set.seed(30)
salario_A <- data.frame('Fabrica_A'=round(rnorm(10, mean = 4500, 700),0))
salario_B <- data.frame('Fabrica_B'=round(rnorm(15, mean = 4500, 1400),0))
Fabrica_A | 3598 | 4257 | 4135 | 5391 | 5777 | 3442 | 4577 | 3967 | 4031 | 4692 |
Fabrica_B | 3067 | 1953 | 3565 | 4417 | 5732 | 4876 | 4473 | 3765 | 2527 | 1932 | 4278 | 5556 | 3223 | 5620 | 6587 |
summary(salario_A)
## Fabrica_A
## Min. :3442
## 1st Qu.:3983
## Median :4196
## Mean :4387
## 3rd Qu.:4663
## Max. :5777
summary(salario_B)
## Fabrica_B
## Min. :1932
## 1st Qu.:3145
## Median :4278
## Mean :4105
## 3rd Qu.:5216
## Max. :6587
sd(salario_A$Fabrica_A)
## [1] 742.9914
sd(salario_B$Fabrica_B)
## [1] 1418.523
var.test(salario_A$Fabrica_A, salario_B$Fabrica_B,
conf.level = 0.90)
##
## F test to compare two variances
##
## data: salario_A$Fabrica_A and salario_B$Fabrica_B
## F = 0.27434, num df = 9, denom df = 14, p-value = 0.05692
## alternative hypothesis: true ratio of variances is not equal to 1
## 90 percent confidence interval:
## 0.1036906 0.8300192
## sample estimates:
## ratio of variances
## 0.2743436
testetpareado <- read.csv2("C:/Users/Carol/Dropbox/UFGD/2019.01_Disciplinas/Topicos de Estatistica/7_Aula/testetpareado.csv")
Indivíduo | Temperatura.antes | Temperatura.depois |
---|---|---|
1 | 37.5 | 37.8 |
2 | 36.0 | 36.4 |
3 | 39.0 | 37.6 |
4 | 38.0 | 37.2 |
5 | 37.8 | 36.9 |
6 | 38.5 | 37.7 |
7 | 36.9 | 36.8 |
8 | 39.4 | 38.1 |
9 | 37.2 | 36.7 |
10 | 38.1 | 37.3 |
11 | 39.3 | 38.0 |
12 | 37.5 | 37.1 |
13 | 38.5 | 36.6 |
14 | 39.0 | 37.5 |
15 | 36.9 | 37.0 |
16 | 37.0 | 36.2 |
17 | 38.5 | 37.6 |
18 | 39.0 | 36.8 |
19 | 36.2 | 36.4 |
20 | 36.8 | 36.8 |
link para download: https://www.dropbox.com/s/hfuckwp2gj6r6p9/testetpareado.csv?dl=0
Como estamos querendo avaliar se houve ou não diferença da temperatura dos indivíduos e como existe uma dependência clara entre as amostras de antes e após a administração do medicamento, já que as amostras estão relacionadas aos mesmos indivíduos, devemos utilizar o teste T pareado.
summary(testetpareado[,-1])
## Temperatura.antes Temperatura.depois
## Min. :36.00 Min. :36.20
## 1st Qu.:36.98 1st Qu.:36.77
## Median :37.90 Median :37.05
## Mean :37.85 Mean :37.12
## 3rd Qu.:38.62 3rd Qu.:37.60
## Max. :39.40 Max. :38.10
diff_AB <- testetpareado$Temperatura.antes - testetpareado$Temperatura.depois
summary(diff_AB)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.400 0.075 0.800 0.730 1.300 2.200
t.test(testetpareado$Temperatura.antes,testetpareado$Temperatura.depois,
paired = T,
conf.level = 0.95)
##
## Paired t-test
##
## data: testetpareado$Temperatura.antes and testetpareado$Temperatura.depois
## t = 4.4379, df = 19, p-value = 0.0002823
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3857125 1.0742875
## sample estimates:
## mean of the differences
## 0.73
t.test(testetpareado$Temperatura.antes,
conf.level = 0.95)
##
## One Sample t-test
##
## data: testetpareado$Temperatura.antes
## t = 163.91, df = 19, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 37.3716 38.3384
## sample estimates:
## mean of x
## 37.855
t.test(testetpareado$Temperatura.depois,
conf.level = 0.95)
##
## One Sample t-test
##
## data: testetpareado$Temperatura.depois
## t = 298.51, df = 19, p-value < 2.2e-16
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## 36.8647 37.3853
## sample estimates:
## mean of x
## 37.125
set.seed(30)
fuma_Sim <- round(rnorm(35, mean = 3.6, 0.5),2)
fuma_Nao <- round(rnorm(27, mean = 3.2, 0.8),2)
\[3.27~~~3.57~~~ 4.04~~~ 3.73~~~ 3.59~~~ 3.34~~~ 2.90~~~ 2.68~~~ 3.52~~~ 3.98~~~ 3.14~~~ 4.00~~~\]
\[4.35~~~ 3.05~~~ 3.33~~~ 2.89~~~ 2.98~~~ 3.72~~~ 2.74~~~ 3.91~~~ 3.96~~~ 3.58~~~ 3.71\]
\[ 2.66 ~~~ 2.52 ~~~ 3.3 ~~~ 2.7~~~ 1.83 ~~~3.77 ~~~ 2.47 ~~~5.28 ~~~ 2.79 ~~~2.51 ~~~ 3.51 ~~~3.98 ~~~ 3.52\] - a) Realize uma análise exploratória em cada grupo
summary(fuma_Sim)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.680 3.070 3.430 3.456 3.735 4.510
summary(fuma_Nao)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.850 2.515 2.950 3.129 3.700 5.280
sd(fuma_Sim)
## [1] 0.4859381
sd(fuma_Nao)
## [1] 1.009797
var.test(fuma_Sim, fuma_Nao,
conf.level = 0.95)
##
## F test to compare two variances
##
## data: fuma_Sim and fuma_Nao
## F = 0.23158, num df = 34, denom df = 26, p-value = 9.108e-05
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
## 0.1088786 0.4749283
## sample estimates:
## ratio of variances
## 0.2315761
t.test(fuma_Sim, fuma_Nao,
var.equal = FALSE,
conf.level = 0.95)
##
## Welch Two Sample t-test
##
## data: fuma_Sim and fuma_Nao
## t = 1.5535, df = 35.259, p-value = 0.1292
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1004349 0.7559693
## sample estimates:
## mean of x mean of y
## 3.456286 3.128519