## # A tibble: 7,333 x 6
## cd_sipra cd_mun num_lotes area_lote cum_lotes seq
## <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 GO0094000 5207253 5.00 39.6 5.00 1.00
## 2 SP0115000 3503307 14.0 14.0 19.0 2.00
## 3 SE0003000 2805406 211 29.7 230 3.00
## 4 AM0021000 1300706 1060 105 1290 4.00
## 5 RR0059000 1400209 158 67.7 1448 5.00
## 6 CE0188000 2303931 10.0 49.0 1458 6.00
## 7 RS0038000 4314605 35.0 28.0 1493 7.00
## 8 AL0206000 2707107 20.0 19.4 1513 8.00
## 9 MF0252000 2613909 46.0 48.5 1559 9.00
## 10 PI0438000 2211704 69.0 28.0 1628 10.0
## # ... with 7,323 more rows
aru_inline <- data.frame(cd_mun=NA, cd_sipra=NA,cd_lote=NA,area_lote=NA)
for (i in unique(aru$cd_sipra)){
tempDB = subset(aru, aru$cd_sipra == i)
add_lote = tempDB$num_lotes
l= (tempDB$cum_lotes - tempDB$num_lotes) + 1
while(add_lote > 0){
aru_inline[l,'cd_mun'] <- tempDB$cd_mun
aru_inline[l,'cd_sipra'] <- tempDB$cd_sipra
aru_inline[l,'cd_lote'] <- paste(tempDB$cd_sipra, as.character(l))
aru_inline[l,'area_lote'] <- tempDB$area_lote
l = l + 1
add_lote = add_lote - 1
}
print(tempDB$cd_sipra)
}
The presented results will consider the both situations, i.e., with and without considering rural settlements.
Considering rural settlements gini index for Brazil was 0.8.
Without considering rural settlements gini index for Brazil was 0.84.
For Para, the CAR database is available with the CPF/CNPJ of each rural property. Were identified 176,051 registries, being 154,740 related to CPF and 21,648 to CNPJ. CAR database was processed to aggregate rural properties owned by the same CPF or by the same company. The following steps describe the treatment applied to the data:
We compared Gini Index for Para with three different steps:
The following graphs present the same results for Gini Index and also the Lorenz-Curve for each situation.