This talk will present packages to:
ggplot2.But first, lets talk about the lifecycle of a package…

A private aerospace manufacturer and space transportation services company.
An engineering and robotics design company founded in 1992 as a spin-off from the Massachusetts Institute of Technology.
A polar bear exploring technological advancements applicable to maritime transportation.
Visualize R profiling data.
R interface to Google Cloud Machine Learning Engine.
cloudml_train("train.R")
job_collect("cloudml_2019_04_18_003956121")
readRDS("runs/cloudml_2019_04_18_003956121/model.rds")Call:
lm(formula = sale_price ~ area + beds + age, data = hpiR::seattle_sales)
Coefficients:
(Intercept) area beds age
166678.1 -1579.2 146588.3 216.7
R Interface to Apache Spark.
spark_install() # Install Apache Spark
sc <- spark_connect(master = "local") # Connect to Spark clusterhouses <- copy_to(sc, hpiR::seattle_sales) # Copy data to Spark
dplyr::summarize(houses, n = n()) # Count records with dplyrFormula: sale_price ~ area + beds + age
Coefficients:
(Intercept) area beds age
166678.1295 -1579.1792 146588.2559 216.7374
R Interface to D3 Visualizations.
r2d3::r2d3(c(0.3, 0.6, 0.8, 0.95, 0.40, 0.20), "
var barHeight = Math.ceil(height / data.length);
svg.selectAll('rect').data(data).enter().append('rect')
.attr('width', function(d) { return d * width; })
.attr('height', barHeight)
.attr('y', function(d, i) { return i * barHeight; })
.attr('fill', 'steelblue');
")
The sassy diagram renderer.
The sassy diagram renderer.
nomnoml::nomnoml("[Import] -> [Understand]
[Understand | [Wrangle] -> [Visualize]
[Visualize] -> [Model]
[Model] -> [Wrangle]]
[Understand] -> [Communicate]")
voxels::voxels(matrix(c(
1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1,
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1,
1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1,
1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1,
1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1
), nrow = 5, byrow = T))
Many more applications: Speech recognition, natural language processing, self-driving cars, etc. See arXiv:1803.01164.
library(tensorflow)
add <- tf$add(tf$constant(1), tf$constant(1))
sess <- tf$Session()
tf$summary$FileWriter(file.path(".", "graph"), sess$graph)
sess$run(add)[1] 2
Deep Learning for humans.
library(keras)
mnist <- dataset_mnist()
x_train <- array_reshape(mnist$train$x, c(nrow(mnist$train$x), 784)) / 255
x_test <- array_reshape(mnist$test$x, c(nrow(mnist$test$x), 784)) / 255
y_train <- to_categorical(mnist$train$y, 10)
y_test <- to_categorical(mnist$test$y, 10)
model <- keras_model_sequential()
model %>%
layer_dense(units = 256, activation = 'relu', input_shape = c(784)) %>%
layer_dropout(rate = 0.4) %>%
layer_dense(units = 128, activation = 'relu') %>%
layer_dropout(rate = 0.3) %>%
layer_dense(units = 10, activation = 'softmax')
model %>% compile(loss = 'categorical_crossentropy', optimizer = optimizer_rmsprop(), metrics = c('accuracy'))
model %>% fit(x_train, y_train, epochs = 3, batch_size = 128, validation_split = 0.2)
model %>% evaluate(x_test, y_test)$acc
[1] 0.9681
Tools for Working with Pixels in R
Run Keras models in the browser, with GPU support using WebGL.
Show HN: Embedding Deep Learning models into your Slides using R
Kart simulation for model training
A lightweight binary columnar data store designed for maximum speed, based on Arrow’s memory layout.
Apache Arrow is a cross-language development platform for in-memory data.
The R arrow package supports feather, parquet, streams, and more.