Dataset: who.csv
Country: name of the country
LifeExp: average life expectancy for the country in years
InfantSurvival: proportion of those surviving to one year or more
Under5Survival: proportion of those surviving to five years or more
TBFree: proportion of the population without TB.
PropMD: proportion of the population who are MDs
PropRN: proportion of the population who are RNs
PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate
GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate
TotExp: sum of personal and government expenditures.
# Read the data
who <- read.csv("https://raw.githubusercontent.com/L-Velasco/DATA605_SP19/master/HW/who.csv", stringsAsFactors = FALSE)
str(who)
## 'data.frame': 190 obs. of 10 variables:
## $ Country : chr "Afghanistan" "Albania" "Algeria" "Andorra" ...
## $ LifeExp : int 42 71 71 82 41 73 75 69 82 80 ...
## $ InfantSurvival: num 0.835 0.985 0.967 0.997 0.846 0.99 0.986 0.979 0.995 0.996 ...
## $ Under5Survival: num 0.743 0.983 0.962 0.996 0.74 0.989 0.983 0.976 0.994 0.996 ...
## $ TBFree : num 0.998 1 0.999 1 0.997 ...
## $ PropMD : num 2.29e-04 1.14e-03 1.06e-03 3.30e-03 7.04e-05 ...
## $ PropRN : num 0.000572 0.004614 0.002091 0.0035 0.001146 ...
## $ PersExp : int 20 169 108 2589 36 503 484 88 3181 3788 ...
## $ GovtExp : int 92 3128 5184 169725 1620 12543 19170 1856 187616 189354 ...
## $ TotExp : int 112 3297 5292 172314 1656 13046 19654 1944 190797 193142 ...
dim(who)
## [1] 190 10
head(who)
## Country LifeExp InfantSurvival Under5Survival TBFree
## 1 Afghanistan 42 0.835 0.743 0.99769
## 2 Albania 71 0.985 0.983 0.99974
## 3 Algeria 71 0.967 0.962 0.99944
## 4 Andorra 82 0.997 0.996 0.99983
## 5 Angola 41 0.846 0.740 0.99656
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991
## PropMD PropRN PersExp GovtExp TotExp
## 1 0.000228841 0.000572294 20 92 112
## 2 0.001143127 0.004614439 169 3128 3297
## 3 0.001060478 0.002091362 108 5184 5292
## 4 0.003297297 0.003500000 2589 169725 172314
## 5 0.000070400 0.001146162 36 1620 1656
## 6 0.000142857 0.002773810 503 12543 13046
Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error,and p-values only. Discuss whether the assumptions of simple linear regression met.
fit <- lm(LifeExp ~ TotExp, data = who)
plot(who$TotExp, who$LifeExp)
abline(fit)
# correlation
cor(who$LifeExp, who$TotExp)
## [1] 0.5076339
summary(fit)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
plot(fit,which=1)
hist(resid(fit), main = "Histogram of Residuals", xlab = "residuals")
qqnorm(resid(fit))
qqline(resid(fit))
The scatterplot and the diagnostic plots seem to suggests non-linear relationship. The histogram of the residuals is non-normal and the points are falling off the theoretical line. Overall, the model seems to violate linearity and normality of errors assumptions.
The correlation measure is not very strong at 50.76%.
The F-statistic is 65.26 with very low p-value of 7.714e-14, which suggests significance. The R-squared is rather low, explaining only 25.77% variation in data. The p-value of the independent variable is significant with 7.71e-14.
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and r re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
who$LifeExp2 <- who$LifeExp^4.6
who$TotExp2 <- who$TotExp^0.06
head(who)
## Country LifeExp InfantSurvival Under5Survival TBFree
## 1 Afghanistan 42 0.835 0.743 0.99769
## 2 Albania 71 0.985 0.983 0.99974
## 3 Algeria 71 0.967 0.962 0.99944
## 4 Andorra 82 0.997 0.996 0.99983
## 5 Angola 41 0.846 0.740 0.99656
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991
## PropMD PropRN PersExp GovtExp TotExp LifeExp2 TotExp2
## 1 0.000228841 0.000572294 20 92 112 29305338 1.327251
## 2 0.001143127 0.004614439 169 3128 3297 327935478 1.625875
## 3 0.001060478 0.002091362 108 5184 5292 327935478 1.672697
## 4 0.003297297 0.003500000 2589 169725 172314 636126841 2.061481
## 5 0.000070400 0.001146162 36 1620 1656 26230450 1.560068
## 6 0.000142857 0.002773810 503 12543 13046 372636298 1.765748
fit2 <- lm(LifeExp2 ~ TotExp2, data = who)
plot(who$TotExp2, who$LifeExp2)
abline(fit2)
#correlation
cor(who$LifeExp2, who$TotExp2)
## [1] 0.8542642
summary(fit2)
##
## Call:
## lm(formula = LifeExp2 ~ TotExp2, data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## TotExp2 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
plot(fit2,which=1)
hist(resid(fit2), main = "Histogram of Residuals", xlab = "residuals")
qqnorm(resid(fit2))
qqline(resid(fit2))
The transformed model is better. It resolved the issues with the first model. The scatterplot and the diagnostic plots suggest meeting the linearity and normality assumptions.
The correlation measure is stronger at 85.42%.
The F-statistic is 507.7 with very low p-value of 2.2e-16, which suggests significance. The R-squared is higher, now explaining about 73% variation in data. The p-value of the independent variable is significant with <2e-16.
Forecast life expectancy when TotExp^.06 =1.5. Then forecast life expectancy when TotExp^.06=2.5.
new.df <- data.frame(TotExp2=c(1.5, 2.5))
round(predict(fit2, new.df)^(1/4.6))
## 1 2
## 63 87
Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?
#correlation check against multicollinearity
#cor(who$PropMD, who$TotExp)
m <- lm(LifeExp ~ PropMD + TotExp + PropMD*TotExp, data = who)
summary(m)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + PropMD * TotExp, data = who)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
Although the independent variables seem significant, the model explains only 35.74% of the variation in the data.
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
new.df2 <- data.frame(PropMD=0.03, TotExp=14)
round(predict(m, new.df2))
## 1
## 108
The predicted value seem unrealistic because it doesn’t make sense and stands as an outlier with the rest of the data.