##Tendencies of Suicide Rates Among Different Gender and Age Groups in Population of Diiferent Countries
I will use the Suicide Rates Overview 1985 to 2016 data from Kaggle that compares socio-economic information with suicide rates by year and country to explore tendencies of suicides in different countries, age groups, and gender.
Importing data for analysis:
library (readr)
master<-read_csv("C:/Users/Marcy/Documents/soc 712/master.csv")
head (master)
library(ggplot2)
library(ggthemes)
library(babynames)
library(Zelig)
library(ggrepel)
library(HistData)
library(tidyverse)
ggplot(master, aes(x = suicides_no, y=generation)) +
geom_path()
ggplot(master, aes(x = suicides_no, y=sex)) +
geom_path()
names (master)
m <- rename(master, rate = "suicides/100k pop")
ggplot(m, aes(x = rate, y=age)) +
geom_path()
Masrate_plot <- ggplot(data = m, aes(x = rate, y = age)) +
geom_line(aes(color = rate), size = 12)
Masrate_plot
Masrate <- m %>%
filter(sex %in% c("35-54 years", "75+years", "25-34 years"))
Masrate_plot <- ggplot(data = m, aes(x = rate, y = sex)) +
geom_line(aes(color = rate), size = 12)
Masrate_plot
Masrate_plot + theme_tufte()
library(ggthemes)
library(gganimate)
library(tidyverse)
library(dplyr)
library(viridis)
graph_data <- ggplot(master, mapping =aes(x= year, y = suicides_no))
graph1 <- graph_data + geom_smooth()
graph1 + labs(title = 'Trend of World Suicide Frequency Over the Years') + theme_tufte()
library (dplyr)
library (ggthemes)
gg2<-ggplot(master, aes(y = suicides_no, x = age) ) + geom_point(color='green') + geom_line(color='pink') +theme_calc() +stat_smooth(method = "lm",color="orange")+labs(title = 'Rate of Suicides Per Age Group')
library(plotly)
ggplotly(gg2)
library (ggplot2)
library (gganimate)
library (gifski)
library (devtools)
library (gapminder)
library (png)
master %>%
ggplot(aes(x=factor(year),y=suicides_no, fill = suicides_no)) +
geom_col(alpha = 0.8) +
scale_size(range = c(4, 12)) +
guides(fill=guide_legend(title="Suicide Rate in Years"))+
labs(title = 'Suicide Rate in Years',
subtitle='Date: {frame_time}',
x = 'year',
y = 'rate')+
transition_time(year)+
coord_flip()+
theme_gray()
master %>%
ggplot(aes(x=factor(sex),y=suicides_no, fill = suicides_no)) +
geom_col(alpha = 0.8) +
scale_size(range = c(4, 12)) +
guides(fill=guide_legend(title="Suicide Rate in Years"))+
labs(title = 'Suicide Rate By Gender in Years',
subtitle='Date: {frame_time}',
x = 'gender',
y = 'rate of suicides')+
transition_time(year)+
coord_flip()+
theme_gray()
```
LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQojI1RlbmRlbmNpZXMgb2YgU3VpY2lkZSBSYXRlcyBBbW9uZyBEaWZmZXJlbnQgR2VuZGVyIGFuZCBBZ2UgR3JvdXBzIGluIFBvcHVsYXRpb24gb2YgRGlpZmVyZW50IENvdW50cmllcw0KDQpJIHdpbGwgdXNlIHRoZSBTdWljaWRlIFJhdGVzIE92ZXJ2aWV3IDE5ODUgdG8gMjAxNiBkYXRhIGZyb20gS2FnZ2xlIHRoYXQgY29tcGFyZXMgc29jaW8tZWNvbm9taWMgaW5mb3JtYXRpb24gd2l0aCBzdWljaWRlIHJhdGVzIGJ5IHllYXIgYW5kIGNvdW50cnkgdG8gZXhwbG9yZSB0ZW5kZW5jaWVzIG9mIHN1aWNpZGVzIGluIGRpZmZlcmVudCBjb3VudHJpZXMsIGFnZSBncm91cHMsIGFuZCBnZW5kZXIuDQoNCg0KDQoNCg0KDQpJbXBvcnRpbmcgZGF0YSBmb3IgYW5hbHlzaXM6DQoNCg0KYGBge3J9DQpsaWJyYXJ5IChyZWFkcikNCm1hc3RlcjwtcmVhZF9jc3YoIkM6L1VzZXJzL01hcmN5L0RvY3VtZW50cy9zb2MgNzEyL21hc3Rlci5jc3YiKQ0KaGVhZCAobWFzdGVyKQ0KYGBgDQpgYGB7cn0NCmxpYnJhcnkoZ2dwbG90MikNCmxpYnJhcnkoZ2d0aGVtZXMpDQpsaWJyYXJ5KGJhYnluYW1lcykNCmxpYnJhcnkoWmVsaWcpDQpsaWJyYXJ5KGdncmVwZWwpDQpsaWJyYXJ5KEhpc3REYXRhKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQoNCmBgYA0KDQoNCg0KDQpgYGB7cn0NCmdncGxvdChtYXN0ZXIsIGFlcyh4ID0gc3VpY2lkZXNfbm8sIHk9Z2VuZXJhdGlvbikpICsgDQogIGdlb21fcGF0aCgpDQpgYGANCg0KYGBge3J9DQpnZ3Bsb3QobWFzdGVyLCBhZXMoeCA9IHN1aWNpZGVzX25vLCB5PXNleCkpICsgDQogIGdlb21fcGF0aCgpDQpgYGANCg0KYGBge3J9DQpuYW1lcyAobWFzdGVyKQ0KYGBgDQpgYGB7cn0NCm0gPC0gcmVuYW1lKG1hc3RlciwgcmF0ZSA9ICJzdWljaWRlcy8xMDBrIHBvcCIpDQpgYGANCg0KDQpgYGB7cn0NCg0KYGBgDQoNCmBgYHtyfQ0KZ2dwbG90KG0sIGFlcyh4ID0gcmF0ZSwgeT1hZ2UpKSArIA0KICBnZW9tX3BhdGgoKQ0KYGBgDQpgYGB7cn0NCg0KYGBgDQoNCmBgYHtyfQ0KICANCg0KTWFzcmF0ZV9wbG90IDwtIGdncGxvdChkYXRhID0gbSwgYWVzKHggPSByYXRlLCB5ID0gYWdlKSkgKw0KICBnZW9tX2xpbmUoYWVzKGNvbG9yID0gcmF0ZSksIHNpemUgPSAxMikNCg0KTWFzcmF0ZV9wbG90DQoNCg0KDQpgYGANCg0KYGBge3J9DQpNYXNyYXRlIDwtIG0gJT4lDQogIGZpbHRlcihzZXggJWluJSBjKCIzNS01NCB5ZWFycyIsICI3NSt5ZWFycyIsICIyNS0zNCB5ZWFycyIpKQ0KDQpNYXNyYXRlX3Bsb3QgPC0gZ2dwbG90KGRhdGEgPSBtLCBhZXMoeCA9IHJhdGUsIHkgPSBzZXgpKSArDQogIGdlb21fbGluZShhZXMoY29sb3IgPSByYXRlKSwgc2l6ZSA9IDEyKQ0KDQpNYXNyYXRlX3Bsb3QNCg0KDQpgYGANCmBgYHtyfQ0KDQpNYXNyYXRlX3Bsb3QgKyB0aGVtZV90dWZ0ZSgpDQoNCmBgYA0KDQpgYGB7cn0NCmxpYnJhcnkoZ2d0aGVtZXMpDQpsaWJyYXJ5KGdnYW5pbWF0ZSkNCmxpYnJhcnkodGlkeXZlcnNlKQ0KbGlicmFyeShkcGx5cikNCmxpYnJhcnkodmlyaWRpcykNCg0KYGBgIA0KDQpgYGB7cn0NCmdyYXBoX2RhdGEgPC0gZ2dwbG90KG1hc3RlciwgbWFwcGluZyA9YWVzKHg9IHllYXIsIHkgPSBzdWljaWRlc19ubykpDQoNCmdyYXBoMSA8LSBncmFwaF9kYXRhICsgZ2VvbV9zbW9vdGgoKSANCg0KZ3JhcGgxICsgbGFicyh0aXRsZSA9ICdUcmVuZCBvZiBXb3JsZCBTdWljaWRlIEZyZXF1ZW5jeSBPdmVyIHRoZSBZZWFycycpICsgdGhlbWVfdHVmdGUoKSANCg0KYGBgDQoNCmBgYHtyfQ0KbGlicmFyeSAoZHBseXIpDQpsaWJyYXJ5IChnZ3RoZW1lcykNCmBgYA0KDQoNCg0KYGBge3J9DQpnZzI8LWdncGxvdChtYXN0ZXIsIGFlcyh5ID0gc3VpY2lkZXNfbm8sIHggPSBhZ2UpICkgKyBnZW9tX3BvaW50KGNvbG9yPSdncmVlbicpICsgZ2VvbV9saW5lKGNvbG9yPSdwaW5rJykgK3RoZW1lX2NhbGMoKSArc3RhdF9zbW9vdGgobWV0aG9kID0gImxtIixjb2xvcj0ib3JhbmdlIikrbGFicyh0aXRsZSA9ICdSYXRlIG9mIFN1aWNpZGVzIFBlciBBZ2UgR3JvdXAnKQ0KbGlicmFyeShwbG90bHkpDQpnZ3Bsb3RseShnZzIpDQpgYGANCg0KYGBge3J9DQpsaWJyYXJ5IChnZ3Bsb3QyKQ0KbGlicmFyeSAoZ2dhbmltYXRlKQ0KbGlicmFyeSAoZ2lmc2tpKQ0KbGlicmFyeSAoZGV2dG9vbHMpDQpsaWJyYXJ5IChnYXBtaW5kZXIpDQpsaWJyYXJ5IChwbmcpDQpgYGANCg0KYGBge3J9DQptYXN0ZXIgJT4lDQpnZ3Bsb3QoYWVzKHg9ZmFjdG9yKHllYXIpLHk9c3VpY2lkZXNfbm8sIGZpbGwgPSBzdWljaWRlc19ubykpICsNCiAgZ2VvbV9jb2woYWxwaGEgPSAwLjgpICsNCiAgc2NhbGVfc2l6ZShyYW5nZSA9IGMoNCwgMTIpKSArIA0KICBndWlkZXMoZmlsbD1ndWlkZV9sZWdlbmQodGl0bGU9IlN1aWNpZGUgUmF0ZSBpbiBZZWFycyIpKSsNCiAgbGFicyh0aXRsZSA9ICdTdWljaWRlIFJhdGUgaW4gWWVhcnMnLA0KICAgICAgIHN1YnRpdGxlPSdEYXRlOiB7ZnJhbWVfdGltZX0nLCANCiAgICAgICB4ID0gJ3llYXInLCANCiAgICAgICB5ID0gJ3JhdGUnKSsNCiAgdHJhbnNpdGlvbl90aW1lKHllYXIpKw0KICBjb29yZF9mbGlwKCkrDQogIHRoZW1lX2dyYXkoKQ0KDQoNCmBgYA0KDQpgYGB7cn0NCm1hc3RlciAlPiUNCmdncGxvdChhZXMoeD1mYWN0b3Ioc2V4KSx5PXN1aWNpZGVzX25vLCBmaWxsID0gc3VpY2lkZXNfbm8pKSArDQogIGdlb21fY29sKGFscGhhID0gMC44KSArDQogIHNjYWxlX3NpemUocmFuZ2UgPSBjKDQsIDEyKSkgKyANCiAgZ3VpZGVzKGZpbGw9Z3VpZGVfbGVnZW5kKHRpdGxlPSJTdWljaWRlIFJhdGUgaW4gWWVhcnMiKSkrDQogIGxhYnModGl0bGUgPSAnU3VpY2lkZSBSYXRlIEJ5IEdlbmRlciBpbiBZZWFycycsDQogICAgICAgc3VidGl0bGU9J0RhdGU6IHtmcmFtZV90aW1lfScsIA0KICAgICAgIHggPSAnZ2VuZGVyJywgDQogICAgICAgeSA9ICdyYXRlIG9mIHN1aWNpZGVzJykrDQogIHRyYW5zaXRpb25fdGltZSh5ZWFyKSsNCiAgY29vcmRfZmxpcCgpKw0KICB0aGVtZV9ncmF5KCkNCmBgYA0KDQogDQpgYGANCg0K