Antonio R.Linero and Yun Yang
04/19/2019
Non-parametric regression: \[ Y = f_0(X)+\epsilon, \] where:
Model \( f_0(x) \) as the realization of a random function
\[ f(x) = \sum_{t=1}^T g(x;\mathcal{T}_t,\mathcal{M}_t), \qquad x \in R^p, \]
where
\[ \phi(x;\mathcal{T},l) = \Pi_{b\in A(l)}\, \psi(x;\mathcal{T},b)^{1-R_b}\{1-\psi(x;\mathcal{T},b) \}^{R_b}. \] where \( A(l) \) si the set of ancestor nodes of leaf \( l \) and \( R_b=1 \) if the path goes right at \( b \).
\( \tau^{-1} \in \{10,40,160,2560\} \):
\[ f(x) = \sum_{t=1}^T g(x;\mathcal{T}_t,\mathcal{M}_t), \qquad x \in R^p, \]
where
\[ f_0(x) = 10 \sin(\pi x_1 x_2)+20(x_3-0.5)^2+10x_4+5x_5 \]
\[ f_0(x) = 10 \sin(\pi x_1 x_2)+20(x_3-0.5)^2+\lambda(10x_4+5x_5) \]
Chipman, H. A., George, E. I., & McCulloch, R. E. (2010). BART: Bayesian additive regression trees. The Annals of Applied Statistics, 4(1), 266-298.
Linero, A. R., & Yang, Y. (2018). Bayesian regression tree ensembles that adapt to smoothness and sparsity. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(5), 1087-1110.