who <- "https://raw.githubusercontent.com/miasiracusa/Data607/master/data605hw12/who.csv"
who <- read.csv(who)
plot(who$LifeExp ~ who$TotExp, xlab = 'Total Expectancy', ylab = 'Life expectancy')
obs <- lm(who$LifeExp ~ who$TotExp)
summary(obs)
##
## Call:
## lm(formula = who$LifeExp ~ who$TotExp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## who$TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
F-statistic: 65.26 on 1 p-value: 7.714e-14 Multiple R-squared: 0.2577
The F-statistic is testing the model against the null model, and the p-value is the chance that, given the hypothesis is true, the data turned out the way it did. There is a very low chance of that, according to our p-value of 7.714e-14. The R-squared value indicates that about 25.77% of the variation in the response variable can be attributed to the independent variable.
obs2 <- lm((who$LifeExp^4.6)~I(who$TotExp^.06))
summary(obs2)
##
## Call:
## lm(formula = (who$LifeExp^4.6) ~ I(who$TotExp^0.06))
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## I(who$TotExp^0.06) 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
This adjustment increased our \(R^2\) value to 72.83% and out F statistic to over 500, so it is already a better model than the first problem.
le <- function(fc)
{ y <- -736527910 + 620060216 * (fc)
y <- y^(1/4.6)
print(y)
}
le(1.5)
## [1] 63.31153
le(2.5)
## [1] 86.50645
LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp
lm_fit <- lm(who$LifeExp ~ who$PropMD + who$TotExp + who$PropMD*who$TotExp)
summary(lm_fit)
##
## Call:
## lm(formula = who$LifeExp ~ who$PropMD + who$TotExp + who$PropMD *
## who$TotExp)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## who$PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## who$TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## who$PropMD:who$TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
Since the p-value is smaller than .05, the model is statistically significant. The \(R^2\) value indicates that the independent variable accounts for 35.74% of the variability in the independent variable. The F value indicates that the model is strong.
le <- ( (6.277*10^1) + (1.497*10^3)*.03 + (7.233*10^(-5))*14 - ((6.026*10^(-3))*0.03*14) )
le
## [1] 107.6785
This forecast is unrealistic, considering the age of the person is 107 years old.