqsJXroKXqsoDsoJXsnZgg6riw6rCB7Jet7J2AICRDXzI9XHt4fFQoeClcbGUga1x9JOydtOuLpCjri6gsIOyDgeyImCAkayTripQgJFxhbHBoYT1QW1QoWClcbGUga3xcdGhldGE9XHRoZXRhXzBdJOulvCDrp4zsobHtlZjripQg6rCSKS4KCgoqKioqCgoqKuyYiOygnCAxMS40LjZ+NyoqCgoqKioqCgojIyDsmIgg7KCcIHsudGFic2V0fQoKIyMjIOyYiOygnCAxMS40LjEKCiRYXzEsXGNkb3RzLFhfbiTsnbQg7KCV6rec67aE7Y+sICROKFxtdSxcc2lnbWFeMl8wKSTsl5DshJwg7LaU7Lac7ZWcIO2ZleuloO2RnOuzuOydtOudvCDtlZjsnpAuIOyXrOq4sOyEnCAkXHNpZ21hXjJfMCTsnYAg7JWM66Ck7KeEIOyDgeyImOydtOuLpC4gJEhfMDpcbXVcbGVcbXVfMCTrjIAgJEhfMTpcbXVcZ3RcbXVfMCTsnZgg7YGs6riw6rCAICRcYWxwaGEk7J24IOq3oOydvOy1nOqwleugpSDqsoDsoJXsnYQg6rWs7ZW067O07J6QLiDsl6zquLDshJwgJFxtdV8wJOuKlCDtirnsoJXtlZwg7IOB7IiY7J2064ukLiDrqLzsoIAg64Sk7J2066eMLe2UvOyWtOyKqCDrs7TsobDsoJXrpqzrpbwg7J207Jqp7ZWY6riwIOychO2VtCDri6TsnYzsnZgg64uo7Iic6rCA7ISk7JeQIOuMgO2VtCDsg53qsIHtlbQg67O07J6QLiAKCiRIXzA6XG11PVxtdV8wJOuMgCAkSF8xOlxtdT1cbXVfMSxcbXVfMVxndFxtdV8wJAoKJFxsYW1iZGEoeDtcbXVfMCxcbXVfMSk9XGZyYWN7KDJccGlcc2lnbWFeMl8wKV57LW4vMn1cZXhwWy1cc3VtKHhfaS1cbXVfMSleMi8yXHNpZ21hXjJfMF19eygyXHBpXHNpZ21hXjJfMCleey1uLzJ9XGV4cFstXHN1bSh4X2ktXG11XzApXjIvMlxzaWdtYV4yXzBdfVxcPVxleHBbXGZyYWN7bihcbXVfMS1cbXVfMCl9e1xzaWdtYV4yXzB9XGJhcnt4fS1cZnJhY3tufXsyXHNpZ21hXjJfMH0oXG11XzFeMi1cbXVfMF4yKV0kCgokXG11XzFcZ3RcbXVfMCTsnbTrr4DroZwgJFxsYW1iZGEoeDtcbXVfMCxcbXVfMSkk7J2AICRcbXUk7J2YIOy2qeu2hO2GteqzhOufiSAkXGJhcntYfSTsnZgg6rSA7LCw6rCS7JeQ64yA7ZWcIOymneqwgO2VqOyImOydtOuLpC4gCgrrlLDrnbzshJwg64Sk7J2066eMLe2UvOyWtOyKqCDrs7TsobDsoJXrpqzsl5Ag7J2Y7ZW0IOy1nOqwleugpSDqsoDsoJXsnYAgCiRcbGFtYmRhKHg7XG11XzAsXG11XzEpXGdlIGsgXGxlZnRyaWdodGFycm93IFxiYXJ7eH1cZ2Uga18xJOydhCDrp4zsobHtlaAg65WMIOq4sOqwge2VmOuKlCDqsoPsnbTri6QuCgrsg4HsiJggJGtfMSTsnYAgJFxhbHBoYT1QW1xiYXJ7WH1cZ2Uga18xfFxtdT1cbXVfMF09UFtaXGdlXGZyYWN7a18xLVxtdV8wfXtcc2lnbWFfMC9cc3FydHtufX1dJOydhCDrp4zsobHtlZjripQg6rCS7J2066+A66GcICRrXzE9XG11XzArXGZyYWN7XHNpZ21hXzB9e1xzcXJ0e259fXpfXGFscGhhJAoK65Sw65287IScICRIXzA6XG11PVxtdV8wJOuMgCAkSF8wOlxtdT1cbXVfMSTsnZgg7LWc6rCV66ClIOq4sOqwgeyXreydgCAKJENeKj1ce3h8XGJhcnt4fVxnZVxtdV8wK3pfXGFscGhhXGZyYWN7XHNpZ21hXzB9e1xzcXJ0e259fVx9JAoKKiokSF8wOlxtdT1cbXVfMCTrjIAgJEhfMDpcbXVcZ2VcbXVfMSTsnZgg6reg7J28IOy1nOqwleugpSDqsoDsoJXsnYQg67O07J207J6QLioqCgrsnIQg6riw6rCB7JetIOyLneydhCDrs7TrqbQg7JWMIOyImCDsnojrk68g6riw6rCB7Jet7J2AICRcbXVfMSTsnZgg7JiB7Zal7J2EIOuwm+yngCDslYrripTri6QuIOq3uOufrOuvgOuhnArquLDqsIHsl60kQ14qJOydgCAkXG11XzFcZ3RcbXVfMCTsnbgg7J6E7J2Y7J2YICRcbXVfMSTsl5Ag64yA7ZWY7JesIOy1nOqwleq4sOqwgeyXreydtOuLpC4KCioqJEhfMDpcbXVcbGVcbXVfMCTrjIAgJEhfMDpcbXVcZ3RcbXVfMSTsnZgg6reg7J28IOy1nOqwleugpSDqsoDsoJXsnYQg67O07J207J6QLioqCgrqsIDshKTsl5Ag64yA7ZWcIOqygOygleugpe2VqOyImOuKlCDri6TsnYzqs7wg6rCZ64ukLgoKJFxiZXRhX3tDXip9KFxtdSk9UFtcYmFye1h9XGdlIFxtdV8wK3pfXGFscGhhXGZyYWN7XHNpZ21hXzB9e1xzcXJ0e259fXxcbXVdPVBbWlxnZVxmcmFje1xtdV8wLVxtdX17XHNpZ21hXzAvXHNxcnR7bn19K3pfXGFscGhhXT0xLVxQaGkoXGZyYWN7XG11XzAtXG11fXtcc2lnbWFfMC9cc3FydHtufX0rel9cYWxwaGEpJAoK6rKA7KCV66Cl7ZWo7IiY64qUICRcbXUk7J2YIOymneqwgO2VqOyImOydtOuLpC4g65Sw65287IScIOqygOygleydmCDtgazquLDripQKJFxtYXhfe1xtdVxsZVxtdV8wfSBcYmV0YV9DXiooXG11KT0xLVxQaGkoel9cYWxwaGEpPVxhbHBoYSQKCuq3uOufrOuvgOuhnCDquLDqsIHsl60kQ14qJOydgCDqt6DsnbzstZzqsJXroKXqsoDsoJXsnZgg6riw6rCB7Jet7J2064ukLgoKKioqKgoKIyMjIOyYiOygnCAxMS40LjIKCiRYXzEsXGNkb3RzLFhfbiTsnbQg6reg7J2867aE7Y+sICRVKDAsXHRoZXRhKSTsl5DshJwg7LaU7Lac7ZWcIO2ZleuloO2RnOuzuOydtOuptCwg6rKw7ZWpIHBkZuuKlCDslYTrnpjsmYAg6rCZ64ukLiAKCiRmKHg7XHRoZXRhKT1cZnJhY3sxfXtcdGhldGFebn0sIChcIDBcbHQgeF97MTtufVxsZSB4X3tuOm59IFxsdFx0aGV0YSzqt7hcIOydtOyZuCAwKSQKCiRMKHg7XHRoZXRhXzEsXHRoZXRhXzIpPVxmcmFje2YoeDtcdGhldGFfMil9e2YoeDtcdGhldGFfMSl9PShcZnJhY3tcdGhldGFfMX17XHRoZXRhXzJ9KV5uIFxmcmFje0lfeygwLFx0aGV0YV8yKX0oeF97bjpufSl9e0lfeygwLFx0aGV0YV8xKX0oeF97bjpufSl9IFwgKOuLqCwgXHRoZXRhXzFcbHRcdGhldGFfMikkCgokTCh4O1x0aGV0YV8xLFx0aGV0YV8yKSTqsIAgJFQoeCk9eF97bjpufSTsnZgg67mE6rCQ7IaM7ZWo7IiY7J2066+A66GcLCAkKDAsXHRoZXRhKSTsl5DshJwg6reg7J2867aE7Y+s64qUICR4X3tuOm59JOyXkOyEnCDri6jsobDqsIDriqXrj4TruYQoTUxSKeydmCDshLHsp4jsnYQg6rCA7KeE64ukLgoKKioqKgoKIyMjIOyYiOygnCAxMS40LjMKCiRYXzEsXGNkb3RzLFhfbiTsnbQg7KeA7IiY67aE7Y+sICRcZXhwKFx0aGV0YSkk7JeQ7ISc7J2YICDtmZXrpaDtkZzrs7jsnbTrnbwg7ZWY66m0LCDqsrDtlakgcGRm64qUIOyVhOuemOyZgCDqsJnri6QuCgoKJGYoeDtcdGhldGEpPShcZnJhY3sxfXtcdGhldGF9KV5uXGV4cCgtXGZyYWN7MX17XHRoZXRhfVxzdW0geF9pKSQKCiRMKHg7XHRoZXRhXzEsXHRoZXRhXzIpPVxmcmFjeygxL1x0aGV0YV8yKV5uIFxleHAoLVxmcmFjezF9e1x0aGV0YV8yfVxzdW0geF9pKX17KDEvXHRoZXRhXzEpXm4gXGV4cCgtXGZyYWN7MX17XHRoZXRhXzF9XHN1bSB4X2kpfT0oXGZyYWN7XHRoZXRhXzF9e1x0aGV0YV8yfSlebiBcZXhwWy1cc3VtIHhfaShcZnJhY3sxfXtcdGhldGFfMn0tXGZyYWN7MX17XHRoZXRhXzF9KSBdIFwgKOuLqCwgXHRoZXRhXzFcbHRcdGhldGFfMikkCgokTCh4O1x0aGV0YV8xLFx0aGV0YV8yKSTripQgJFxzdW0geF9pJOydmCDspp3qsIDtlajsiJjsnbTri6QuIOuUsOudvOyEnCDrqqjsiJjqsIAgJFx0aGV0YSTsnbgg7KeA7IiY67aE7Y+s64qUICRUKHgpPVxzdW0geF9pJOyXkOyEnCBNTFLsnZgg7ISx7KeI7J2EIOqwluuKlOuLpC4KCioqKioKCiMjIyDsmIjsoJwgMTEuNC40CgokWF8xLFxjZG90cyxYX24k7J20IOygleq3nOu2hO2PrCAkTihcbXUsXHNpZ21hXjIpJOyXkOyEnCDstpTstpztlZwg7ZmV66Wg7ZGc67O47J206528IO2VmOyekC4gCgoKKioqKioqKioqKgoKCiQoYSlcc2lnbWFeMiQg7J20IOyVjOugpOynhCDsg4HsiJjsnbwg65WMCgrqsrDtlakgcGRm64qUIAoKJGYoeDtcbXUpPSgyXHBpXHNpZ21hXjIpXnstbi8yfVxleHAoXGZyYWN7XG11fXtcc2lnbWFeMn1cc3VtIHhfaSAtIFxmcmFjezF9ezJcc2lnbWFeMn1cc3VtIHhfaV4yIC1cZnJhY3tuXG11XjJ9ezJcc2lnbWFeMn0pJAoKJHEoXG11KT1cbXUvXHNpZ21hXjIk7J2AICRcbXUk7J2YIOymneqwgO2VqOyImOydtOqzoCAkVCh4KT1cc3VtIHhfaSQKCuuUsOudvOyEnCDrtoTsgrDsnbQg7JWM66Ck7KeEIOygleq3nOu2hO2PrOuKlCAkVCh4KT1cc3VtIHhfaSTsl5DshJwgTUxS7J2YIOyEseyniOydhCDsp4Dri4zri6QuCgoqKioqKioqKioKCiQoYilcbXUkIOydtCDslYzroKTsp4Qg7IOB7IiY7J206rOgLCAkXHNpZ21hXjIk7J20IOuvuOyngOydmCDrqqjsiJjsnbwg65WMCgrqsrDtlakgcGRm64qUCgokZih4O1xzaWdtYV4yKT0oMlxwaVxzaWdtYV4yKV57LW4vMn1cZXhwKC1cZnJhY3sxfXsyXHNpZ21hXjJ9XHN1bSh4X2ktXG11ICleMikkCgokcShcc2lnbWFeMik9LTEvMlxzaWdtYV4yJOydgCAkXHNpZ21hXjIk7J2YIOymneqwgO2VqOyImOydtOuLpC4KCuuUsOudvOyEnCAkVCh4KT1cc3VtKHhfaS1cbXUpXjIk7JeQ7IScIE1MUuydmCDshLHsp4jsnYQg7KeA64uM64ukLgoKKioqKgoKIyMjIOyYiOygnCAxMS40LjUKCiRYIFxzaW0gQ2F1KDEsXHRoZXRhKSTrnbwg7ZWY66m0LCAkXHRoZXRhXzFcbHRcdGhldGFfMiTsl5Ag64yA7ZW0CgokTCh4O1x0aGV0YV8xLFx0aGV0YV8yKT1cZnJhY3tmKHg7XHRoZXRhXzIpfXtmKHg7XHRoZXRhXzEpfT1cZnJhY3sxKyh4LVx0aGV0YV8xKV4yfXsxKyh4LVx0aGV0YV8yKV4yfSQKCiRcdGhldGFfMT00LFwgXHRoZXRhXzI9NSxcIHg9MSxcIHk9MiTsnbwg65WMIAoKJEwoeDs0LDUpPVxmcmFjezErKDEtNCleMn17MSsoMS01KV4yfT1cZnJhY3sxMH17MTd9JAokTCh4OzQsNSk9XGZyYWN7MSsoMi00KV4yfXsxKygyLTUpXjJ9PVxmcmFjezF9ezJ9JAoK65Sw65287IScICRMOXg7NCw1KVxndCBMKHk7NCw1KSTsnbTrr4DroZwgJFQoeCk9eCTsl5DshJwgTUxSIOyEseyniOydhCDqsIDsp4Dsp4Ag66q77ZWc64ukLgoKKioqKgoKIyMjIOyYiOygnCAxMS40LjYKCuyYiOygnCAxMS40LjQgKGEp7JeQ7IScICRIXzA6XG11XGxlXG11XzAk64yAICRIXzE6XG11XGd0XG11XzAk7J2YIO2BrOq4sOqwgCAkXGFscGhhJOyduCDqt6DsnbzstZzqsJXroKXqsoDsoJXsnYQg6rWs7ZW0IOuztOyekC4gCgokVCh4KT1cc3VtIHhfaSTsl5DshJwgTUxSIOyEseyniOydhCDqsJbquLAg65WM66y47JeQIOygleumrCAxMS40LjLsl5Ag7J2Y7ZW0ICRcYWxwaGE9UFtcc3VtIFhfaSBcZ2UgayB8XG11PVxtdV8wXSTrpbwg66eM7KGx7ZWY64qUICRrJOyXkCDrjIDtlZjsl6wgCgrqt6Dsnbwg7LWc6rCV66ClIOqygOygleydgCAkXHN1bSB4X2kgXGdlIGsk7J28IOuVjCDqt4DrrLTqsIDshKTsnYQg6riw6rCB7ZWc64ukLgoKJFxhbHBoYSA9UFtcc3VtIFhfaSBcZ2UgayB8XG11ID0gXG11XzBdIFxcID0gUFtcZnJhY3sxfXtcc3FydHtuXHNpZ21hXjJ9fShcc3VtIFhfaSlcZ2UgXGZyYWN7ay1uXG11XzB9e1xzcXJ0e25cc2lnbWFeMn19fFxtdT1cbXVfMF09UFtaXGdlXGZyYWN7ay1uXG11XzB9e1xzcXJ0e25cc2lnbWFeMn19XSQKCuuUsOudvOyEnCAkaz1uXG11XzArel9cYWxwaGEgXHNxcnR7blxzaWdtYV4yfSTsnbTri6QuCuymiSwgJENeKj1ce3h8XGJhcnt4fVxnZVxtdV8wK3pfXGFscGhhXGZyYWN7XHNpZ21hfXtcc3FydHtufX1cfSTqsIAg6reg7J287LWc6rCV66Cl6rKA7KCV7J2YIOq4sOqwgeyXreydtOuLpC4KCioqKioKCgojIyMg7JiI7KCcIDExLjQuNwoK7JiI7KCcIDExLjQuNCAoYinsl5DshJwgJEhfMDpcc2lnbWFeMlxsZVxzaWdtYV4yXzAk64yAICRIXzE6XHNpZ21hXjJcZ3Rcc2lnbWFeMl8wJOydmCDtgazquLDqsIAgJFxhbHBoYSTsnbgg6reg7J287LWc6rCV66Cl6rKA7KCV7J2EIOq1rO2VtCDrs7TsnpAuIAoKJFQoeCk9XHN1bSh4X2ktXG11KV4yJOyXkOyEnCBNTFIg7ISx7KeI7J2EIOqwluq4sCDrlYzrrLjsl5Ag7KCV66asIDExLjQuMuyXkCDsnZjtlbQgJFxhbHBoYT1QW1xzdW0gKFhfaS1cbXUpXjIgXGdlIGsgfFxzaWdtYV4yPVxzaWdtYV4yXzBdJOulvCDrp4zsobHtlZjripQgJGsk7JeQIOuMgO2VmOyXrCAKCuq3oOydvCDstZzqsJXroKUg6rKA7KCV7J2AICRcc3VtICh4X2ktXG11KV4yIFxnZSBrJOydvCDrlYwg6reA66y06rCA7ISk7J2EIOq4sOqwge2VnOuLpC4KCiRcYWxwaGEgPVBbXHN1bSAoWF9pLVxtdSleMiBcZ2UgayB8XHNpZ21hXjIgPSBcc2lnbWFeMl8wXSBcXCA9IFBbXGZyYWN7XHN1bShYX2ktXG11KV4yfXtcc2lnbWFeMn1cZ2UgXGZyYWN7a317XHNpZ21hXjJ9fFxzaWdtYV4yPVxzaWdtYV4yXzBdPVBbXGNoaV4yKG4pXGdlIGsgL1xzaWdtYV4yXzBdJAoK65Sw65287IScICRrPVxzaWdtYV4yXzBcY2hpXjJfXGFscGhhKG4pJOydtOuLpC4K7KaJLCAkQ14qPVx7eHxcc3VtKHhfaS1cbXUpXjJcZ2Vcc2lnbWFeMl8wXGNoaV4yX1xhbHBoYShuKVx9JOqwgCDqt6DsnbzstZzqsJXroKXqsoDsoJXsnZgg6riw6rCB7Jet7J2064ukLgoKCgoK