Cumulative Precipitation

Figure 1.

Animal Gains

HREC Animal Gains

## Warning: package 'bindrcpp' was built under R version 3.4.3
## 
## Error: Pasture
##           Df Sum Sq Mean Sq F value Pr(>F)
## Year       1 1.0685  1.0685   3.615  0.308
## Residuals  1 0.2956  0.2956               
## 
## Error: Within
##            Df Sum Sq Mean Sq F value Pr(>F)  
## Year        1   1.43  1.4334   3.827 0.0523 .
## Residuals 150  56.19  0.3746                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Error: Pasture
##           Df  Sum Sq Mean Sq F value Pr(>F)
## Year       1 0.05488 0.05488   0.199  0.733
## Residuals  1 0.27568 0.27568               
## 
## Error: Within
##             Df Sum Sq Mean Sq F value   Pr(>F)    
## Year         1  0.274 0.27376   29.95 5.51e-08 ***
## Residuals 1090  9.965 0.00914                     
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = avgDday ~ Year + 0 + (1 | Pasture), data = HrecCows)
## 
## Linear Hypotheses:
##               Estimate Std. Error z value Pr(>|z|)    
## Year2016 == 0  0.64285    0.08488   7.574  < 1e-10 ***
## Year2017 == 0  0.45370    0.08556   5.303 2.28e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## Computing profile confidence intervals ...
## Warning in optwrap(optimizer, par = thopt, fn = mkdevfun(rho, 0L), lower
## = fitted@lower): convergence code 3 from bobyqa: bobyqa -- a trust region
## step failed to reduce q
##              2.5 %    97.5 %
## .sig01   0.0000000 0.2764354
## .sigma   0.5470750 0.6856556
## Year2016 0.4706808 0.8205275
## Year2017 0.2786964 0.6300638
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = avgDday ~ Year + 0 + (1 | Pasture), data = HrecSheep)
## 
## Linear Hypotheses:
##               Estimate Std. Error z value Pr(>|z|)    
## Year2016 == 0  0.25761    0.01255   20.52   <1e-10 ***
## Year2017 == 0  0.28930    0.01263   22.90   <1e-10 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## Computing profile confidence intervals ...
##                2.5 %     97.5 %
## .sig01   0.007734052 0.05092279
## .sigma   0.091696304 0.09972491
## Year2016 0.229388738 0.28582508
## Year2017 0.261004367 0.31759827

Only showing the Cow and sheep results

HREC Gains Boxplot

CGREC Animal Gains

## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lmer(formula = avgDday ~ Treatment + (1 | Pasture), data = CgrecCows)
## 
## Linear Hypotheses:
##                                Estimate Std. Error z value Pr(>|z|)  
## SpringOnly - NoFire == 0        1.18656    0.46610   2.546   0.0293 *
## SpringSummer - NoFire == 0      1.23397    0.46566   2.650   0.0219 *
## SpringSummer - SpringOnly == 0  0.04741    0.46587   0.102   0.9943  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Fit: lmer(formula = avgDday ~ Treatment + 0 + (1 | Pasture), data = CgrecCows)
## 
## Linear Hypotheses:
##                            Estimate Std. Error z value Pr(>|z|)  
## TreatmentNoFire == 0        -0.5045     0.3294  -1.531   0.3316  
## TreatmentSpringSummer == 0   0.7294     0.3291   2.216   0.0779 .
## TreatmentSpringOnly == 0     0.6820     0.3297   2.068   0.1114  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
## Computing profile confidence intervals ...
##                             2.5 %    97.5 %
## .sig01                 0.38818804 0.8997925
## .sigma                 0.42223219 0.5003632
## TreatmentNoFire       -1.11142191 0.1024986
## TreatmentSpringOnly    0.07450877 1.2894870
## TreatmentSpringSummer  0.12298592 1.3357239

No difference in the calves, but both burn treatments are different than the no burn treatment.

Figure 2

comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.HREC.null 4 1975 1990 -983.3 1967 NA NA
Fecal.HREC.p 5 1934 1954 -962.1 1924 42.44 1
Fecal.HREC.pt 6 1927 1950 -957.3 1915 9.628 1
  Pr(>Chisq)
Fecal.HREC.null NA
Fecal.HREC.p 7.292e-11
Fecal.HREC.pt 0.001916
null vs model with patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.HREC.null 4 1975 1990 -983.3 1967 NA NA
Fecal.HREC.pt 6 1927 1950 -957.3 1915 52.07 2
  Pr(>Chisq)
Fecal.HREC.null NA
Fecal.HREC.pt 4.941e-12
null vs model with patch (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.HREC.null 4 1975 1990 -983.3 1967 NA NA
Fecal.HREC.p 5 1934 1954 -962.1 1924 42.44 1
  Pr(>Chisq)
Fecal.HREC.null NA
Fecal.HREC.p 7.292e-11
## Data: subset(ProGO, REC == "HREC")
## Models:
## Fecal.HREC.pt: Fecal ~ Patch + Treatment + (1 | Pasture/Month)
## Fecal.HREC.INT: Fecal ~ Patch * Treatment + (1 | Pasture/Month)
##                Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## Fecal.HREC.pt   6 1926.6 1950.3 -957.29   1914.6                         
## Fecal.HREC.INT  7 1925.8 1953.6 -955.92   1911.8 2.7382      1    0.09798
##                 
## Fecal.HREC.pt   
## Fecal.HREC.INT .
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Fecal ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   1926.6   1950.3   -957.3   1914.6      381 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8643 -0.6093 -0.1039  0.4130  5.4006 
## 
## Random effects:
##  Groups        Name        Variance  Std.Dev. 
##  Month:Pasture (Intercept) 9.807e-01 9.903e-01
##  Pasture       (Intercept) 1.280e-13 3.578e-07
##  Residual                  7.755e+00 2.785e+00
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##                Estimate Std. Error t value
## (Intercept)      4.0490     0.4590   8.821
## PatchU          -2.2314     0.3307  -6.748
## TreatmentSheep   2.2983     0.5463   4.207
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.544       
## TreatmntShp -0.591  0.000
## Computing profile confidence intervals ...
## Warning in zeta(shiftpar, start = opt[seqpar1][-w]): slightly lower
## deviances (diff=-2.27374e-13) detected
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep

## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in zetafun(np, ns): slightly lower deviances (diff=-2.27374e-13)
## detected
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit
## for .sig02: falling back to linear interpolation
##                     2.5 %     97.5 %
## .sig01          0.6117623  1.5615556
## .sig02          0.0000000  0.9250144
## .sigma          2.5953345  2.9985164
## (Intercept)     3.1236080  4.9747728
## PatchU         -2.8814333 -1.5816383
## TreatmentSheep  1.1584913  3.4335414
  Fecal.CGREC.null <- lmer(Fecal ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)  
  Fecal.CGREC.p <- lmer(Fecal ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)

Fecal.CGREC.pt <- lmer(Fecal ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Fecal.CGREC.null, Fecal.CGREC.p, Fecal.CGREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.CGREC.null 4 2765 2784 -1379 2757 NA NA
Fecal.CGREC.p 5 2589 2613 -1290 2579 177.7 1
Fecal.CGREC.pt 6 2587 2614 -1287 2575 4.955 1
  Pr(>Chisq)
Fecal.CGREC.null NA
Fecal.CGREC.p 1.539e-40
Fecal.CGREC.pt 0.02602
anova(Fecal.CGREC.null,Fecal.CGREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.CGREC.null 4 2765 2784 -1379 2757 NA NA
Fecal.CGREC.pt 6 2587 2614 -1287 2575 182.7 2
  Pr(>Chisq)
Fecal.CGREC.null NA
Fecal.CGREC.pt 2.171e-40
anova(Fecal.CGREC.null, Fecal.CGREC.p) %>% 
  pander(caption="null vs patch only")
null vs patch only (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.CGREC.null 4 2765 2784 -1379 2757 NA NA
Fecal.CGREC.p 5 2589 2613 -1290 2579 177.7 1
  Pr(>Chisq)
Fecal.CGREC.null NA
Fecal.CGREC.p 1.539e-40
anova(Fecal.CGREC.pt, Fecal.CGREC.p) %>% 
  pander(caption="patch and treatment vs patch only")
patch and treatment vs patch only (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Fecal.CGREC.p 5 2589 2613 -1290 2579 NA NA
Fecal.CGREC.pt 6 2587 2614 -1287 2575 4.955 1
  Pr(>Chisq)
Fecal.CGREC.p NA
Fecal.CGREC.pt 0.02602
Fecal.CGREC.INT <- lmer(Fecal ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Fecal.CGREC.pt, Fecal.CGREC.INT)
## Data: subset(ProGO, REC == "CGREC")
## Models:
## Fecal.CGREC.pt: Fecal ~ Patch + Treatment + (1 | Pasture/Month)
## Fecal.CGREC.INT: Fecal ~ Patch * Treatment + (1 | Pasture/Month)
##                 Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## Fecal.CGREC.pt   6 2586.5 2614.3 -1287.3   2574.5                         
## Fecal.CGREC.INT  7 2588.5 2620.9 -1287.3   2574.5 0.0021      1     0.9638
    summary(Fecal.CGREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Fecal ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2586.5   2614.3  -1287.3   2574.5      751 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.2632 -0.5794 -0.2970  0.3760  7.7836 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.07048  0.2655  
##  Pasture       (Intercept) 0.00000  0.0000  
##  Residual                  1.71050  1.3079  
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##                      Estimate Std. Error t value
## (Intercept)            2.6878     0.1515  17.737
## PatchU                -1.8529     0.1295 -14.311
## TreatmentSpring Only  -0.3385     0.1448  -2.337
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.743       
## TrtmntSprnO -0.515  0.062
   confint(Fecal.CGREC.pt) 
## Computing profile confidence intervals ...
##                           2.5 %      97.5 %
## .sig01                0.1380031  0.42457752
## .sig02                0.0000000  0.19460993
## .sigma                1.2436480  1.37779835
## (Intercept)           2.3886292  2.98842573
## PatchU               -2.1069856 -1.59878928
## TreatmentSpring Only -0.6353726 -0.04389973
   summary(Fecal.CGREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Fecal ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2589.5   2612.6  -1289.7   2579.5      752 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.3702 -0.5547 -0.3021  0.3328  7.8266 
## 
## Random effects:
##  Groups        Name        Variance  Std.Dev. 
##  Month:Pasture (Intercept) 9.851e-02 3.139e-01
##  Pasture       (Intercept) 1.996e-47 4.468e-24
##  Residual                  1.711e+00 1.308e+00
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   2.5087     0.1344   18.67
## PatchU       -1.8380     0.1293  -14.21
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.804
   confint(Fecal.CGREC.p)
## Computing profile confidence intervals ...
## Warning in zeta(shiftpar, start = opt[seqpar1][-w]): slightly lower
## deviances (diff=-4.54747e-13) detected
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep

## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in zetafun(np, ns): slightly lower deviances (diff=-4.54747e-13)
## detected
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit
## for .sig02: falling back to linear interpolation
##                  2.5 %     97.5 %
## .sig01       0.1818811  0.4831699
## .sig02       0.0000000  0.2972714
## .sigma       1.2437317  1.3779110
## (Intercept)  2.2444090  2.7746637
## PatchU      -2.0919826 -1.5838729

Protein

  Pro.HREC.null <- lmer(PROTEIN ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)  
  Pro.HREC.p <- lmer(PROTEIN ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)

Pro.HREC.pt <- lmer(PROTEIN ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Pro.HREC.null, Pro.HREC.p, Pro.HREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.HREC.null 4 1708 1724 -850.1 1700 NA NA
Pro.HREC.p 5 1707 1727 -848.5 1697 3.169 1
Pro.HREC.pt 6 1703 1726 -845.3 1691 6.373 1
  Pr(>Chisq)
Pro.HREC.null NA
Pro.HREC.p 0.07505
Pro.HREC.pt 0.01158
#Not different than the null model

anova(Pro.HREC.null, Pro.HREC.p) %>% 
  pander(caption="null vs patch only")
null vs patch only (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.HREC.null 4 1708 1724 -850.1 1700 NA NA
Pro.HREC.p 5 1707 1727 -848.5 1697 3.169 1
  Pr(>Chisq)
Pro.HREC.null NA
Pro.HREC.p 0.07505
anova(Pro.HREC.null, Pro.HREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.HREC.null 4 1708 1724 -850.1 1700 NA NA
Pro.HREC.pt 6 1703 1726 -845.3 1691 9.542 2
  Pr(>Chisq)
Pro.HREC.null NA
Pro.HREC.pt 0.00847
anova(Pro.HREC.p, Pro.HREC.pt) %>% 
  pander(caption="patch vs patch and treatment")
patch vs patch and treatment
  Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq)
Pro.HREC.p 5 1707 1727 -848.5 1697 NA NA NA
Pro.HREC.pt 6 1703 1726 -845.3 1691 6.373 1 0.01158
Pro.HREC.INT <- lmer(PROTEIN ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Pro.HREC.pt, Pro.HREC.INT) 
## Data: subset(ProGO, REC == "HREC")
## Models:
## Pro.HREC.pt: PROTEIN ~ Patch + Treatment + (1 | Pasture/Month)
## Pro.HREC.INT: PROTEIN ~ Patch * Treatment + (1 | Pasture/Month)
##              Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## Pro.HREC.pt   6 1702.6 1726.3 -845.28   1690.6                         
## Pro.HREC.INT  7 1704.4 1732.1 -845.19   1690.4 0.1761      1     0.6748
    summary(Pro.HREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: PROTEIN ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   1702.6   1726.3   -845.3   1690.6      381 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4975 -0.6211 -0.1070  0.4765  5.3782 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.26903  0.5187  
##  Pasture       (Intercept) 0.07008  0.2647  
##  Residual                  4.41918  2.1022  
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##                Estimate Std. Error t value
## (Intercept)     10.0808     0.3335  30.226
## PatchU          -0.4386     0.2496  -1.757
## TreatmentSheep  -1.3074     0.3904  -3.349
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.566       
## TreatmntShp -0.581  0.000
   confint(Pro.HREC.pt) #no protein difference at patch, sheep lower than cattle
## Computing profile confidence intervals ...
##                     2.5 %      97.5 %
## .sig01          0.1687074  0.94355440
## .sig02          0.0000000  0.87170367
## .sigma          1.9592320  2.26340034
## (Intercept)     9.3657468 10.79909521
## PatchU         -0.9291927  0.05209052
## TreatmentSheep -2.2147505 -0.40692034
   fixef(Pro.HREC.pt)
##    (Intercept)         PatchU TreatmentSheep 
##      10.080797      -0.438619      -1.307373
   summary(Pro.HREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: PROTEIN ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   1706.9   1726.7   -848.5   1696.9      382 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.4440 -0.6055 -0.1066  0.4862  5.4384 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.2690   0.5186  
##  Pasture       (Intercept) 0.4964   0.7046  
##  Residual                  4.4199   2.1024  
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   9.4290     0.3805  24.782
## PatchU       -0.4456     0.2497  -1.784
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.496
  confint(Pro.HREC.p)
## Computing profile confidence intervals ...
##                  2.5 %      97.5 %
## .sig01       0.1671093  0.99173263
## .sig02       0.1691537  1.57480330
## .sigma       1.9593667  2.26360723
## (Intercept)  8.5959614 10.26074984
## PatchU      -0.9363244  0.04522755
  Pro.CGREC.null <- lmer(PROTEIN ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)  
  Pro.CGREC.p <- lmer(PROTEIN ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)

Pro.CGREC.pt <- lmer(PROTEIN ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Pro.CGREC.null, Pro.CGREC.p, Pro.CGREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.CGREC.null 4 3383 3402 -1688 3375 NA NA
Pro.CGREC.p 5 3160 3183 -1575 3150 225.1 1
Pro.CGREC.pt 6 3162 3190 -1575 3150 0.0004245 1
  Pr(>Chisq)
Pro.CGREC.null NA
Pro.CGREC.p 6.906e-51
Pro.CGREC.pt 0.9836
#.P IS THE BETTER MODEL

anova(Pro.CGREC.null, Pro.CGREC.p) %>% 
  pander(caption=" null vs patch")
null vs patch (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.CGREC.null 4 3383 3402 -1688 3375 NA NA
Pro.CGREC.p 5 3160 3183 -1575 3150 225.1 1
  Pr(>Chisq)
Pro.CGREC.null NA
Pro.CGREC.p 6.906e-51
anova(Pro.CGREC.null, Pro.CGREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.CGREC.null 4 3383 3402 -1688 3375 NA NA
Pro.CGREC.pt 6 3162 3190 -1575 3150 225.1 2
  Pr(>Chisq)
Pro.CGREC.null NA
Pro.CGREC.pt 1.304e-49
anova(Pro.CGREC.p, Pro.CGREC.pt) %>% 
  pander(caption="patch vs patch and treatment")
patch vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Pro.CGREC.p 5 3160 3183 -1575 3150 NA NA
Pro.CGREC.pt 6 3162 3190 -1575 3150 0.0004245 1
  Pr(>Chisq)
Pro.CGREC.p NA
Pro.CGREC.pt 0.9836
Pro.CGREC.INT <- lmer(PROTEIN ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Pro.CGREC.pt, Pro.CGREC.INT) 
## Data: subset(ProGO, REC == "CGREC")
## Models:
## Pro.CGREC.pt: PROTEIN ~ Patch + Treatment + (1 | Pasture/Month)
## Pro.CGREC.INT: PROTEIN ~ Patch * Treatment + (1 | Pasture/Month)
##               Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)
## Pro.CGREC.pt   6 3162.0 3189.7 -1575.0   3150.0                         
## Pro.CGREC.INT  7 3137.5 3169.9 -1561.8   3123.5 26.428      1  2.735e-07
##                  
## Pro.CGREC.pt     
## Pro.CGREC.INT ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    summary(Pro.CGREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: PROTEIN ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   3162.0   3189.7  -1575.0   3150.0      751 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1770 -0.6828 -0.1490  0.5190  4.9338 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.377739 0.6146  
##  Pasture       (Intercept) 0.008836 0.0940  
##  Residual                  3.583823 1.8931  
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##                       Estimate Std. Error t value
## (Intercept)          12.188125   0.263938  46.178
## PatchU               -3.040369   0.187688 -16.199
## TreatmentSpring Only  0.006072   0.294560   0.021
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.619       
## TrtmntSprnO -0.581  0.045
   confint(Pro.CGREC.pt)
## Computing profile confidence intervals ...
##                           2.5 %     97.5 %
## .sig01                0.3918434  0.9030728
## .sig02                0.0000000  0.6318090
## .sigma                1.8002131  1.9942528
## (Intercept)          11.6337283 12.7277087
## PatchU               -3.4089867 -2.6718668
## TreatmentSpring Only -0.6397023  0.6672886
   fixef(Pro.CGREC.pt)
##          (Intercept)               PatchU TreatmentSpring Only 
##         12.188124924         -3.040368577          0.006071581
   summary(Pro.CGREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: PROTEIN ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   3160.0   3183.1  -1575.0   3150.0      752 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -3.1774 -0.6825 -0.1494  0.5193  4.9335 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept) 0.377738 0.61460 
##  Pasture       (Intercept) 0.008784 0.09372 
##  Residual                  3.583837 1.89310 
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  12.1913     0.2148   56.75
## PatchU       -3.0405     0.1875  -16.22
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.729
   confint(Pro.CGREC.p) #p or pt give basically the same CI for protein; pt accounts for                               # treatment
## Computing profile confidence intervals ...
##                  2.5 %     97.5 %
## .sig01       0.3918435  0.9030232
## .sig02       0.0000000  0.6317193
## .sigma       1.8002166  1.9942563
## (Intercept) 11.7528694 12.6227237
## PatchU      -3.4087572 -2.6724256
#Pro.CGREC.F <- lmer(PROTEIN ~ Patch + Treatment + (1|Month) + (1|Pasture), 
  #                       data=subset(ProGO, REC=="CGREC"), REML=FALSE)
#   summary(Pro.CGREC.F)
#   confint(Pro.CGREC.F)

Biomass

  Bio.HREC.null <- lmer(Biomass ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)  
  Bio.HREC.p <- lmer(Biomass ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)

Bio.HREC.pt <- lmer(Biomass ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Bio.HREC.null, Bio.HREC.p, Bio.HREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.HREC.null 4 3011 3027 -1501 3003 NA NA
Bio.HREC.p 5 2974 2994 -1482 2964 39.05 1
Bio.HREC.pt 6 2976 2999 -1482 2964 0.2868 1
  Pr(>Chisq)
Bio.HREC.null NA
Bio.HREC.p 4.139e-10
Bio.HREC.pt 0.5923
#.P AND PT ARE ABOUT THE SAME

anova(Bio.HREC.null, Bio.HREC.p) %>% 
  pander(caption="null vs patch")
null vs patch (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.HREC.null 4 3011 3027 -1501 3003 NA NA
Bio.HREC.p 5 2974 2994 -1482 2964 39.05 1
  Pr(>Chisq)
Bio.HREC.null NA
Bio.HREC.p 4.139e-10
anova(Bio.HREC.null, Bio.HREC.p, Bio.HREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.HREC.null 4 3011 3027 -1501 3003 NA NA
Bio.HREC.p 5 2974 2994 -1482 2964 39.05 1
Bio.HREC.pt 6 2976 2999 -1482 2964 0.2868 1
  Pr(>Chisq)
Bio.HREC.null NA
Bio.HREC.p 4.139e-10
Bio.HREC.pt 0.5923
Bio.HREC.INT <- lmer(Biomass ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="HREC"), REML=FALSE)
anova(Bio.HREC.pt, Bio.HREC.INT) 
## Data: subset(ProGO, REC == "HREC")
## Models:
## Bio.HREC.pt: Biomass ~ Patch + Treatment + (1 | Pasture/Month)
## Bio.HREC.INT: Biomass ~ Patch * Treatment + (1 | Pasture/Month)
##              Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)   
## Bio.HREC.pt   6 2975.6 2999.3 -1481.8   2963.6                            
## Bio.HREC.INT  7 2967.0 2994.7 -1476.5   2953.0 10.565      1   0.001152 **
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    summary(Bio.HREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Biomass ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2975.6   2999.3  -1481.8   2963.6      381 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8403 -0.7404 -0.1928  0.5383  2.9856 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept)   4.832   2.198  
##  Pasture       (Intercept)  15.985   3.998  
##  Residual                  117.168  10.824  
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##                Estimate Std. Error t value
## (Intercept)      15.572      2.721   5.723
## PatchU            8.250      1.286   6.416
## TreatmentSheep    1.949      3.598   0.542
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.357       
## TreatmntShp -0.660  0.000
   confint(Bio.HREC.pt) #PATCH SIG, TREATMENT NOT
## Computing profile confidence intervals ...
##                    2.5 %    97.5 %
## .sig01          0.000000  4.522105
## .sig02          1.760247  8.627888
## .sigma         10.088122 11.654854
## (Intercept)     9.450430 21.690614
## PatchU          5.723598 10.777187
## TreatmentSheep -6.375216 10.303160
  summary(Bio.HREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Biomass ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "HREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   2973.9   2993.7  -1481.9   2963.9      382 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.8305 -0.7365 -0.1879  0.5464  2.9937 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept)   4.832   2.198  
##  Pasture       (Intercept)  16.898   4.111  
##  Residual                  117.172  10.825  
## Number of obs: 387, groups:  Month:Pasture, 18; Pasture, 6
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)   16.545      2.082   7.948
## PatchU         8.250      1.286   6.416
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.467
   confint(Bio.HREC.p) #PATCH IS SIGNIFICANT
## Computing profile confidence intervals ...
##                 2.5 %    97.5 %
## .sig01       0.000000  4.522122
## .sig02       1.867843  8.843722
## .sigma      10.088254 11.655059
## (Intercept) 11.969645 21.132414
## PatchU       5.723341 10.777057
  Bio.CGREC.null <- lmer(Biomass ~ 1  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)  
  Bio.CGREC.p <- lmer(Biomass ~ Patch + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)

Bio.CGREC.pt <- lmer(Biomass ~ Patch + Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Bio.CGREC.null, Bio.CGREC.p, Bio.CGREC.pt) %>% 
  pander(caption="comparison of the three models")
comparison of the three models (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.CGREC.null 4 5499 5517 -2745 5491 NA NA
Bio.CGREC.p 5 5429 5453 -2710 5419 71.18 1
Bio.CGREC.pt 6 5430 5458 -2709 5418 1.298 1
  Pr(>Chisq)
Bio.CGREC.null NA
Bio.CGREC.p 3.255e-17
Bio.CGREC.pt 0.2546
#.P IS THE BETTER MODEL

anova(Bio.CGREC.null, Bio.CGREC.p) %>% 
  pander(caption="null vs patch")
null vs patch (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.CGREC.null 4 5499 5517 -2745 5491 NA NA
Bio.CGREC.p 5 5429 5453 -2710 5419 71.18 1
  Pr(>Chisq)
Bio.CGREC.null NA
Bio.CGREC.p 3.255e-17
anova(Bio.CGREC.null, Bio.CGREC.pt) %>% 
  pander(caption="null vs patch and treatment")
null vs patch and treatment (continued below)
  Df AIC BIC logLik deviance Chisq Chi Df
Bio.CGREC.null 4 5499 5517 -2745 5491 NA NA
Bio.CGREC.pt 6 5430 5458 -2709 5418 72.48 2
  Pr(>Chisq)
Bio.CGREC.null NA
Bio.CGREC.pt 1.823e-16
Bio.CGREC.INT <- lmer(Biomass ~ Patch * Treatment  + (1|Pasture/Month), 
                     data=subset(ProGO, REC=="CGREC"), REML=FALSE)
anova(Bio.CGREC.pt, Bio.CGREC.INT) 
## Data: subset(ProGO, REC == "CGREC")
## Models:
## Bio.CGREC.pt: Biomass ~ Patch + Treatment + (1 | Pasture/Month)
## Bio.CGREC.INT: Biomass ~ Patch * Treatment + (1 | Pasture/Month)
##               Df    AIC    BIC  logLik deviance  Chisq Chi Df Pr(>Chisq)  
## Bio.CGREC.pt   6 5430.2 5457.9 -2709.1   5418.2                           
## Bio.CGREC.INT  7 5427.3 5459.7 -2706.7   5413.3 4.8385      1    0.02783 *
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    summary(Bio.CGREC.pt)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Biomass ~ Patch + Treatment + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5430.2   5457.9  -2709.1   5418.2      751 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1457 -0.6682 -0.1832  0.4933  4.8393 
## 
## Random effects:
##  Groups        Name        Variance  Std.Dev. 
##  Month:Pasture (Intercept) 5.292e+00 2.301e+00
##  Pasture       (Intercept) 2.978e-13 5.457e-07
##  Residual                  7.237e+01 8.507e+00
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##                      Estimate Std. Error t value
## (Intercept)           15.4692     1.0799  14.325
## PatchU                 7.3321     0.8429   8.698
## TreatmentSpring Only   1.3027     1.1283   1.155
## 
## Correlation of Fixed Effects:
##             (Intr) PatchU
## PatchU      -0.679       
## TrtmntSprnO -0.552  0.053
   confint(Bio.CGREC.pt)
## Computing profile confidence intervals ...
## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep

## Warning in nextpar(mat, cc, i, delta, lowcut, upcut): Last two rows have
## identical or NA .zeta values: using minstep
## Warning in FUN(X[[i]], ...): non-monotonic profile for .sig02
## Warning in confint.thpr(pp, level = level, zeta = zeta): bad spline fit
## for .sig02: falling back to linear interpolation
##                          2.5 %    97.5 %
## .sig01                1.438861  3.448834
## .sig02                0.000000  2.144707
## .sigma                8.089442  8.961712
## (Intercept)          13.316869 17.611006
## PatchU                5.677675  8.986246
## TreatmentSpring Only -1.057132  3.662826
   fixef(Bio.CGREC.pt)
##          (Intercept)               PatchU TreatmentSpring Only 
##            15.469173             7.332050             1.302719
   summary(Bio.CGREC.p)
## Linear mixed model fit by maximum likelihood  ['lmerMod']
## Formula: Biomass ~ Patch + (1 | Pasture/Month)
##    Data: subset(ProGO, REC == "CGREC")
## 
##      AIC      BIC   logLik deviance df.resid 
##   5429.5   5452.6  -2709.7   5419.5      752 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.1674 -0.6667 -0.1902  0.5015  4.8265 
## 
## Random effects:
##  Groups        Name        Variance Std.Dev.
##  Month:Pasture (Intercept)  5.712   2.390   
##  Pasture       (Intercept)  0.000   0.000   
##  Residual                  72.370   8.507   
## Number of obs: 757, groups:  Month:Pasture, 24; Pasture, 8
## 
## Fixed effects:
##             Estimate Std. Error t value
## (Intercept)  16.1534     0.9105  17.741
## PatchU        7.2843     0.8419   8.652
## 
## Correlation of Fixed Effects:
##        (Intr)
## PatchU -0.772
   confint(Bio.CGREC.p)
## Computing profile confidence intervals ...
##                 2.5 %    97.5 %
## .sig01       1.455832  3.561241
## .sig02       0.000000  2.395668
## .sigma       8.089484  8.961780
## (Intercept) 14.325825 17.954553
## PatchU       5.631343  8.936701

Figure