rm(list=ls())
options(digits=5)
firm_data1 = read.csv("Fama_N.CSV")
head(firm_data1)
##     Date Mkt.RF   SMB   HML   RF
## 1 192607   2.96  -2.3 -2.87 0.22
## 2 192608   2.64  -1.4  4.19 0.25
## 3 192609   0.36 -1.32  0.01 0.23
## 4 192610  -3.24  0.04  0.51 0.32
## 5 192611   2.53  -0.2 -0.35 0.31
## 6 192612   2.62 -0.04 -0.02 0.28
names(firm_data1)
## [1] "Date"   "Mkt.RF" "SMB"    "HML"    "RF"
attach(firm_data1)
library("Ecdat")
## Loading required package: Ecfun
## 
## Attaching package: 'Ecfun'
## The following object is masked from 'package:base':
## 
##     sign
## 
## Attaching package: 'Ecdat'
## The following object is masked from 'package:datasets':
## 
##     Orange
library("robust")
## Loading required package: fit.models
stocks5=cbind(N=Mkt.RF,SMB,HML)
fit = lm(cbind(Mkt.RF,SMB,HML)~RF)
options(digits=3)
SMB
##    [1] -2.3   -1.4   -1.32  0.04   -0.2   -0.04  -0.56  -0.1   -1.6  
##   [10] 0.43   1.41   0.47   -3.23  -0.72  -3.57  2.13   2.76   0.93  
##   [19] 4.25   -2.03  -0.26  3.82   2.98   -3.5   -1.35  -2.07  2.18  
##   [28] 2.27   -1.81  -0.85  -3.54  -0.39  -4.78  -0.99  -5.46  -2.17 
##   [37] -3.88  -9.52  1.17   -4.08  -1.91  -4.2   3.58   0.12   3.44  
##   [46] -0.17  -2.04  -3.22  -0.37  -2.22  -2.22  -0.1   2.21   -4.68 
##   [55] 3.81   3.39   3.07   -4.61  5.16   -5.38  1.43   -1.97  0.56  
##   [64] -1.87  4.3    -0.56  3.94   -2.77  2.27   1.44   3.72   0.35  
##   [73] -4.44  14.29  -2.43  -2.76  2.08   -8.27  0.69   -2.75  3.9   
##   [82] 4.56   36.7   8.67   -1.01  -5.45  -0.32  -0.08  -6.48  0.66  
##   [91] 12.53  5.19   2.51   2.8    -0.26  -2.14  -6.94  5.42   -1.52 
##  [100] 1.24   6.49   3.08   1.07   0.42   -3.54  -1.56  -3.34  -2.51 
##  [109] 1.47   6.28   1.57   2.65   4.3    0.22   5.1    1.14   0.66  
##  [118] -6.03  0.81   -3.25  1.14   0.72   3.07   -2.39  9.01   3.61  
##  [127] 4.31   1.23   -1.78  -3.77  -0.66  -3.65  0.85   0.42   -6.89 
##  [136] 0.45   -3.65  -7.76  4.97   0.35   -4.24  6.37   -2.47  4.05  
##  [145] 6.66   -2.44  -2.72  5.83   -2.56  -1.8   -1.56  0.63   -4.76 
##  [154] 1.66   2.81   -1.02  4.32   -4.61  20.23  -0.01  -5.07  0.79  
##  [163] 0.24   2.51   1.25   3.92   -6.66  -2.13  1.01   -0.11  3.22  
##  [172] 0.28   1.94   -2.15  1      -1.57  0.1    -1.69  -0.66  1.32  
##  [181] 5.7    -0.41  -0.99  -2.02  -1.21  -2.98  7.52   1.72   1.78  
##  [190] -0.6   -3.05  -1.22  -0.16  -0.09  0.66   1.82   -1.54  -2.49 
##  [199] 8.78   4.84   5.03   2.06   4.41   -1.06  -2.41  -0.62  1.28  
##  [208] 0.58   -1.64  3.34   2.56   -0.1   1.71   -1.35  1.67   4.04  
##  [217] 0.55   2.41   0.47   -0.14  0.37   2.24   2.44   1.56   -1.61 
##  [226] 0.32   1.51   3.1    -1.46  1.61   1.71   2.46   4.16   2.12  
##  [235] 4.02   -0.73  0.31   2.37   1.46   -1.53  -2.06  -1.78  -4.41 
##  [244] 0.09   -0.4   0.06   2.18   0.68   -1.61  -3.97  -3.26  -0.31 
##  [253] 1.43   0.3    1.64   0.51   -1.74  -2.48  2.49   -1.71  0.13  
##  [262] -1.66  0.93   -1.86  -0.32  -1.1   -1.23  -1.5   -0.62  -2.8  
##  [271] 1.81   -1.89  2.48   -0.89  -0.77  -0.88  0.57   0.13   1.05  
##  [280] 1.03   -0.93  2.07   3.36   0.04   -1.41  1.99   -2.12  -2.38 
##  [289] 0.51   0.73   0.57   -0.58  -0.84  1.49   1.73   0.09   -0.64 
##  [298] -1.49  -0.01  -1.95  -1.99  0.99   1.9    -0.22  -0.29  -2.25 
##  [307] -0.61  0.79   -2.99  0.48   -1.01  -1.61  -0.4   1.18   1.15  
##  [316] -1.06  -0.71  -1.48  3.58   2.15   -0.19  0.28   -0.07  -1.86 
##  [325] -1.05  0.36   -0.85  -1.37  -1.29  -0.84  0.46   -0.17  -0.49 
##  [334] -3.48  0.39   0.41   1.07   2.66   -2.54  0.59   -2.62  2.14  
##  [343] 0.25   1.54   -0.66  -1.79  -0.29  -4.65  -1.36  -0.38  0.3   
##  [352] 1.5    -2.46  2.08   0.44   -1.04  -2.42  0.07   1.5    -1.46 
##  [361] -1.68  1.9    1.56   -0.09  -0.22  -0.03  3.4    -0.72  0.27  
##  [370] -1.6   -1.07  0.55   -0.76  0.06   0.08   -2.52  0.4    -0.93 
##  [379] 4.36   0.7    0.63   -0.59  2.24   -0.24  0.47   1.19   0.15  
##  [388] 1.13   2.06   -2.07  3.02   1.49   1.48   -0.58  -2.15  0.68  
##  [397] -0.32  -0.78  -0.09  1.43   1.24   -0.6   2.09   0.51   -0.51 
##  [406] 0.31   1.21   -0.22  -0.52  0.9    -1.11  -3.95  0.35   -1.56 
##  [415] 0.66   3.98   3.27   0.1    1.95   -2.47  -1.88  -1.75  -1.05 
##  [424] -1.61  1.24   -0.83  1.78   -1.16  0.53   -0.68  -3.33  -0.57 
##  [433] 1.49   1.23   -2.43  -3.97  2.61   -3.8   3.06   0.5    -2.62 
##  [442] -1.31  1.12   -0.25  -0.56  -0.94  -0.31  -0.54  -1.13  -1.97 
##  [451] -0.19  0.1    0.99   -1.37  -0.9   -0.26  0.28   0.09   -0.51 
##  [460] 0.43   0.61   -0.26  2.7    3.48   1.79   1.2    0.04   -4.35 
##  [469] 0.87   2.81   0.61   2.48   4.68   2.08   3.89   4.54   0.94  
##  [478] 3.45   -4.7   1.02   -0.44  -3.23  -1.07  -6.64  4.22   1.86  
##  [487] 8.32   3.34   1.63   0.62   1.98   5.96   3.08   0.47   3.1   
##  [496] 1.42   0.2    5.73   3.91   -2.95  -1.28  5.73   6.43   -0.17 
##  [505] -1.3   2.34   2.76   -0.47  2.36   3.44   -0.78  -3.89  -0.25 
##  [514] -0.88  -0.27  -5.39  -3.21  0.94   1.2    3.81   -2.53  -3.67 
##  [523] 2.9    -2.4   -2.32  -6.11  -4.52  -2.16  -0.54  1.52   8.62  
##  [532] -4.28  -4.07  2.97   7.37   1.88   2.54   -0.49  -1.1   -1.42 
##  [541] -1.5   -0.16  0.41   -1.8   -2.85  3.32   6.12   1.37   -0.27 
##  [550] 0.01   -2.79  0.33   -2.89  -4.09  -2.67  -2.74  -1.11  -1.86 
##  [559] -3.48  -3.99  -2.82  -3.99  -6.12  -2.95  7.91   -2.03  2.94  
##  [568] -0.23  -7.7   -5.29  9.76   0.05   2.51   -0.71  -3.01  -0.2  
##  [577] 0.92   -0.68  0.27   -3.51  -1.17  -4.84  11.01  0.16   3.75  
##  [586] -0.54  3.83   0.76   2.69   -3.2   -0.13  -4.02  -1.19  -0.76 
##  [595] 4.8    7.03   -1.17  -0.03  -1.24  -1.35  0.31   -2.01  -0.01 
##  [604] 0.25   2.32   3.01   4.78   1.08   0.99   -0.12  1.18   2.13  
##  [613] 2.12   1.52   1.45   1.27   3.72   1.35   2.22   3.59   3.48  
##  [622] 0.4    4.56   1.69   0.26   5.06   -0.39  -9.88  3.01   1.24  
##  [631] 3.66   0.45   3.19   2.18   0.57   1.17   1.26   2.08   -0.25 
##  [640] -3.34  2.74   4.17   1.65   -1.82  -6.64  0.97   2.16   1.67  
##  [649] 4.25   3.92   0.89   2.47   -3.45  -0.28  3      -0.31  3.58  
##  [658] 4.42   2      -0.85  -2.18  -1.95  -2.66  2.13   -0.96  1.17  
##  [667] -1.29  0.49   -0.19  1.51   0.47   -0.4   0.84   -4.11  2.88  
##  [676] 2.35   4.77   -0.18  2.7    3.23   1.77   0.53   6.16   0.91  
##  [685] 1.46   -4.3   0.56   -3.6   2.04   -0.29  -0.43  -1.71  0.07  
##  [694] -1.2   0.03   -0.32  -2.21  -0.25  0.2    -1.2   -0.62  -0.6  
##  [703] 3.27   0.76   -1.15  0.14   -2.25  0.65   2.85   -0.34  -1.58 
##  [712] -1.57  0.23   -0.49  1.22   -0.65  -0.52  2.84   -1.32  -0.91 
##  [721] -3.38  -4.17  2.28   -2.48  -1.92  0.08   -1.81  3.49   0.37  
##  [730] -1.69  -0.53  -2.18  -0.67  -0.72  0.52   -8.43  2.77   0.13  
##  [739] -0.77  3.36   6.16   0.96   -2.64  2.16   -0.21  0.04   -1.25 
##  [748] -2.9   -1.74  1.95   -2.14  2.76   0.74   -0.59  -0.04  -1.01 
##  [757] -4.02  0.5    0.28   -3.3   -1.24  -2.41  -1.29  1.03   1.52  
##  [766] -0.5   -2.57  1.43   -3.21  -3.58  -3.67  -5.51  0.33   0.79  
##  [775] 3.79   3.95   3.89   0.5    -0.34  0.07   -0.93  1.59   1.63  
##  [784] 0.9    -0.48  -2.24  8.47   0.88   -1.03  -6.12  0.39   -3.09 
##  [793] -0.44  -0.12  0.56   2.05   3.7    1.64   2.03   -3.43  0.23  
##  [802] -0.7   1.96   -0.31  0.93   0.32   3.11   1.45   -1.43  1.22  
##  [811] 0.14   2.73   -0.98  -0.93  -2.02  -0.45  -1.73  1.34   2.82  
##  [820] -2.34  0.27   0.04   -2.65  -0.67  -0.7   -0.62  -2.2   2.93  
##  [829] 2.09   1.6    -2.1   -3.74  -1.17  0.57   -2.62  1.88   1.3   
##  [838] 4.92   3.04   -3.58  -3.83  2.3    -0.88  -4.44  -3.89  3.2   
##  [847] -1.84  -2.9   -0.38  -5.66  4.89   1.32   -2.8   7.31   2.61  
##  [856] -0.68  -4.94  -2.35  -1.15  0      -0.94  0.21   -3.75  -3.16 
##  [865] -5.12  -5.3   -0.12  -3.32  1.07   -0.33  0.39   -5.68  -3.94 
##  [874] 3.99   3.42   3.06   2.66   -1.27  3.33   -6.94  7.38   7.15  
##  [883] 4.95   21.71  -16.87 -7.75  -5.11  13.86  -2.79  -1.13  -1.39 
##  [892] -3.76  -2.79  0.97   6.57   -0.74  0.34   0.52   2.6    6.05  
##  [901] -4.35  2.49   -6.13  7.63   -0.41  4.57   1.19   -1.1   4.23  
##  [910] 5.94   -3.21  4.26   -5.3   -2.44  2.57   -2.9   2.84   0     
##  [919] 1.39   -0.34  0.89   0.57   4.7    1.67   5.25   2.6    0.79  
##  [928] 2.68   2.01   -3.01  2.8    -1.43  1.75   -2.06  -0.21  2.26  
##  [937] -3.8   -1.63  3.03   0.31   3.91   0.12   -1.51  -0.51  -1.39 
##  [946] -3.99  2.89   2.62   2.93   -0.92  -0.58  -1.21  0.91   -0.46 
##  [955] 5.42   -0.38  3.55   -1.34  -3.04  -0.35  -4.08  0.9    -1.37 
##  [964] 1.73   0.86   -1.1   0.1    1.32   -0.06  -2.06  0.03   0.77  
##  [973] -2.51  -0.13  -2.29  0.22   -2.63  0.2    -0.89  -0.23  0.94  
##  [982] -1.64  3.22   1.27   2.47   3.61   -1.13  -2.34  -2.99  3.59  
##  [991] -0.01  0.16   -0.08  4.83   -2.33  2.61   2.07   -0.9   2.45  
## [1000] -4.23  -2.49  6.11   0.38   1.21   1.43   4.98   0.05   -1.98 
## [1009] 0.17   -3     3.92   1.14   3.71   0.69   -2.46  1.52   2.6   
## [1018] -0.35  -0.71  -0.17  -1.3   -3.06  -3.49  3.41   -0.17  -0.71 
## [1027] 2.15   -1.75  -0.6   -0.51  0.02   0.77   -2.59  0.42   0.51  
## [1036] -1.14  0.58   1.47   0.39   -0.45  0.78   -2.42  1.67   1.22  
## [1045] 1.86   0.3    2.93   -1.49  1.24   -0.5   0.86   0.32   -1.89 
## [1054] -4.25  -1.85  3.07   -4.24  0.36   -3.83  4.23   -2.09  2.54  
## [1063] -0.56  0.48   3.02   -2.97  0.87   2.83   -4.14  0.48   -2.64 
## [1072] -1.97  3.64   -2.82  -3.36  0.78   0.87   0.68   -0.26  0.65  
## [1081] 2.65   1.14   2.01   -4.36  5.51   0.05   -1.01  -2     1.19  
## [1090] 0.73   -2.54  2.15   -1.4   -1.69  4.52   -1.94  -0.66  -1.26 
## [1099] -3.03  0.28   3.93   1.1    5.24   1.17   -2.17  1.27   -2.35 
## [1108] -4.69  -0.78  -2.58  3.02   2.03                 SMB    -2.46 
## [1117] 4.2    -30.8  -5.13  3.53   4.67   49.07  25.44  10.05  17.87 
## [1126] -14    9.35   5.85   0.79   -4.04  5.05   33.35  17.98  25.56 
## [1135] -3.79  -7.08  -9.14  3.93   0.93   -4.93  -6.66  -1.16  -2.18 
## [1144] -6.71  -1.17  -2.72  14.81  5.43   -2.75  1.4    -8.25  -5.88 
## [1153] -0.99  21.8   2.59   50.69  24.5   -13.98 -11.79 5.62   -11.95
## [1162] -23.44 -0.6   15.28  14.69  22.93  14.38  21.69  5.57   7.23  
## [1171] 8.89   13.67  -8.31  0.38   -9.6   -11    5.9    -12.72 -14.19
## [1180] 16.13  7.58   5.8    -1.07  -9.1   -3.71  -6.77  -26    14.87 
## [1189] -1.59  18.08  4.71   26.17  4.9    -1.96  0.24   -7.19  3.2   
## [1198] 9.23   13.8   -6.01  -1.15  7.27   -8.08  -4.05  6.6    -4.77 
## [1207] -3.32               
## 747 Levels:  -0.01 -0.03 -0.04 -0.06 -0.07 -0.08 -0.09 -0.1 -0.11 ... SMB
pairs(cbind(Mkt.RF,SMB,HML))

cor(fit$residuals)
##         Mkt.RF   SMB     HML
## Mkt.RF 1.00000 0.196 0.00851
## SMB    0.19587 1.000 0.08405
## HML    0.00851 0.084 1.00000
covRob(fit$residuals,cor=F)
## Call:
## covRob(data = fit$residuals, corr = F)
## 
## Robust Estimate of Covariance: 
##        Mkt.RF   SMB   HML
## Mkt.RF  65455 15102 -1617
## SMB     15102 46715  2983
## HML     -1617  2983 42811
## 
## Robust Estimate of Location: 
##  Mkt.RF     SMB     HML 
##  0.0825 -2.9358 -2.1468
cor.test(fit$residuals[,1], fit$residuals[,2])
## 
##  Pearson's product-moment correlation
## 
## data:  fit$residuals[, 1] and fit$residuals[, 2]
## t = 7, df = 1000, p-value = 6e-12
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.141 0.249
## sample estimates:
##   cor 
## 0.196
cor.test(fit$residuals[,1], fit$residuals[,3])
## 
##  Pearson's product-moment correlation
## 
## data:  fit$residuals[, 1] and fit$residuals[, 3]
## t = 0.3, df = 1000, p-value = 0.8
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.0479  0.0649
## sample estimates:
##     cor 
## 0.00851
cor.test(fit$residuals[,2], fit$residuals[,3])
## 
##  Pearson's product-moment correlation
## 
## data:  fit$residuals[, 2] and fit$residuals[, 3]
## t = 3, df = 1000, p-value = 0.003
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.0278 0.1398
## sample estimates:
##   cor 
## 0.084
pairs(fit$residuals)

n=dim(firm_data1)[1]
sigF = as.matrix(var(cbind(Mkt.RF,SMB,HML)))
sigF
##        Mkt.RF   SMB   HML
## Mkt.RF  64390 12045   819
## SMB     12045 45654  4482
## HML       819  4482 44628
bbeta = as.matrix(fit$coef)
bbeta = t( bbeta[-1,])
bbeta
##        RF-0.01 RF-0.02 RF-0.03 RF-0.06 RF0 RF0.01 RF0.02 RF0.03 RF0.04
## Mkt.RF     327     409     132      92 428    496    449    488    499
## SMB        275     540     223     211 332    410    418    348    317
## HML        401     212     214     104 226    369    370    371    335
##        RF0.05 RF0.06 RF0.07 RF0.08 RF0.09 RF0.1 RF0.11 RF0.12 RF0.13
## Mkt.RF    505    359    476    505    490   530    493    297    511
## SMB       470    277    418    237    336   318    328    329    322
## HML       394    332    357    342    259   337    306    210    342
##        RF0.14 RF0.15 RF0.16 RF0.17 RF0.18 RF0.19 RF0.2 RF0.21 RF0.22
## Mkt.RF    383    478    373    437    455    410   470    404    464
## SMB       379    351    273    342    358    263   262    332    343
## HML       253    362    295    285    207    348   273    248    300
##        RF0.23 RF0.24 RF0.25 RF0.26 RF0.27 RF0.28 RF0.29 RF0.3 RF0.31
## Mkt.RF    432    355    427    360    330    481    461   501    421
## SMB       397    287    277    270    305    333    248   311    304
## HML       349    319    336    257    355    382    266   381    311
##        RF0.32 RF0.33 RF0.34 RF0.35 RF0.36 RF0.37 RF0.38 RF0.39 RF0.4
## Mkt.RF    481    484    274    327    335    357    356    480   389
## SMB       328    496    354    442    392    349    301    324   340
## HML       310    333    330    393    393    269    328    277   354
##        RF0.41 RF0.42 RF0.43 RF0.44 RF0.45 RF0.46 RF0.47 RF0.48 RF0.49
## Mkt.RF    488    426    533    497    502    445    493    326    515
## SMB       399    328    340    331    425    334    308    253    407
## HML       262    310    309    256    411    348    391    437    263
##        RF0.5 RF0.51 RF0.52 RF0.53 RF0.54 RF0.55 RF0.56 RF0.57 RF0.58
## Mkt.RF   532    255    474    445    529    438    447    362    324
## SMB      371    299    285    294    438    208    428    254    370
## HML      487    395    364    397    289    440    317    426    427
##        RF0.59 RF0.6 RF0.61 RF0.62 RF0.63 RF0.64 RF0.65 RF0.66 RF0.67
## Mkt.RF    362   416    500    335    375    471    467    440    561
## SMB       457   281    376    298    582    418    238    227    231
## HML       391   383    311    371    335    271    286    271    276
##        RF0.68 RF0.69 RF0.7 RF0.71 RF0.72 RF0.73 RF0.74 RF0.75 RF0.76
## Mkt.RF    360    431   463    388     47    204    354    398    256
## SMB       331    359   390    209    370    211    440    190    260
## HML       282    123   319    511    624    482    544    276    589
##        RF0.77 RF0.78 RF0.79 RF0.8 RF0.81 RF0.82 RF0.83 RF0.86 RF0.87
## Mkt.RF    645    365    658   404    474    165    273    403    281
## SMB       545    410      3   363    407    297     22    279    354
## HML       382    273     73   419    439    435    114    633    277
##        RF0.89 RF0.92 RF0.95 RF0.96 RF0.98 RF0.99 RF1 RF1.02 RF1.04 RF1.05
## Mkt.RF     60    296    464    480     99    778  42    697    275    205
## SMB       146    402    610    323     16    578  97    602    603    428
## HML       393    700    187    429    625    240 382    681    711    352
##        RF1.06 RF1.07 RF1.08 RF1.1 RF1.13 RF1.15 RF1.2 RF1.21 RF1.24 RF1.26
## Mkt.RF    234    446    146   541    654    373   568    518    204    695
## SMB       400    245    671   649    483    530   561    503    201    440
## HML       485    361    539   287    218     38   656    255    367    428
##        RF1.28 RF1.31 RF1.35 RF1.49 RF1.54 RF1.57 RF1.6 RF1.65 RF1.66
## Mkt.RF    326    259    158    542    764    618   238    192    519
## SMB       156     25     71    314    523    338   614    679    337
## HML       665    564    674    308    506    693   408    720    605
##        RF1.81 RF1.82 RF10.38 RF10.54 RF11.24 RF14.71 RF2.13 RF2.41 RF2.46
## Mkt.RF    323     50     527     508     617     139    621    235    804
## SMB       253     94     595     741     703     727    472    319     95
## HML       332    321     108     507     230     585    682    168    134
##        RF2.66 RF2.73 RF2.9 RF2.95 RF2.98 RF3.12 RF3.14 RF3.51 RF3.54
## Mkt.RF     75    123   865    881    639    585    124    818    524
## SMB       223    348   707    701    157    266    221    733     81
## HML       293    733   518    488    728    386    313    583    741
##        RF3.56 RF3.83 RF3.84 RF3.9 RF3.93 RF4.21 RF4.39 RF4.66 RF4.68
## Mkt.RF    703    131    526   244    506    620    518    438    612
## SMB       661    529    163    88    597    713    704    343    524
## HML       311    520    480    58    717    328    165    173    268
##        RF4.75 RF4.76 RF4.8 RF4.86 RF5.08 RF5.12 RF5.21 RF5.26 RF5.47 RF5.6
## Mkt.RF    140    127   507    543    616    347    703    623    228   663
## SMB       284    568   378    237    522    598    434    339    161   439
## HML       503     60   509    330    584    721    609    515    137   425
##        RF5.8 RF5.89 RF6.16 RF6.35 RF6.52 RF6.58 RF6.93 RF7.18 RF7.72
## Mkt.RF   700    137    502    516    316    136    195    437    622
## SMB      525    130    355    710    162    165    236    521    391
## HML      735    637    736    510    581    335    516    371    478
##        RF7.81 RF8 RF8.37 RF8.8 RF9.85 RFRF
## Mkt.RF    130 237    611   531    306  883
## SMB       167  53    164   517    350  746
## HML       334 738    281   579    521  742
resig2 = apply((fit$resid)^2, 2, sum)/(n-3-1)
resig2 = diag(resig2)
cov_ff3 = sigF
cov_ff3
##        Mkt.RF   SMB   HML
## Mkt.RF  64390 12045   819
## SMB     12045 45654  4482
## HML       819  4482 44628
cov2cor(cov_ff3)
##        Mkt.RF    SMB    HML
## Mkt.RF 1.0000 0.2222 0.0153
## SMB    0.2222 1.0000 0.0993
## HML    0.0153 0.0993 1.0000
cov_hist = cov(stocks5)
cov2cor(cov_hist)
##          N    SMB    HML
## N   1.0000 0.2222 0.0153
## SMB 0.2222 1.0000 0.0993
## HML 0.0153 0.0993 1.0000
one.vec=rep(1,3)
a = solve(cov_ff3)%*%one.vec
b = t(one.vec)%*%a
mvp.w =a / as.numeric(b)
mvp.w
##         [,1]
## Mkt.RF 0.246
## SMB    0.338
## HML    0.416
a1 = solve(cov_hist)%*%one.vec
b1 = t(one.vec)%*%a1
mvp.w1 =a1 / as.numeric(b1)
mvp.w1
##      [,1]
## N   0.246
## SMB 0.338
## HML 0.416

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)
##      speed           dist    
##  Min.   : 4.0   Min.   :  2  
##  1st Qu.:12.0   1st Qu.: 26  
##  Median :15.0   Median : 36  
##  Mean   :15.4   Mean   : 43  
##  3rd Qu.:19.0   3rd Qu.: 56  
##  Max.   :25.0   Max.   :120

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.