The attached who.csv dataset contains real-world data from 2008. The variables included follow.
Country: name of the country
LifeExp: average life expectancy for the country in years
InfantSurvival: proportion of those surviving to one year or more
Under5Survival: proportion of those surviving to five years or more
TBFree: proportion of the population without TB.
PropMD: proportion of the population who are MDs
PropRN: proportion of the population who are RNs
PersExp: mean personal expenditures on healthcare in US dollars at average exchange rate
GovtExp: mean government expenditures per capita on healthcare, US dollars at average exchange rate
TotExp: sum of personal and government expenditures
library(tidyverse)
url <- "https://raw.githubusercontent.com/saayedalam/Data/master/who.csv"
who_df <- read.csv(url)
head(who_df)
## Country LifeExp InfantSurvival Under5Survival TBFree
## 1 Afghanistan 42 0.835 0.743 0.99769
## 2 Albania 71 0.985 0.983 0.99974
## 3 Algeria 71 0.967 0.962 0.99944
## 4 Andorra 82 0.997 0.996 0.99983
## 5 Angola 41 0.846 0.740 0.99656
## 6 Antigua and Barbuda 73 0.990 0.989 0.99991
## PropMD PropRN PersExp GovtExp TotExp
## 1 0.000228841 0.000572294 20 92 112
## 2 0.001143127 0.004614439 169 3128 3297
## 3 0.001060478 0.002091362 108 5184 5292
## 4 0.003297297 0.003500000 2589 169725 172314
## 5 0.000070400 0.001146162 36 1620 1656
## 6 0.000142857 0.002773810 503 12543 13046
Provide a scatterplot of LifeExp~TotExp, and run simple linear regression. Do not transform the variables. Provide and interpret the F statistics, R^2, standard error, and p-values only. Discuss whether the assumptions of simple linear regression met.
who_df %>%
ggplot(aes(TotExp, LifeExp)) +
geom_point() +
geom_smooth(method = lm, se = F) +
theme_minimal()
who_df_lm <- lm(LifeExp ~ TotExp, data = who_df)
who_df_lm
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_df)
##
## Coefficients:
## (Intercept) TotExp
## 6.475e+01 6.297e-05
summary(who_df_lm)
##
## Call:
## lm(formula = LifeExp ~ TotExp, data = who_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -24.764 -4.778 3.154 7.116 13.292
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.475e+01 7.535e-01 85.933 < 2e-16 ***
## TotExp 6.297e-05 7.795e-06 8.079 7.71e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.371 on 188 degrees of freedom
## Multiple R-squared: 0.2577, Adjusted R-squared: 0.2537
## F-statistic: 65.26 on 1 and 188 DF, p-value: 7.714e-14
F-statistic of the above model is 65.26 and it’s p-value is less than 5%, which indicates we can reject the null hypothesis that there is a relationship between TotalExp and LifeExp. R-square is 0.26, which indicates that the model explains only 26% of the variance in data. The standard error is 8 times smaller than the corresponding coefficient. Overall, I would say this the assumptions of simple linear regression are not met.
Raise life expectancy to the 4.6 power (i.e., LifeExp^4.6). Raise total expenditures to the 0.06 power (nearly a log transform, TotExp^.06). Plot LifeExp^4.6 as a function of TotExp^.06, and re-run the simple regression model using the transformed variables. Provide and interpret the F statistics, R^2, standard error, and p-values. Which model is “better?”
x <- who_df$TotExp^0.06
y <- who_df$LifeExp^4.6
who_df %>%
ggplot(aes(x, y)) +
geom_point() +
geom_smooth(method = lm, se = F) +
theme_minimal()
who_df_lm <- lm(y ~ x, data = who_df)
who_df_lm
##
## Call:
## lm(formula = y ~ x, data = who_df)
##
## Coefficients:
## (Intercept) x
## -736527909 620060216
summary(who_df_lm)
##
## Call:
## lm(formula = y ~ x, data = who_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -308616089 -53978977 13697187 59139231 211951764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -736527910 46817945 -15.73 <2e-16 ***
## x 620060216 27518940 22.53 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 90490000 on 188 degrees of freedom
## Multiple R-squared: 0.7298, Adjusted R-squared: 0.7283
## F-statistic: 507.7 on 1 and 188 DF, p-value: < 2.2e-16
F-statistic of the above model is 507.7 and it’s p-value is less than 5%, which indicates we can reject the null hypothesis that there is a relationship between transformed TotalExp and LifeExp. R-square is 0.73, which indicates that the model explains only 73% of the variance in data. The standard error is 23 times smaller than the corresponding coefficient. We an improved r-squared value, I would say this model is better.
Using the results from 2, forecast life expectancy when TotExp^.06 = 1.5. Then forecast life expectancy when TotExp^.06 = 2.5.
x <- who_df$TotExp^0.06
values <- data.frame(x = c(1.5, 2.5))
predict(who_df_lm, values)^(1/4.6) # we have to transform both variable
## 1 2
## 63.31153 86.50645
Forecasted life expectancy when TotExp^.06 = 1.5 is 63.31 years old and forecasted life expectancy when TotExp^.06 = 2.5 is 86.51 years old.
Build the following multiple regression model and interpret the F Statistics, R^2, standard error, and p-values. How good is the model?
LifeExp = b0+b1 x PropMd + b2 x TotExp +b3 x PropMD x TotExp
who_df_lm <- lm(LifeExp ~ PropMD + TotExp + (TotExp * PropMD), data = who_df)
who_df_lm
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + (TotExp * PropMD), data = who_df)
##
## Coefficients:
## (Intercept) PropMD TotExp PropMD:TotExp
## 6.277e+01 1.497e+03 7.233e-05 -6.026e-03
summary(who_df_lm)
##
## Call:
## lm(formula = LifeExp ~ PropMD + TotExp + (TotExp * PropMD), data = who_df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -27.320 -4.132 2.098 6.540 13.074
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.277e+01 7.956e-01 78.899 < 2e-16 ***
## PropMD 1.497e+03 2.788e+02 5.371 2.32e-07 ***
## TotExp 7.233e-05 8.982e-06 8.053 9.39e-14 ***
## PropMD:TotExp -6.026e-03 1.472e-03 -4.093 6.35e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 8.765 on 186 degrees of freedom
## Multiple R-squared: 0.3574, Adjusted R-squared: 0.3471
## F-statistic: 34.49 on 3 and 186 DF, p-value: < 2.2e-16
F-statistic of the above model is 34.49 and it’s p-value is less than 5%, which indicates we can reject the null hypothesis of the aformentioned multiple regression model. R-square is 0.36, which indicates that the model explains only 36% of the variance in data. However, the standard error has improved slightly. Overall, I would say this model is not so good because of small f-statistics p-value and r-squared value.
Forecast LifeExp when PropMD=.03 and TotExp = 14. Does this forecast seem realistic? Why or why not?
values <- data.frame(PropMD = 0.03, TotExp = 14)
predict(who_df_lm, values)
## 1
## 107.696
The forcast doesn’t seem realistic because the model is not a good model. Also, the highest age in the dataset is 83 years old.