R for Data Science https://r4ds.had.co.nz
On RStudio Cloud, you will have a new project called HW1, which has a R Markdown document called HW1.Rmd. Please open it, follow the instructions within it, answer the questions, and then compile to HTML (see instructions)
Run the following code, either in your console or from the R Markdown document
living_wage <- 15
l1ving_wage
Does this code work? Why or why not? How would you correct it? Put the corrected code in a R code chunk in your answer, with option eval = T to show that the code works
Answer:
No; because the object spelling is incorrect (not matching)
Complete the code below by repalcing the ___, following the instructions in the comments (lines starting with #). Change eval = F to eval = T, so that the answers show in the HTML file. You can learn more about the dataset by typing ?mtcars in the console.
library(tidyverse)
data(mtcars)
# Show me the first 3 rows of this dataset
head(mtcars, n = 3)
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
# What is the average mpg of all the cars?
mean(mtcars$mpg)
## [1] 20.09062
# Find the average mpg for 4 cylinder cars
mean(mtcars$mpg[mtcars$mpg == 4])
## [1] NaN
# Find the average mpg for 4, 6 and 8 cylinder cars, in one statement
mtcars %>%
group_by(cyl) %>%
summarize(avg_mpg = mean(mpg))
## # A tibble: 3 x 2
## cyl avg_mpg
## <dbl> <dbl>
## 1 4 26.7
## 2 6 19.7
## 3 8 15.1
# Convert mpg to km/l (1 mpg = 1.6 km/g = 0.42 km / l) and compute avg mpg & km/l by cylinder
mtcars %>%
mutate( kml = mpg * 1.6) %>%
group_by(cyl) %>%
summarize(avg_US = mean(mpg), avg_metric = mean(kml))
## # A tibble: 3 x 3
## cyl avg_US avg_metric
## <dbl> <dbl> <dbl>
## 1 4 26.7 42.7
## 2 6 19.7 31.6
## 3 8 15.1 24.2
There is some template ggplot2 code below. Once again fill in the blanks and change eval = F to eval = T to run the code during knitting.
library(ggplot2)
# Draw a scatter plot showing the relationship between displacement and mpg
mtcars
## mpg cyl disp hp drat wt qsec vs am gear carb
## Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
## Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
## Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
## Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
## Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
## Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
## Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
## Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
## Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
## Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
## Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
## Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
## Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
## Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
## Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
## Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
## Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
## Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
## Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
## Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
## Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
## Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
## AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
## Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
## Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
## Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
## Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
## Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
## Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
## Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
## Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
## Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2
ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point()
# Draw a scatterplot like above, but color points based on cylinders
#
ggplot(mtcars, aes(x = disp, y = mpg)) +
geom_point(aes( color = cyl), group=1)
Extra credit:
Is this quite right? Can you fix it by changing the data type of cyl?