The objective of this assignment is to introduce you to R and R markdown and to complete some basic data simulation exercises.
Please include all code needed to perform the tasks. This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
To submit this homework you will create the document in Rstudio, using the knitr package (button included in Rstudio) and then submit the document to your Rpubs account. Once uploaded you will submit the link to that document on Moodle. Please make sure that this link is hyperlinked and that I can see the visualization and the code required to create it.
# place the code to simulate the data here
set.seed(505)
q1 <- rnorm(30, mean=c(0,-1,1), sd=c(1,2,3))
q1
## [1] -1.1211894 -3.5641141 -5.1180276 -0.9377324 -2.0203213 -0.2385342
## [7] -0.9103679 -0.7184777 2.6941523 -0.4322744 -5.4137940 0.2630103
## [13] -0.4786858 -1.4017334 2.4403230 0.3570010 -0.1326702 5.0896719
## [19] 0.8242841 -2.6801050 -5.1995761 -0.3895488 1.0792671 2.5229397
## [25] 0.9979214 0.1768755 -0.1880582 0.2071501 -0.7283914 5.4006912
# place the code to simulate the data here
set.seed(505); x <- rnorm(20, 0, 1)
set.seed(512); y <- rnorm(20, 1, 1)
par(mfrow=c(1,2))
plot(x, y, pch=20, main="Two variables plot A", sub="x and y are not sorted")
plot(sort(x), sort(y), pch=20, xlab="x", ylab="y", main="Two variables plot B", sub="x and y are sorted")
# place the code to simulate the data here
set.seed(1); x1 <- runif(50, min=-1, max=1)
set.seed(2); x2 <- runif(50, 0, 2)
set.seed(3); y <- rnorm(50, 0, 1)
fit <- lm(y~x1+x2)
summary(fit)
##
## Call:
## lm(formula = y ~ x1 + x2)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.14971 -0.71589 -0.05474 0.79216 1.82903
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.06848 0.25121 -0.273 0.786
## x1 -0.11375 0.24043 -0.473 0.638
## x2 0.01171 0.21303 0.055 0.956
##
## Residual standard error: 0.9064 on 47 degrees of freedom
## Multiple R-squared: 0.004744, Adjusted R-squared: -0.03761
## F-statistic: 0.112 on 2 and 47 DF, p-value: 0.8943
# place the code to simulate the data here
q4 <- rep(LETTERS[1:3], each=2, times=2)
q4
## [1] "A" "A" "B" "B" "C" "C" "A" "A" "B" "B" "C" "C"
# place the code to simulate the data here
q5 <- replicate(n=3, expr=data.frame("Group"=rep(letters[1:2], length.out=25), "Response1"=rnorm(25, 0, 1), "Response2"=runif(25, -1, 1)), simplify=F)
q5
## [[1]]
## Group Response1 Response2
## 1 a 0.7268389 0.545293995
## 2 b -0.8094409 -0.749749524
## 3 a 0.2670851 0.776421847
## 4 b -1.7372637 -0.381306476
## 5 a -1.4114251 0.298545919
## 6 b -0.4535512 -0.475211228
## 7 a -1.0354913 -0.676873218
## 8 b 1.3621429 -0.788986073
## 9 a 0.9174567 -0.124639215
## 10 b -0.7851422 -0.922958508
## 11 a 0.5735182 0.917353949
## 12 b 0.9181962 0.015484269
## 13 a 0.2562873 -0.275385440
## 14 b 0.3519666 0.758956562
## 15 a 1.1743374 0.508950183
## 16 b -0.4808464 0.519018507
## 17 a -0.4188297 0.779200941
## 18 b 0.9551128 -0.639299639
## 19 a -1.2890066 0.572977041
## 20 b 0.1861974 0.094749399
## 21 a -0.0313255 -0.005108341
## 22 b 0.4670973 -0.782438051
## 23 a 1.0241977 0.173467279
## 24 b 0.2673585 0.794645122
## 25 a 0.2318261 -0.624632324
##
## [[2]]
## Group Response1 Response2
## 1 a 0.07520150 0.43610804
## 2 b 0.78211420 0.89450250
## 3 a 0.16721830 -0.83713728
## 4 b -0.50320660 -0.52912476
## 5 a -1.29118679 -0.27490533
## 6 b -0.40806768 -0.34951834
## 7 a -1.15556232 -0.16694680
## 8 b -0.45595162 0.01137519
## 9 a 1.04157993 0.23467284
## 10 b 0.14629904 0.17082877
## 11 a -0.27739764 0.79846135
## 12 b 1.31969417 0.14980545
## 13 a -0.58542196 -0.37347620
## 14 b 1.08252391 -0.03999595
## 15 a -0.01774240 0.19124274
## 16 b -0.28648589 -0.86519504
## 17 a 0.47925590 0.46974672
## 18 b -1.84112900 0.28700579
## 19 a -0.05863315 -0.86529030
## 20 b -0.81669816 0.39494438
## 21 a 1.93104304 -0.30147908
## 22 b -1.17659954 -0.37185220
## 23 a 0.62585862 0.96463378
## 24 b 0.87962268 0.50023250
## 25 a 0.24321807 0.40971438
##
## [[3]]
## Group Response1 Response2
## 1 a -0.7624486 -0.80341742
## 2 b 0.3860738 -0.36106340
## 3 a -0.6640033 0.99158739
## 4 b -1.7243442 0.45257728
## 5 a 1.1563191 0.37379289
## 6 b 0.6935066 0.25851857
## 7 a 0.1431564 0.60683534
## 8 b 1.4928136 0.08638962
## 9 a -1.6321535 0.72360027
## 10 b 0.1278460 0.96839008
## 11 a -2.4036637 0.17880944
## 12 b 1.4439283 -0.88847207
## 13 a -0.8788931 0.05437264
## 14 b -1.3064383 0.23830242
## 15 a -0.8771990 -0.67528531
## 16 b -1.1643805 0.88091454
## 17 a -1.9823477 -0.81009305
## 18 b -0.9899442 0.62264850
## 19 a -0.1516846 0.98626251
## 20 b 0.9125068 0.28865800
## 21 a 0.4076698 -0.49422327
## 22 b -1.2421844 -0.58466051
## 23 a -0.6426944 0.63868522
## 24 b 1.9302437 -0.45655068
## 25 a 0.4101994 0.66528698