`

The attached who.csv dataset contains real-world data from 2008. The variables included follow.

Country: name of the country LifeExp: average life expectancy for the country in years InfantSurvival: proportion of those surviving to one year or more Under5Survival: proportion of those surviving to five years or more TBFree: proportion of the population without TB. PropMD: proportion of the population who are MDs PropRN: proportion of the population who are RNs PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate TotExp: sum of personal and government expenditures.

  1. Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
life_exp <- read.csv("C:/Users/tbao/Desktop/CUNY MSDS notes/DATA 605/WK 12/who.csv")
summary(life_exp)
##                 Country       LifeExp      InfantSurvival  
##  Afghanistan        :  1   Min.   :40.00   Min.   :0.8350  
##  Albania            :  1   1st Qu.:61.25   1st Qu.:0.9433  
##  Algeria            :  1   Median :70.00   Median :0.9785  
##  Andorra            :  1   Mean   :67.38   Mean   :0.9624  
##  Angola             :  1   3rd Qu.:75.00   3rd Qu.:0.9910  
##  Antigua and Barbuda:  1   Max.   :83.00   Max.   :0.9980  
##  (Other)            :184                                   
##  Under5Survival       TBFree           PropMD              PropRN         
##  Min.   :0.7310   Min.   :0.9870   Min.   :0.0000196   Min.   :0.0000883  
##  1st Qu.:0.9253   1st Qu.:0.9969   1st Qu.:0.0002444   1st Qu.:0.0008455  
##  Median :0.9745   Median :0.9992   Median :0.0010474   Median :0.0027584  
##  Mean   :0.9459   Mean   :0.9980   Mean   :0.0017954   Mean   :0.0041336  
##  3rd Qu.:0.9900   3rd Qu.:0.9998   3rd Qu.:0.0024584   3rd Qu.:0.0057164  
##  Max.   :0.9970   Max.   :1.0000   Max.   :0.0351290   Max.   :0.0708387  
##                                                                           
##     PersExp           GovtExp             TotExp      
##  Min.   :   3.00   Min.   :    10.0   Min.   :    13  
##  1st Qu.:  36.25   1st Qu.:   559.5   1st Qu.:   584  
##  Median : 199.50   Median :  5385.0   Median :  5541  
##  Mean   : 742.00   Mean   : 40953.5   Mean   : 41696  
##  3rd Qu.: 515.25   3rd Qu.: 25680.2   3rd Qu.: 26331  
##  Max.   :6350.00   Max.   :476420.0   Max.   :482750  
## 
str(life_exp)
## 'data.frame':    190 obs. of  10 variables:
##  $ Country       : Factor w/ 190 levels "Afghanistan",..: 1 2 3 4 5 6 7 8 9 10 ...
##  $ LifeExp       : int  42 71 71 82 41 73 75 69 82 80 ...
##  $ InfantSurvival: num  0.835 0.985 0.967 0.997 0.846 0.99 0.986 0.979 0.995 0.996 ...
##  $ Under5Survival: num  0.743 0.983 0.962 0.996 0.74 0.989 0.983 0.976 0.994 0.996 ...
##  $ TBFree        : num  0.998 1 0.999 1 0.997 ...
##  $ PropMD        : num  2.29e-04 1.14e-03 1.06e-03 3.30e-03 7.04e-05 ...
##  $ PropRN        : num  0.000572 0.004614 0.002091 0.0035 0.001146 ...
##  $ PersExp       : int  20 169 108 2589 36 503 484 88 3181 3788 ...
##  $ GovtExp       : int  92 3128 5184 169725 1620 12543 19170 1856 187616 189354 ...
##  $ TotExp        : int  112 3297 5292 172314 1656 13046 19654 1944 190797 193142 ...
#scatter plot of single linear model
life_exp_lm <- lm(LifeExp ~ TotExp, data=life_exp)


plot(LifeExp~TotExp, data=life_exp, 
     xlab="Total Expenditures", ylab="Life Expectancy",
     main="Life Expectancy vs Total Expenditures")
abline(life_exp_lm)

summary(life_exp_lm)
## 
## Call:
## lm(formula = LifeExp ~ TotExp, data = life_exp)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -24.764  -4.778   3.154   7.116  13.292 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept) 6.475e+01  7.535e-01  85.933  < 2e-16 ***
## TotExp      6.297e-05  7.795e-06   8.079 7.71e-14 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared:  0.2577, Adjusted R-squared:  0.2537 
## F-statistic: 65.26 on 1 and 188 DF,  p-value: 7.714e-14
plot(life_exp_lm$fitted.values, life_exp_lm$residuals, 
     xlab="Fitted Values", ylab="Residuals",
     main="Residuals Plot")
abline(h=0)

qqnorm(life_exp_lm$residuals)
qqline(life_exp_lm$residuals)

From the scatter plot, residual plot and qq plot, we can conclude that the relationship is not linear and the observers are not randomly distributed. Residual standard error is 9.371 and F-statistic is 65.26. Average life expectancy is 67.38, the SE is reasonable. R2 is only 0.2577 (so the model explains only 25.77% of variability). Although F-statistics is high. P-value is nearly 0, the relationship between the two variables is not due to random variation.

  1. Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
LifeExp4.6 <- life_exp$LifeExp^4.6
TotExp0.06 <- life_exp$TotExp^0.06


life_exp_lm2 <- lm(LifeExp4.6 ~ TotExp0.06)


plot(LifeExp4.6~TotExp0.06, 
     xlab="Total Expenditures", ylab="Life Expectancy",
     main="Life Expectancy vs Total Expenditures (Transformed)")
abline(life_exp_lm)

summary(life_exp_lm2)
## 
## Call:
## lm(formula = LifeExp4.6 ~ TotExp0.06)
## 
## Residuals:
##        Min         1Q     Median         3Q        Max 
## -308616089  -53978977   13697187   59139231  211951764 
## 
## Coefficients:
##               Estimate Std. Error t value Pr(>|t|)    
## (Intercept) -736527910   46817945  -15.73   <2e-16 ***
## TotExp0.06   620060216   27518940   22.53   <2e-16 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared:  0.7298, Adjusted R-squared:  0.7283 
## F-statistic: 507.7 on 1 and 188 DF,  p-value: < 2.2e-16
plot(life_exp_lm2$fitted.values, life_exp_lm2$residuals, 
     xlab="Fitted Values", ylab="Residuals",
     main="Residuals Plot")
abline(h=0)

qqnorm(life_exp_lm2$residuals)
qqline(life_exp_lm2$residuals)

From the scatter plot, we can see the retionship is close to linear. The residual plot shows the most of variables are randomly distributed around 0 although looks a little big left skewed. The qq plot shows a nearly linear relationship between the two variables.

Residual standard error is 90,490,000 and. SE is high compared to the non-transformed variables. R2 is 0.7298, which isexplains 72.98% of variability. F-statistic is 507.7, P-value is again nearly 0, the relationship is not due to random variation.

  1. Using the results from 3, forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
range <- data.frame(TotExp0.06 = c(1.5,2.5))
predict(life_exp_lm2, range,interval="predict")^(1/4.6)
##        fit      lwr      upr
## 1 63.31153 35.93545 73.00793
## 2 86.50645 81.80643 90.43414

Predicting the values at 1.5 adn 2.5 provides the following results.

The prediction at 1.5 is 63 years with a CI(35.93545, 73.00793).

The prediction at 2.5 is 87 year with a CI(81.80643, 90.43414)

  1. Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?

LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp

life_exp_lm3 <- lm(LifeExp ~ PropMD + TotExp + TotExp:PropMD, data=life_exp)


summary(life_exp_lm3)
## 
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + TotExp:PropMD, data = life_exp)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -27.320  -4.132   2.098   6.540  13.074 
## 
## Coefficients:
##                 Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    6.277e+01  7.956e-01  78.899  < 2e-16 ***
## PropMD         1.497e+03  2.788e+02   5.371 2.32e-07 ***
## TotExp         7.233e-05  8.982e-06   8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03  1.472e-03  -4.093 6.35e-05 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared:  0.3574, Adjusted R-squared:  0.3471 
## F-statistic: 34.49 on 3 and 186 DF,  p-value: < 2.2e-16
plot(life_exp_lm3$fitted.values, life_exp_lm3$residuals, 
     xlab="Fitted Values", ylab="Residuals",
     main="Residuals Plot")
abline(h=0)

qqnorm(life_exp_lm3$residuals)
qqline(life_exp_lm3$residuals)

Residuals plots shows there is no constant variability and that residuals are not normally distributed. QQ plot shows not a very good linear fit. Residual standard error is 8.765 and F-statistic is 34.49. Compare to the average of life expectancy is 67.38, the SE is Ok. R2 equals to 0.3574 which means the model explains only 35.74% of variability. F-statistics is fairly high and P-value is nearly 0, so the relationship is not due to random variation.

  1. Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
condition <- data.frame(PropMD=0.03, TotExp=14)
predict(life_exp_lm3, condition,interval="predict")
##       fit      lwr      upr
## 1 107.696 84.24791 131.1441

The prediction is 107.70 years with 95% confidence interval between 84.25 and 131.14. The prediction does not make sense in real world. There is nothing in our data to support this prediction and it goes against common sense. It is not a good and useful model.