library(ggplot2)
library(dplyr)
## Warning: package 'dplyr' was built under R version 3.5.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
Ex2 Relation equations Based on AUC analysis \[ F* Dose = CL * AUC\] \[ F = CL * \frac{AUC}{Dose}\] or other equantion for calculating bioavailability (F) \[ F = (\frac{AUC_{e.v}}{AUC_{i.v}})*(\frac{Dose_{i.v}}{Dose_{e.v}})\]
\[ F_{rel} = \frac{F_B}{F_A} = (\frac{AUC_B}{AUC_A}) * (\frac{Dose_A}{Dose_B}) \]
Based on Urine analysis \[ F = (\frac{Ae_{e.v}}{Ae_{i.v}})*(\frac{Dose_{i.v}}{Dose_{e.v}})\] \[F_{rel} = \frac{F_B}{F_A} = (\frac{Ae_B}{Ae_A}) * (\frac{Dose_A}{Dose_B}) \]
# define variables
c4_ex2_iv_dose <- 500 #mg
c4_ex2_iv_AUC <- 13.1 # mg-hr/L
c4_ex2_iv_Ae <- 332 # 0-48h, mg
c4_ex2_ev_f1_dose <- 1000
c4_ex2_ev_f1_AUC <- 20.9
c4_ex2_ev_f1_Ae <- 586
c4_ex2_ev_f2_dose <- 1000
c4_ex2_ev_f2_AUC <- 19.9
c4_ex2_ev_f2_Ae <- 554
# Based on AUC
# Calculate CL based on F . Dose_iv = CL. AUC_iv
c4_ex2_CL <- c4_ex2_iv_dose / c4_ex2_iv_AUC
# calculate Bioavailability (F) and Relative Bioavailability (Frel) of formuation 2
# F_ev * Dose_ev = CL * AUC_ev
c4_ex2_ev_f1_F <- round(c4_ex2_CL * c4_ex2_ev_f1_AUC/c4_ex2_ev_f1_dose,3)
c4_ex2_ev_f2_F <- round(c4_ex2_CL * c4_ex2_ev_f2_AUC/c4_ex2_ev_f2_dose,3)
# calculate F_rel = F_2 / F_1
c4_ex2_AUC_F_rel <- c4_ex2_ev_f2_F / c4_ex2_ev_f1_F
# Based on Urine
# F = (Ae/Dose)_oral / (Ae/Dose)_iv
c4_ex2_ev_uri_f2_F <- (c4_ex2_ev_f2_Ae/c4_ex2_ev_f2_dose) / (c4_ex2_iv_Ae/c4_ex2_iv_dose)
# F_rel of formulation 2 vs. formulation 1
# F_rel = (Ae/Dose)_f2 / (Ae/Dose)_f1
c4_ex2_ev_uri_f2_F_rel <- (c4_ex2_ev_f2_Ae/c4_ex2_ev_f2_dose) / (c4_ex2_ev_f1_Ae/c4_ex2_ev_f1_dose)
The results are Based on AUC: + F = 0.76 + Frel = 0.95 **Based on Urine data:** + F = 0.83 + Frel = 0.95
Asumptions are: - Clearance remains constant - The values of fe is also constant
2.c: Renal Clearance was calculated using the equation \[CL_R = \frac{Ae}{AUC}\]
c4_ex2_iv_CLr <- c4_ex2_iv_Ae/c4_ex2_iv_AUC
c4_ex2_ev_f1_CLr <- c4_ex2_ev_f1_Ae/ c4_ex2_ev_f1_AUC
c4_ex2_ev_f2_CLr <- c4_ex2_ev_f2_Ae/ c4_ex2_ev_f2_AUC
There are differences between intravenous renal clearance and oral renal clearance with 25.3435115 L/hr, 28.0382775 L/hr and 27.839196 L/hr.
Ex4
# Subject information
c4_ex4_weight <- 60 #kg
c4_ex4_ad_units <- 40
c4_ex4_iv_AUC <- 3010
c4_ex4_sub_AUC <- 1372
c4_ex4_iv_Cmax <- 417
c4_ex4_sub_Cmax <- 40.5
c4_ex4_iv_Tmax <- 5/60 #hr
c4_ex4_sub_Tmax <- 12
c4_ex4_iv_T_hf <- 6.7
c4_ex4_sub_t_hf <- 16.1
# 4a. Define the Clearance and volume of distribution
# CL = Dose_iv / AUC
# Dose = Weight * Units
c4_ex4_Dose <- c4_ex4_weight * c4_ex4_ad_units
c4_ex4_CL <- round(c4_ex4_Dose / c4_ex4_iv_AUC, 1)
# calculate Vd = CL / k
c4_ex4_k <- log(2)/c4_ex4_iv_T_hf
c4_ex4_Vd <- round(c4_ex4_CL / c4_ex4_k, 2)
# 4b. Calculate F = AUCsub / AUCiv
ce_ex4_sub_F <- round(c4_ex4_sub_AUC / c4_ex4_iv_AUC, 2)
The results are: CL = 0.8 L/hr Vd = 7.73 L Fsub = 0.46
Ex7
# Input data into data frame
ex7_Time <- c(0.33, 0.5, 0.67, 1, 1.5, 2, 4, 6, 10, 16, 24, 32, 48)
ex7_iv_Conc <- c(14.7, 12.6, 11.0, NA ,9.0, 8.2, 7.9, 6.6, 6.2, 4.6, 3.2, 2.3, 1.2)
ex7_oral_Conc <- c(NA, 2.4, NA, 3.8, 4.2, 4.6, 8.1, 5.8, 5.1, 4.1, 3.0, 2.3, 1.3)
ex7 <- data.frame(Time = ex7_Time, iv.Conc = ex7_iv_Conc, oral.Conc <- ex7_oral_Conc)
# plot semilogarit plot
# for iv
ggplot(data = ex7, aes(x = Time, y = iv.Conc)) +
geom_point(color = "blue") +
scale_y_log10() +
ggtitle("Plot of intravenous dose") +
xlab("Time(hr)") +
ylab("Plasma Concentration (mg/L)")
## Warning: Removed 1 rows containing missing values (geom_point).
# Plot for oral
ggplot(data = ex7, aes(x = Time, y = oral.Conc)) +
geom_point(color = "blue") +
scale_y_log10() +
ggtitle("Plot of oral dose") +
xlab("Time(hr)") +
ylab("Plasma Concentration (mg/L)")
## Warning: Removed 2 rows containing missing values (geom_point).
# estimat k of iv adminitered
ex7_iv_model <- lm(data = ex7, formula = log(iv.Conc) ~ Time)
ex7_iv_k <- ex7_iv_model$coefficients[2] %>% as.numeric() %>% abs()
# Calculate t half-life
ex7_iv_t_hf <- log(2)/ex7_iv_k