Overall Results

Bottom Line up Front: The programs are on track but require some performance improvement as do all programs.

#####################Read and Pre-Clean the Data#######################
library(psych) #to describe
library(reticulate) #to use Python in R as well
## Warning: package 'reticulate' was built under R version 3.5.1
mydata=read.csv("C:/Users/lfult/OneDrive - Texas State University/BHA2/alumnisurvey.csv")
#str(mydata)
#########################################################################

Descriptive Statistics / Univariate Graphs / Crosstabs

Descriptive analysis is broken down by BHA (n=91), MHA (n=50), BHA/MHA (n=11). For those who earned both the BHA and MHA, their responses are included in all three categories for completeness.

#############################Descriptives 1##############################
describe(mydata[,3:17])
## Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning
## Inf
## Warning in FUN(newX[, i], ...): no non-missing arguments to max; returning
## -Inf
##                       vars   n    mean      sd median trimmed    mad min
## Progress                 1 142   94.11   17.99  100.0   99.58   0.00  24
## Duration..in.seconds.    2 142 1913.75 9673.91  519.5  603.14 278.73  82
## Finished                 3 142     NaN      NA     NA     NaN     NA Inf
## RecordedDate*            4 142   64.68   36.13   63.0   64.73  44.48   1
## First*                   5 142   65.42   35.87   67.5   65.98  45.96   1
## Last*                    6 142   68.86   39.42   68.5   68.82  50.41   1
## TexasStateName*          7 142   10.02   13.82    1.0    7.76   0.00   1
## Addess*                  8 142   60.96   40.41   60.5   60.50  52.63   1
## City*                    9 142   35.60   24.89   34.5   34.89  37.06   1
## State*                  10 142   20.04    6.10   21.0   21.52   4.45   1
## Zip*                    11 142   59.82   33.51   61.5   60.54  42.25   1
## Email*                  12 142   67.57   41.02   67.5   67.50  52.63   1
## Business*               13 142   54.36   38.09   54.5   53.53  51.15   1
## Title*                  14 142   48.16   36.08   46.5   46.79  49.67   1
## BusAddress*             15 142   35.32   32.81   28.5   32.51  40.77   1
##                         max range  skew kurtosis     se
## Progress                100    76 -3.00     7.70   1.51
## Duration..in.seconds. 91439 91357  8.22    67.69 811.82
## Finished               -Inf  -Inf    NA       NA     NA
## RecordedDate*           128   127  0.02    -1.17   3.03
## First*                  123   122 -0.10    -1.23   3.01
## Last*                   137   136  0.01    -1.22   3.31
## TexasStateName*          40    39  1.12    -0.48   1.16
## Addess*                 131   130  0.05    -1.27   3.39
## City*                    80    79  0.16    -1.38   2.09
## State*                   25    24 -1.97     2.83   0.51
## Zip*                    116   115 -0.17    -1.17   2.81
## Email*                  138   137  0.01    -1.24   3.44
## Business*               121   120  0.09    -1.31   3.20
## Title*                  113   112  0.15    -1.33   3.03
## BusAddress*              99    98  0.43    -1.26   2.75
par(mfrow=c(1,1))


boxplot(mydata$Q32.MonthstoEmployment~mydata$Degree, horizontal=TRUE, col=c("red", "blue", "green"), main="Time to Employment by Degree")

boxplot(mydata$Q33.AnnualSalary1000s~mydata$Degree, horizontal=TRUE, col=c("red","blue","green"), main="Salary in 1000's by Degree")

plot(mydata$Q33.AnnualSalary1000s~mydata$YearsSinceGrad, ylab="Salary in 1000's", xlab="Years Since Graduation", col="red", pch=20)

abline(lm(mydata$Q33.AnnualSalary1000s~mydata$YearsSinceGrad), col="black")

mygraph=function(x,lab){

ggplot(mydata, aes(x=x, group=Degree))+
geom_bar(aes(y = ..prop.., fill = factor(..x..)), stat="count") +
geom_text(aes( label = scales::percent(..prop..),
y= ..prop.. ), stat= "count", vjust=-.1)+
facet_wrap(~Degree)+
scale_y_continuous(labels = scales::percent)+
ylab("Percent")+
xlab(lab)+
theme(axis.text.x = element_text(angle = 90, hjust = 1))+
guides(fill=FALSE)
}

mygraph(mydata$Q26.Recommend, "Recommend?")

mygraph(mydata$Q16.1.Curriculum, "Curriculum")

mygraph(mydata$Q16.2.FacultyTeaching, "Faculty Teaching")

mygraph(mydata$Q16.3FieldPlacementExperience, "Field Placement Experience")

mygraph(mydata$Q16.4.SOHAFacilities, "SOHA Facilities")

mygraph(mydata$Q16.5.AlumniRelations, "Alumni Relations")

mygraph(mydata$Q18.1.Leadership, "Prepared me for Leadership")

mygraph(mydata$Q18.2.BusinessSkills, "Provided Business Skills")

mygraph(mydata$Q18.3.Professionalism, "Prepared me for Professionalism")

mygraph(mydata$Q18.4.KnowledgeofHCEnvironment, "Provided Knowledge of HC Environment")

mygraph(mydata$Q18.5.CRM, "Prepared for Communication & Relationship Mgt")

mygraph(mydata$Q19.PrepforMgtPosition, "Curriculum Prepared for Mgt Position")

mygraph(mydata$Q20.FieldExpPrepforMgt, "Field Experience Prepared for Mgt Position")

mygraph(mydata$Q22.1.FinMgt, "Course:  Financial Mgt")

mygraph(mydata$Q22.2.PatMgtQI, "Course:  Patient Mgt & QI")

mygraph(mydata$Q22.3.HIMCourse, "Course: HIM")

mygraph(mydata$Q22.4.HealthLaw, "Course:  Health Law")

mygraph(mydata$Q22.5.EthicsOB, "Course:  Ethics / OB")

mygraph(mydata$Q22.6.Marketing, "Course: Marketing")

mygraph(mydata$Q22.7.HRM,"HRM")

mygraph(mydata$Q22.8.HCCulture, "Health Care History & Culture")

mygraph(mydata$Q22.9.StratMgt, "Strategic Management")

#########################################################################