\(\int 4e^{-7x}dx\)
Let \(u = -7x\) , then \(dx=\frac{du}{-7}\)
\(\int 4e^u\frac{du}{-7}\)
\(\frac{4}{-7}\int e^udu\)
\(\frac{4}{-7}e^u+c\)
\(\therefore \frac{4}{-7}e^{-7x}+c\)
\(\dfrac{dN}{dt} = -\dfrac{3150}{t^4} - 220\)
\(N'(t)=\frac{dn}{dt}=\int(-\frac{3150}{t^4}-220)dt\)
\(N(t)=\frac{1050}{t^3}-220t+C\)
\(N(1)=1050-220+C=6530\)
\(C=5700\)
\(\therefore N(t)=\frac{1050}{t^3}-220t+5700\)
\(\int^{8.5}_{4.4}(2x-9)dx\)
\(x^2-9xdx|^{8.5}_{4.5}\)
\(\therefore ((8.5)^2-9*(8.5) - (4.5)^2-9*(4.5) = 16\)
eqn1 <- function(x){
return(x**2 -2*x - 2)
}
eqn2 <- function(x){
return(x + 2)
}
x <- seq(-2, 5, 1)
y <- eqn2(x)
plot(eqn1, from = -2, to = 5, line = "l", col = 'blue')
## Warning in plot.window(...): "line" is not a graphical parameter
## Warning in plot.xy(xy, type, ...): "line" is not a graphical parameter
## Warning in axis(side = side, at = at, labels = labels, ...): NAs introduced
## by coercion
## Warning in axis(side = side, at = at, labels = labels, ...): NAs introduced
## by coercion
## Warning in box(...): "line" is not a graphical parameter
## Warning in title(...): NAs introduced by coercion
lines(x,y, col = 'green')
\(y=x^2-2x-2, y=x+2\)
\(x^2-2x-2=x+2\)
\(x^2-3x-4=0\)
\(x=1, x=-4\)
\(\int_{-1}^{4}(x+2)-(x^2-2x-2)dx\)
\(\int_{-1}^{4}(-x^2+3x+4)dx\)
\(-\frac{x^3}{3}+\frac{3x^2}{2}+4x|^{4}_{-1}\)
\(\therefore (-\frac{4^3}{3}+\frac{3(4)^2}{2}+4(4))-(-\frac{-1^3}{3}+\frac{3(-1)^2}{2}+4(-1))=20.83333\)
Let \(x\) be a number of flat irons,
Yearly storage cost = Storage cost per iron × Average number of irons =\(3.75.\frac{x}{2}=1.875x\)
Yearly ordering cost = Cost of each order × Number of orders = \(8.25.\frac{110}{x}=\frac{907.5}{x}\)
\(lot.size=x=22, order=\frac{110}{22}=5\)
The lot size is 22 and the number of orders per year of 5 will minimize inventory costs.
\(\int ln(9x).x^6 dx\)
Let \(u=ln(9x)\), then \(\frac{du}{dx}=\frac{1}{x}\)
Let \(\frac{dv}{dx}=x^6\), then \(v=\int x^6dx=\frac{1}{7}x^7\)
Using the formula for integration by parts: \(\int u\frac{dv}{dx}dx=uv-\int v\frac{du}{dv}dx\)
\(\int ln(9x).x^6 dx=\frac{1}{7}x^7.ln(9x)-\int \frac{1}{7}x^7.\frac{1}{x}dx\)
\(\frac{1}{7}x^7.ln(9x)-\int \frac{1}{7}x^6dx\)
\(\frac{1}{49}(7ln(9x)-1)+C\)
\(f(x)=\frac{1}{6x}\)
\(\int^{e^6}_{1}\frac{1}{6x}dx=\frac{1}{6}ln(x)|^{e^6}_{1}\)
\(\frac{1}{6}ln(e^6)-\frac{1}{6}ln(1)=1\)
Since the definite integral is 1, f(x) is a probability density function on the interval \([1, e^6]\)