Underdispersion

Reading the data in:

mortality_dat <- data.frame(Year = as.factor(rep(1961:1967, times = 2)), Gender = gl(n = 2, 
    k = 7, labels = c("Boys", "Girls")), Deaths = c(48, 55, 55, 58, 58, 49, 
    43, 36, 40, 44, 45, 46, 51, 39), Births = c(817599, 833269, 852561, 882924, 
    935366, 705463, 992778, 771773, 785347, 806960, 833837, 888331, 655511, 
    942869))

mortality_dat2 <- data.frame(mortality_dat, Girls_1966 = mortality_dat$Year == 
    1966 & mortality_dat$Gender == "Girls")

poismod <- glm(formula = Deaths ~ offset(log(Births)) + Gender + Year + Girls_1966, 
    family = poisson, data = mortality_dat2)

We can see that the sample mean equals roughly the variance:

attach(mortality_dat2)
mean(Deaths)
## [1] 47.64
sd(Deaths)^2
## [1] 49.94

However, following a suggestion by Faraway, we should instead compare the fitted values \[ {{\hat \mu }_i} \] with \[ {\left( {{y_i} - {{\hat \mu }_i}} \right)^2} \] to assess underdispersion.

Mean of the fitted values:

mean(fitted(poismod))
## [1] 47.64

Crude approximation for the variance:

mean((Deaths - fitted(poismod))^2)
## [1] 1.732

The difference between the two provides a way better picture of the amount of under-/overdispersion than comparing sample mean and variance:

quasipois.mod <- glm(formula = Deaths ~ offset(log(Births)) + Gender + Year + 
    Girls_1966, family = quasipoisson, data = mortality_dat2)
summary(quasipois.mod)
## 
## Call:
## glm(formula = Deaths ~ offset(log(Births)) + Gender + Year + 
##     Girls_1966, family = quasipoisson, data = mortality_dat2)
## 
## Deviance Residuals: 
##       1        2        3        4        5        6        7        8  
##  0.1438   0.2450  -0.0456   0.0485  -0.0062   0.0000  -0.4134  -0.1634  
##       9       10       11       12       13       14  
## -0.2800   0.0513  -0.0547   0.0070   0.0000   0.4542  
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)     -9.7638     0.0391 -249.89  1.9e-11 ***
## GenderGirls     -0.1821     0.0287   -6.35   0.0014 ** 
## Year1962         0.1048     0.0508    2.06   0.0940 .  
## Year1963         0.1212     0.0503    2.41   0.0607 .  
## Year1964         0.1268     0.0498    2.55   0.0515 .  
## Year1965         0.0763     0.0497    1.54   0.1853    
## Year1966         0.1890     0.0622    3.04   0.0288 *  
## Year1967        -0.2209     0.0526   -4.20   0.0085 ** 
## Girls_1966TRUE   0.2955     0.0736    4.01   0.0102 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
## 
## (Dispersion parameter for quasipoisson family taken to be 0.1148)
## 
##     Null deviance: 20.52280  on 13  degrees of freedom
## Residual deviance:  0.57309  on  5  degrees of freedom
## AIC: NA
## 
## Number of Fisher Scoring iterations: 3

Very strong underdispersion: \[ \phi = 0.11 \]!