Aims
The aim of this research was to build and compare multilinear regression, artificial neural network and deep learning model to predict crude protein and fibre content from physical properties of feedstuffs. The 91 data were obtained from https://repository.ipb.ac.id using keywords (e.g. sifat fisik and pakan). To reduce the dimensional of the data had been transformed. The independent variables consist of X1: specific gravity, X2: bulk density, X3: compacted bulk density and X4: angle of repose. The dependent variable was Y1: crude protein and Y2: crude fibre. Multilinear regression (MLR), artificial neural network (ANN) and deep learning (DLr) model built by R programing language 3.5.3 using library R-base, neuralnet and keras. Mean square error (MSE) used to evaluate the model, lower MSE within two models means better than others. Mean square error of crude protein MLR model was higher than ANN model, that were 0.0143 and 0.0093. Besides that, MSE of crude fibre MLR model was lower than ANN model, 0.0605 and 0.0722. Furthermore, the model built using DLr can improve ANN model, that has MSE 0.0249 and 0.0449, respectively, for crude protein and crude fibre deep learning model. The deep learning model generally can perform better to predict crude protein and fibre from physical properties than multilinear regression and artificial neural network.
Data
|
BHN
|
BJ
|
KT
|
KPT
|
ST
|
PK
|
SK
|
|
Bungkil_inti_sawit
|
1.31300
|
0.53864
|
0.72817
|
34.586
|
12.862160
|
14.387621
|
|
Bungkil_inti_sawit
|
1.12300
|
0.27824
|
0.49290
|
46.154
|
25.798583
|
11.244047
|
|
Bungkil_inti_sawit
|
1.15500
|
0.32768
|
0.52363
|
42.410
|
18.995127
|
18.971919
|
|
Bungkil_inti_sawit
|
1.24000
|
0.43106
|
0.66184
|
36.273
|
17.981610
|
23.930072
|
|
Bungkil_kelapa
|
1.27700
|
0.51022
|
0.67802
|
35.473
|
14.047751
|
9.627985
|
|
Bungkil_kelapa
|
1.07100
|
0.27274
|
0.45641
|
48.175
|
19.204623
|
13.539542
|
|
Bungkil_kelapa
|
1.14200
|
0.30943
|
0.49751
|
43.268
|
20.639249
|
18.752045
|
|
Bungkil_kelapa
|
1.23200
|
0.39648
|
0.61905
|
36.551
|
17.675439
|
27.532895
|
|
Pollard
|
1.29000
|
0.32086
|
0.43351
|
42.320
|
22.321942
|
9.780232
|
|
Pollard
|
1.28000
|
0.35067
|
0.52001
|
44.350
|
18.058862
|
7.931184
|
|
Pollard
|
1.12000
|
0.33839
|
0.49383
|
41.810
|
20.683434
|
9.222116
|
|
Pollard
|
1.42000
|
0.38647
|
0.53728
|
46.980
|
22.664080
|
6.476991
|
|
Dedak_padi
|
1.29000
|
0.35295
|
0.50935
|
40.530
|
13.008494
|
32.565936
|
|
Dedak_padi
|
1.50000
|
0.39409
|
0.52633
|
46.010
|
13.584906
|
23.234501
|
|
Dedak_padi
|
1.25000
|
0.28103
|
0.48415
|
39.800
|
8.257373
|
36.439678
|
|
Dedak_padi
|
1.36000
|
0.35552
|
0.50341
|
41.360
|
8.794509
|
36.304161
|
|
Jagung
|
1.34000
|
0.71732
|
0.74388
|
26.110
|
9.517632
|
4.693950
|
|
Onggok:Indigofera
|
0.96000
|
0.25616
|
0.32640
|
33.520
|
9.432169
|
9.895462
|
|
Onggok:Singkong
|
0.90000
|
0.24376
|
0.31524
|
32.780
|
8.911597
|
11.299905
|
|
Onggok:Indigofera:Singkong
|
0.92000
|
0.25385
|
0.32135
|
33.360
|
9.164388
|
10.590752
|
|
Dedak_padi
|
1.39000
|
0.34087
|
0.51680
|
35.580
|
10.966584
|
29.423638
|
|
Dedak_padi
|
1.27000
|
0.32301
|
0.48933
|
34.300
|
12.267533
|
29.621331
|
|
Dedak_padi
|
1.37000
|
0.33888
|
0.51573
|
35.430
|
9.047183
|
37.803481
|
|
Dedak_padi
|
1.33000
|
0.33724
|
0.51371
|
35.040
|
9.229544
|
34.186867
|
|
Dedak_padi
|
1.26000
|
0.32205
|
0.48901
|
34.290
|
10.223027
|
23.921657
|
|
Dedak_padi
|
1.30000
|
0.32844
|
0.49804
|
34.370
|
10.793076
|
29.992081
|
|
Dedak_padi
|
1.28000
|
0.32521
|
0.49520
|
34.360
|
11.509155
|
27.214830
|
|
Dedak_padi
|
1.31000
|
0.32905
|
0.49908
|
34.890
|
11.734924
|
29.129163
|
|
Dedak_padi
|
1.35000
|
0.30292
|
0.46300
|
36.960
|
13.371819
|
19.804430
|
|
Dedak_padi
|
1.35000
|
0.31843
|
0.46956
|
37.730
|
11.853069
|
19.575167
|
|
Dedak_padi
|
1.36000
|
0.32050
|
0.47244
|
38.120
|
12.943753
|
22.637160
|
|
Dedak_padi
|
1.35000
|
0.31457
|
0.46684
|
37.010
|
11.900595
|
20.884378
|
|
Dedak_padi
|
1.28000
|
0.28252
|
0.41348
|
36.340
|
12.080378
|
12.695035
|
|
Dedak_padi
|
1.36000
|
0.32633
|
0.47748
|
38.490
|
13.491405
|
16.787196
|
|
Dedak_padi
|
1.28000
|
0.29847
|
0.42710
|
36.400
|
12.925328
|
25.084195
|
|
Dedak_padi
|
1.29000
|
0.29245
|
0.41533
|
36.830
|
13.076923
|
18.601399
|
|
Dedak_padi
|
1.36000
|
0.35310
|
0.52130
|
40.630
|
12.781929
|
20.588768
|
|
Dedak_padi
|
1.41000
|
0.36177
|
0.53875
|
41.520
|
13.043627
|
20.712654
|
|
Dedak_padi
|
1.36000
|
0.35127
|
0.52038
|
41.900
|
13.028046
|
10.089608
|
|
Dedak_padi
|
1.45000
|
0.36472
|
0.54077
|
42.860
|
13.317145
|
12.297267
|
|
Dedak_padi
|
1.21000
|
0.27814
|
0.44089
|
44.840
|
14.717476
|
13.302575
|
|
Dedak_padi
|
1.23000
|
0.30783
|
0.45134
|
42.180
|
14.110919
|
10.239168
|
|
Dedak_padi
|
1.20000
|
0.26108
|
0.43532
|
44.380
|
13.980330
|
9.508252
|
|
Dedak_padi
|
1.35000
|
0.35050
|
0.51699
|
40.900
|
14.140224
|
21.257583
|
|
Dedak_padi
|
1.35000
|
0.33005
|
0.50122
|
43.090
|
13.244824
|
13.847234
|
|
Dedak_padi
|
1.25000
|
0.27543
|
0.43256
|
44.510
|
10.170000
|
13.800000
|
|
Dedak_padi
|
1.23000
|
0.23912
|
0.39502
|
43.490
|
9.150000
|
16.150000
|
|
Dedak_padi
|
1.25000
|
0.27412
|
0.42913
|
44.410
|
10.070000
|
13.870000
|
|
Dedak_padi
|
1.25000
|
0.27521
|
0.43220
|
44.440
|
10.120000
|
13.890000
|
|
Dedak_padi
|
1.22000
|
0.24206
|
0.39744
|
42.370
|
9.320000
|
15.970000
|
|
Dedak_padi
|
1.23000
|
0.28317
|
0.42868
|
43.380
|
12.460000
|
10.670000
|
|
Dedak_padi
|
1.22000
|
0.26018
|
0.40356
|
43.090
|
11.160000
|
13.060000
|
|
Dedak_padi
|
1.23000
|
0.28355
|
0.42580
|
44.120
|
12.050000
|
10.480000
|
|
Dedak_padi
|
1.24000
|
0.31884
|
0.46528
|
45.240
|
13.900000
|
8.690000
|
|
Dedak_padi
|
1.24000
|
0.30648
|
0.45228
|
44.960
|
13.010000
|
9.250000
|
|
Bungkil_kedelai
|
1.66000
|
0.61000
|
0.80000
|
26.330
|
50.417042
|
3.866096
|
|
Bungkil_kelapa
|
1.46000
|
0.48000
|
0.50000
|
33.220
|
24.188504
|
20.133722
|
|
Bungkil_inti_sawit
|
1.67000
|
0.33800
|
0.46300
|
35.080
|
19.004669
|
29.870543
|
|
Pollard
|
1.25000
|
0.30300
|
0.40300
|
35.840
|
15.153943
|
12.853382
|
|
Corn_gluten_meal
|
1.25000
|
0.28300
|
0.78000
|
24.330
|
68.026506
|
0.652309
|
|
Bungkil_kapuk
|
1.67000
|
0.28000
|
0.36300
|
34.190
|
39.058824
|
14.095238
|
|
Dedak_padi
|
1.36000
|
0.28653
|
0.47544
|
44.400
|
10.530000
|
15.420000
|
|
Tongkol_jagung
|
0.57000
|
0.20619
|
0.26667
|
36.540
|
4.370000
|
40.070000
|
|
Gamal
|
0.69000
|
0.33200
|
0.44800
|
35.180
|
20.040013
|
12.337446
|
|
Kaliandra
|
0.83000
|
0.37300
|
0.50000
|
33.220
|
23.115079
|
16.644621
|
|
Lamtoro
|
0.88000
|
0.33800
|
0.46300
|
35.000
|
19.578279
|
13.943997
|
|
Indigofera
|
0.72000
|
0.30300
|
0.40300
|
35.840
|
28.322465
|
10.310322
|
|
Trikantera
|
0.80000
|
0.28300
|
0.38500
|
35.040
|
24.120830
|
13.863841
|
|
Daun_pepaya
|
0.92000
|
0.36800
|
0.47700
|
36.680
|
24.302023
|
12.433593
|
|
Daun_singkong
|
0.61000
|
0.28000
|
0.36300
|
34.190
|
32.929136
|
12.682167
|
|
Bungkil_kelapa
|
0.96603
|
0.61750
|
0.74250
|
31.510
|
19.309161
|
15.018236
|
|
Bungkil_kelapa
|
1.06770
|
0.46000
|
0.60250
|
37.600
|
17.588216
|
17.588216
|
|
Bungkil_kedelai
|
1.13023
|
0.62250
|
0.74750
|
24.100
|
49.917718
|
6.856829
|
|
Bungkil_kedelai
|
1.29765
|
0.54250
|
0.69750
|
35.180
|
49.700666
|
6.777364
|
|
Bungkil_inti_sawit
|
1.20455
|
0.66500
|
0.82250
|
36.610
|
17.789072
|
23.178738
|
|
Bungkil_inti_sawit
|
1.15078
|
0.59000
|
0.79750
|
42.190
|
16.800760
|
25.910675
|
|
Ransum_Ayam
|
1.60000
|
0.49000
|
0.55000
|
33.900
|
24.167822
|
5.547850
|
|
Ransum_Ayam
|
1.47000
|
0.51000
|
0.59000
|
34.530
|
24.033402
|
5.376344
|
|
Ransum_Ayam
|
1.47000
|
0.51000
|
0.56000
|
35.070
|
24.694630
|
5.565799
|
|
Ransum_Ayam
|
1.45000
|
0.56000
|
0.63000
|
31.440
|
23.643065
|
5.092696
|
|
Ransum_Ayam
|
1.32000
|
0.56000
|
0.64000
|
31.460
|
23.502825
|
5.401130
|
|
Ransum_Ayam
|
1.38000
|
0.55000
|
0.64000
|
31.300
|
23.129404
|
5.223129
|
|
Ransum_Ayam
|
1.37000
|
0.72000
|
0.76000
|
27.770
|
22.202604
|
4.943721
|
|
Ransum_Ayam
|
1.35000
|
0.71000
|
0.76000
|
27.690
|
22.470172
|
4.396818
|
|
Ransum_Ayam
|
1.37000
|
0.68000
|
0.74000
|
27.700
|
22.229640
|
4.617267
|
|
Ransum_Ayam
|
1.30000
|
0.73000
|
0.78000
|
26.100
|
21.767666
|
4.630278
|
|
Ransum_Ayam
|
1.36000
|
0.72000
|
0.87000
|
25.510
|
21.470491
|
4.872107
|
|
Ransum_Ayam
|
1.36000
|
0.73000
|
0.79000
|
25.810
|
20.854908
|
4.285557
|
|
Ransum_Ayam_M
|
1.16000
|
0.49300
|
0.69900
|
33.200
|
24.333522
|
4.549064
|
|
Ransum_Ayam_C
|
1.19400
|
0.66000
|
0.76200
|
20.850
|
22.790411
|
4.357567
|
|
Ransum_Ayam_P
|
1.18000
|
0.62900
|
0.68800
|
14.940
|
24.627557
|
4.781282
|
Matrix correlation

Splitting data
## Joining, by = c("BJ", "KT", "KPT", "ST", "PK", "SK")
|
BJ
|
KT
|
KPT
|
ST
|
PK
|
SK
|
|
0.8454545
|
0.3587179
|
0.4303781
|
0.9348578
|
0.1447598
|
0.5728949
|
|
0.6000000
|
0.1469617
|
0.2685263
|
0.8557244
|
0.1270883
|
0.2541420
|
|
0.8000000
|
0.6754548
|
0.6022077
|
0.4964646
|
0.3027666
|
0.1126496
|
|
0.6909091
|
0.2501861
|
0.4094608
|
0.6047841
|
0.0763401
|
0.8507489
|
|
1.0000000
|
0.2516370
|
0.3254106
|
0.6059877
|
0.2299006
|
0.7412467
|
|
0.5768636
|
0.8759092
|
0.9212703
|
0.6520235
|
0.2108044
|
0.5714802
|
|
0.5027273
|
0.1375499
|
0.3749689
|
0.9391906
|
0.3366283
|
0.2687052
|
|
0.6636364
|
1.0000000
|
0.8508279
|
0.3357906
|
0.2733054
|
0.1009184
|
|
0.7636364
|
0.2970161
|
0.4509638
|
0.7997593
|
0.1362567
|
0.5089173
|
|
0.6454545
|
0.2758252
|
0.4199029
|
0.8849105
|
0.2150426
|
0.1846601
|
|
0.6818182
|
0.6754548
|
0.6187824
|
0.4970663
|
0.3005635
|
0.1204744
|
|
0.7090909
|
0.2069071
|
0.3317753
|
0.6640590
|
0.1183005
|
0.5132738
|
|
0.8000000
|
0.3026479
|
0.4543119
|
0.8400782
|
0.1405535
|
0.2954247
|
|
0.7181818
|
0.2769707
|
0.4205161
|
0.8111930
|
0.1360120
|
0.2394179
|
|
0.7272727
|
0.9809091
|
0.8176786
|
0.3860388
|
0.2801380
|
0.1088702
|
|
0.7090909
|
0.2142762
|
0.3362836
|
0.6857229
|
0.1175539
|
0.4800600
|
|
0.6754545
|
0.6346767
|
0.7649214
|
0.5911238
|
0.1334060
|
0.3484555
|
|
0.4524545
|
0.4845459
|
0.5566274
|
0.6818113
|
0.2076491
|
0.4296524
|
|
0.7727273
|
0.3441706
|
0.4485273
|
0.9640439
|
0.2873874
|
0.1477682
|
|
0.5318182
|
0.2319352
|
0.4259029
|
0.8265383
|
0.2297507
|
0.4647560
|
|
0.6545455
|
0.2189153
|
0.2765319
|
0.8238303
|
0.2820127
|
0.2315692
|
|
0.5545455
|
0.8071820
|
0.6983409
|
0.0000000
|
0.3182323
|
0.1047492
|
|
0.6545455
|
0.2801779
|
0.4022343
|
0.7699714
|
0.1357048
|
0.8096270
|
|
0.1090909
|
0.2401825
|
0.3005486
|
0.6089965
|
0.2461651
|
0.2964440
|
|
0.3181818
|
0.0909872
|
0.0906303
|
0.5542350
|
0.0753165
|
0.2521315
|
|
0.7181818
|
0.2850843
|
0.3923889
|
0.7949451
|
0.0695060
|
0.9044632
|
|
0.7181818
|
0.1533762
|
0.3460295
|
0.8864149
|
0.0967694
|
0.3746463
|
|
0.5363636
|
0.5475459
|
0.7165730
|
0.5494208
|
0.3136132
|
0.0988580
|
|
0.7181818
|
0.2293580
|
0.3494108
|
0.7085903
|
0.1432910
|
0.4093311
|
|
0.5909091
|
0.1030717
|
0.2268908
|
0.8469986
|
0.1066662
|
0.3147747
|
|
0.6181818
|
0.1848189
|
0.2259626
|
0.6288551
|
0.1694083
|
0.3095329
|
|
0.6181818
|
0.1466371
|
0.8508279
|
0.2825335
|
1.0000000
|
0.0000000
|
|
0.5818182
|
0.1373590
|
0.2887640
|
0.8996540
|
0.1625517
|
0.3209286
|
|
0.2090909
|
0.1466371
|
0.1961282
|
0.6047841
|
0.3102720
|
0.3351676
|
|
0.6272727
|
0.2211871
|
0.3685214
|
0.5822175
|
0.0919470
|
0.5903275
|
|
0.6545455
|
0.1646780
|
0.2463992
|
0.6586430
|
0.1367798
|
0.4553562
|
|
0.8181818
|
0.5800004
|
0.4861850
|
0.6056868
|
0.3192860
|
0.1246519
|
|
0.5000000
|
0.2523816
|
0.3765104
|
0.8084850
|
0.2562728
|
0.2174102
|
|
0.9363636
|
0.5418186
|
0.4696103
|
0.5704829
|
0.3110102
|
0.1241966
|
|
0.3600273
|
0.7852275
|
0.7886729
|
0.4985708
|
0.2346840
|
0.3644538
|
|
0.6427273
|
0.5804204
|
0.6817993
|
0.6178125
|
0.1520308
|
0.2277068
|
|
0.6181818
|
0.1428762
|
0.3604661
|
0.7480066
|
0.0610680
|
0.9079012
|
|
0.3000000
|
0.0717245
|
0.0805032
|
0.5367835
|
0.0713454
|
0.2701223
|
|
0.7000000
|
0.9757927
|
0.7909602
|
0.3360915
|
0.0808658
|
0.1025337
|
|
0.6181818
|
0.1296844
|
0.2692722
|
0.8867158
|
0.0895431
|
0.3353238
|
|
0.7181818
|
0.2804643
|
0.4220410
|
0.7729803
|
0.1321456
|
0.5057744
|
|
0.6000000
|
0.1940398
|
0.3060846
|
0.8196179
|
0.1530231
|
0.2432121
|
|
0.6615000
|
0.6420458
|
0.7140868
|
0.6089965
|
0.7121136
|
0.1553885
|
|
0.6181818
|
0.1317653
|
0.2743606
|
0.8876185
|
0.0903286
|
0.3358312
|
|
0.3181818
|
0.3089097
|
0.3486152
|
0.6541297
|
0.3131184
|
0.2988832
|
|
0.7181818
|
0.2182280
|
0.3410571
|
0.6974575
|
0.1346878
|
0.5577407
|
|
0.7090909
|
0.2755007
|
0.4148973
|
0.7811043
|
0.1534835
|
0.5227418
|
|
0.7363636
|
0.6563639
|
0.6187824
|
0.4922521
|
0.2946974
|
0.1159586
|
|
0.6454545
|
0.2272198
|
0.3787811
|
0.5843238
|
0.1121512
|
0.6738731
|
|
0.0000000
|
0.0000000
|
0.0000000
|
0.6499173
|
0.0000000
|
1.0000000
|
|
0.6454545
|
0.1761707
|
0.2659075
|
0.6457048
|
0.1343983
|
0.6198203
|
|
0.6363636
|
0.2230198
|
0.3690518
|
0.5825184
|
0.1240648
|
0.7349244
|
|
0.7272727
|
0.2533170
|
0.4128089
|
0.6165187
|
0.0734753
|
0.9425000
|
|
1.0000000
|
0.1409099
|
0.1596639
|
0.5792087
|
0.5449376
|
0.3410380
|
|
0.6636364
|
0.2333862
|
0.3834883
|
0.5846246
|
0.1009021
|
0.7443300
|
|
0.6181818
|
0.1321853
|
0.2749573
|
0.8897247
|
0.0911140
|
0.3335480
|
|
0.5200000
|
0.1970944
|
0.3826098
|
0.8523544
|
0.2555787
|
0.4591780
|
|
0.5909091
|
0.0684790
|
0.2167471
|
0.8253347
|
0.0777611
|
0.3885994
|
|
0.5672727
|
0.8663638
|
0.8209935
|
0.1778246
|
0.2893720
|
0.0939999
|
|
0.0363636
|
0.1409099
|
0.1596639
|
0.5792087
|
0.4486444
|
0.3051893
|
|
0.6454545
|
0.1457208
|
0.2433328
|
0.6438995
|
0.1211247
|
0.3055158
|
|
0.5093000
|
0.7947729
|
0.7969602
|
0.2756131
|
0.7155234
|
0.1574045
|
|
0.7181818
|
1.0000000
|
0.8674026
|
0.3270648
|
0.2589666
|
0.0921730
|
|
0.6090909
|
0.1914626
|
0.3076426
|
0.9032646
|
0.1357285
|
0.2181176
|
|
0.6727273
|
0.2345507
|
0.3852121
|
0.6002708
|
0.1156979
|
0.7224384
|
|
0.6090909
|
0.2150589
|
0.3291897
|
0.9116895
|
0.1497098
|
0.2039108
|
|
0.6090909
|
0.4292969
|
0.6549815
|
0.6418836
|
0.2138290
|
0.5905410
|
|
0.7454545
|
0.2571161
|
0.4145824
|
0.6210320
|
0.1036278
|
0.7299090
|
|
BJ
|
KT
|
KPT
|
ST
|
PK
|
SK
|
|
0.4554545
|
0.1270499
|
0.3144879
|
1.0000000
|
0.2330417
|
0.3269403
|
|
0.6018182
|
0.3632806
|
0.5840585
|
0.6502482
|
0.2090193
|
0.6819422
|
|
0.3545455
|
0.0953972
|
0.0990005
|
0.5590492
|
0.0795232
|
0.2344925
|
|
0.7090909
|
0.1846662
|
0.3254106
|
0.6625545
|
0.1414124
|
0.4858763
|
|
0.5727273
|
0.1047899
|
0.2795319
|
0.8858131
|
0.1509717
|
0.2246693
|
|
0.7090909
|
0.2364598
|
0.3887591
|
0.8469986
|
0.1394174
|
0.3347463
|
|
0.6000000
|
0.0628663
|
0.2127360
|
0.8590342
|
0.0750905
|
0.3931659
|
|
0.6000000
|
0.1476871
|
0.2637528
|
0.8779901
|
0.1206475
|
0.2493218
|
|
0.9909091
|
0.7709093
|
0.8839773
|
0.3427110
|
0.7233674
|
0.0815316
|
|
0.8090909
|
0.5227277
|
0.3867369
|
0.5500226
|
0.3113351
|
0.4942302
|
|
0.2363636
|
0.3184552
|
0.3867369
|
0.5500226
|
0.2944723
|
0.4057141
|
|
0.2818182
|
0.2516370
|
0.3254106
|
0.6035806
|
0.2389116
|
0.3372011
|
|
0.1363636
|
0.1848189
|
0.2259626
|
0.6288551
|
0.3762768
|
0.2450172
|
|
0.5279818
|
0.7327275
|
0.8798336
|
0.8199188
|
0.1952787
|
0.6407876
|
|
0.8181818
|
0.5800004
|
0.5359090
|
0.5894388
|
0.3088985
|
0.1198456
|
|
0.7090909
|
0.9618182
|
0.8176786
|
0.3836317
|
0.2843413
|
0.0949957
|
|
0.7272727
|
0.9045455
|
0.7845292
|
0.3839326
|
0.2805627
|
0.1005883
|
|
0.7181818
|
0.9809091
|
1.0000000
|
0.3180382
|
0.2686370
|
0.1070534
|
Build ANN and MLR model
Crude Protein (PK)
##
## Call:
## lm(formula = PK ~ BJ + KT + KPT + ST, data = dt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.20222 -0.07987 -0.03389 0.04428 0.43238
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34046 0.08743 3.894 0.000194 ***
## BJ -0.03132 0.07990 -0.392 0.696049
## KT -0.41166 0.13341 -3.086 0.002731 **
## KPT 0.61093 0.14971 4.081 0.000100 ***
## ST -0.34804 0.09981 -3.487 0.000771 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1327 on 86 degrees of freedom
## Multiple R-squared: 0.331, Adjusted R-squared: 0.2998
## F-statistic: 10.64 on 4 and 86 DF, p-value: 4.757e-07
## [1] 0.02381218
##
## Call:
## lm(formula = SK ~ BJ + KT + KPT + ST, data = dt)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.56274 -0.14468 -0.06268 0.11251 0.58337
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.42969 0.14176 3.031 0.00322 **
## BJ 0.09736 0.12955 0.752 0.45437
## KT -0.51533 0.21629 -2.383 0.01940 *
## KPT 0.18113 0.24273 0.746 0.45757
## ST -0.02010 0.16181 -0.124 0.90144
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2152 on 86 degrees of freedom
## Multiple R-squared: 0.1851, Adjusted R-squared: 0.1472
## F-statistic: 4.884 on 4 and 86 DF, p-value: 0.001347
## [1] 0.0370491
Crude Protein (SK)

## [1] 0.03611256

## [1] 0.03718827
Mean Square Error
|
Model
|
Mean_Square_Error
|
|
mlr_PK
|
0.0238122
|
|
ann_PK
|
0.0361126
|
|
mlr_SK
|
0.0370491
|
|
ann_SK
|
0.0371883
|
Improve ANN Models
## ___________________________________________________________________________
## Layer (type) Output Shape Param #
## ===========================================================================
## dense (Dense) (None, 100) 500
## ___________________________________________________________________________
## dense_1 (Dense) (None, 10000) 1010000
## ___________________________________________________________________________
## dense_2 (Dense) (None, 1) 10001
## ===========================================================================
## Total params: 1,020,501
## Trainable params: 1,020,501
## Non-trainable params: 0
## ___________________________________________________________________________

## ___________________________________________________________________________
## Layer (type) Output Shape Param #
## ===========================================================================
## dense_3 (Dense) (None, 100) 500
## ___________________________________________________________________________
## dense_4 (Dense) (None, 10000) 1010000
## ___________________________________________________________________________
## dense_5 (Dense) (None, 1) 10001
## ===========================================================================
## Total params: 1,020,501
## Trainable params: 1,020,501
## Non-trainable params: 0
## ___________________________________________________________________________
